
First class feature abstractions for product derivation

A.G.J. Jansen, R. Smedinga, J. van Gurp and J. Bosch

Abstract: The authors have observed that large software systems are increasingly defined in terms
of the features they implement. Consequently, there is a need to express the commonalities and
variability between products of a product family in terms of features. Unfortunately, technology
support for the early aspect of a feature is currently limited to the requirements level. There is a need
to extend this support to the design and implementation level as well. Existing separation of
concerns technologies, such as AOP and SOP, may be of use here. However, features are not first
class citizens in these paradigms. To address this and to explore the problems and issues with
respect to features and feature composition, the authors have formalised the notion of features in a
feature model. The feature model relates features to a component role model. Using our model and
a composition algorithm, a number of base components and a number of features may be selected
from a software product family and a product derived. As a proof of concept, the authors have
experimented extensively with a prototype Java implementation of their approach.

1 Introduction

Software applications grow larger and larger, are main-
tained for longer periods of time and need to be updated
frequently to evolve with new needs and changing consumer
requirements. To cope with this increasing size of software
applications a software product family (SPF) [1, 2] approach
can be used. An SPF is designed for a family of
(domain) related applications. It consists of a product-line
architecture and a set of reusable components. Specific
applications may be derived from the SPF by selecting,
enhancing and adapting components. We have observed
that, during product derivation, the differences between
products are usually defined in terms of features [1, 3–5].

Features are an example of early aspects [6], crosscutting
concerns at the requirements and architectural level.
Features are used in requirement engineering to define
optional or incremental units of change [7]. They have a
many-to-many relationship to the individual requirements
[1]. Tracing features to the implementing SPF components
is complex. In ideal cases, a particular feature implemen-
tation is localised to a single module; but in many
cases features will cut across multiple components [8].
Consequently, features are an important early aspect to
consider, as they try to bridge the gap between the problem
domain and solution domain [9].

The product derivation process in an SPF is a time-
consuming and therefore expensive process. The reason for
this is that there is a mismatch between the way products are
defined (i.e. in terms of features) and the variability offered
by the SPF. Requirements changes generally result in
changing and=or adding features to the SPF. However,
typically features have no first class representation in the
SPF implementation. During product derivation, developers

must make adaptations to the SPF’s provided feature set in
order to implement product specific features. Consequently,
changing the implementation to meet new requirements is
potentially expensive because code related to one feature
may be spread over multiple software components.

Ideally, new or changed features would be captured in
separate pieces of code that can be changed and maintained
independently. Thus changes during the product derivation
would be limited to those pieces of code. The main topic of
this paper is giving features a first class representation in
SPFs so that during product derivation, product developers
may select features from the SPF and reuse them in their
products. There are a number of problems associated with
this type of product derivation. A key contribution of this
paper is that we identify those problems and demonstrate in
our approach how these can be worked around or solved.

We use a top-down approach of analysing the issue of
feature based product derivation. Our top-down approach
starts with the modelling of concepts such as features and
SPFs in terms of sets. With the help of this formal
description of the feature model composition problems are
identified. Several solutions to these composition problems
are presented. One of these solutions is used in a prototype
implementation that is also presented in this paper. The three
contributions of this paper are:

. a feature model, which relates features of an SPF with
component roles
. a classification of feature composition problems and
potential solutions to these problems
. a demonstration of how features can be realised at the
implementation level. This opens the way to automatically
derive a product from an SPF based on a selection of
available features.

2 Features in software product families

To clarify our approach, an examination of how features and
SPFs are related is presented. After this, an informal outline
of our approach is presented. The approach involves
features, actors and roles. At the end of the Section the
approach is exemplified using the example of a video shop
renting system.

q IEE, 2004

IEE Proceedings online no. 20040922

doi: 10.1049/ip-sen:20040922

The authors are with the Department of Mathematics and Computing
Science, University of Groningen, PO Box 800, 9700 AV, The Netherlands

Paper first received 3rd June 2003 and in revised form 26th April 2004

IEE Proc.-Softw., Vol. 151, No. 4, August 2004 187



2.1 Software product families (SPFs)

An SPF consists of a base implementation (e.g. B) and a
number of features (e.g. F1 . . .F25). A product may be
derived from the SPF by selecting an arbitrary number of
these features and combining these with the base implemen-
tation (e.g. B þ F9 þ F18 þ � � � þ F23). The base implemen-
tation itself can also be seen as a set of (standard) features,
i.e. an SPF then becomes, for example, F1 þ F2 þ F3 þ
F4 þ F9 þ F18 þ � � � þ F23;where some features (e.g. 1 to 4)
are standard features (in FODA these are called mandatory
features [3]) and others are optional features. In this paper,
base components model entities, which cannot easily be
decomposed into features. Legacy code components and
domain components are examples of these base
components.

The properties of the composition-operator ‘ þ ’ are our
primary interest in this paper. Of course, it would be ideal
if that operator were associative i.e. ½ðF1 þ F2Þ þ F3� ¼
½F1 þ ðF2 þ F3Þ�; and commutative, i.e. F1 þ F2 ¼ F2 þ F1:
Then, a product developer would be able to arbitrarily
combine features. The developer of each feature would
not need to worry about interaction with other features. This
way it would not make any difference at what point in
time and=or development a certain feature is brought into
a feature composition. However, in general (as will be
argued in the following Section) this operator is neither
associative nor commutative, because of feature dependen-
cies: one feature may depend on another feature. This is, for
example, the case if one feature cannot operate without
another feature.

A further complication factor is that the composition of
features might introduce feature interaction [7]: a feature
interaction is some way in which one or more features
modify or influence another feature in describing the
system’s behaviour set.

An example of feature interaction can be found in
Microsoft Outlook. Outlook, a popular e-mail client for
Windows, has two related features: ‘work off-line’ and
‘send immediately’. The work off-line feature enables users
to use the e-mail client without having a permanent
connection to their mail server. While working off-line,
Outlook caches the different actions of the user and executes
them when the user switches to on-line mode. On the other
hand, if the send immediately feature is enabled, a message
is sent immediately when a user presses the send button.
Clearly both features influence each other. The send
immediately feature should be disabled if the user is
working off-line. However, this is not the case in Outlook.
At present, Outlook still tries to send a message even though
the user is working off-line. A potential cause for this
problem could be that both features were implemented
independently from each other. The problem only surfaces
when both features are enabled. Consequently, unit testing
will not detect this problem.

Feature interactions, like the example of Outlook, are
very common in large software systems. As Zave observes,
this type of problem potentially makes the composition of
features incomplete, inconsistent, nondeterministic, hard to
implement, etc. (see [10]). The method introduced in this
paper aims to keep the composition complete, consistent,
deterministic and implementable.

2.2 Roles, actors and base components

The modelling of an SPF as a base implementation
composed of a set of selected features demands a more
detailed modelling of a feature. Our approach does not

assume how the inner workings of the base components are
defined, only the assumption that some of them exist. The
relationship between a feature and the base components is
defined through a role-based approach.

Role modelling is used, because features typically affect
more than one domain component simultaneously. In this
perspective a feature can be viewed as a collection of base
components playing roles of a feature. However, there is no
simple one-to-one relationship between the roles of a feature
and the roles ‘played’ by the base components. This simple
relationship does not exist, because we want to define the
features and their roles independent of the base components.
As a consequence of this flexibility, there may be a
base component playing more than one role of a feature.
The opposite is also possible – one role of a feature can
be played by several base components. To model this many-
to-many mapping of roles and base components, our
approach uses the concept of actors.

Note that with the term ‘actor’ a different concept is
meant than is used in parallel object-oriented programming
[11]. In the feature model, an actor is a first-class
representation of a base component and the roles it plays
for a single feature.

Figure 1 visualises the various feature model elements
and their relationships. The base components visualised in
the top part of Fig. 1 are entities, which cannot easily be
decomposed into features and belong to the base SPF
implementation. On the left side of Fig. 1 two features
containing one and two roles are presented, visualising the
fact that roles are part of a feature. At the centre there are
four actors.

The top two actors consist of base components 1 and 2,
both playing role 1. The bottom two actors are base
component 1 playing role 2 and base component 2 playing
role 3. At the bottom of Fig. 1 the derived components are
situated. A derived component is a base component
incorporating actors playing the roles of the selected
features.

The concepts we discussed here form the basis of our
composition approach, which will be elaborated on in
Section 3. Before that, however, we provide an example.

product

actorsfeatures

base components

base component
1

feature 1

role 1 actor actor

actor

actor

derived
component 1

derived
component 2

feature 2

role 2

role 3

base component
2

Fig. 1 Conceptual view of feature model

IEE Proc.-Softw., Vol. 151, No. 4, August 2004188



2.3 Case

Throughout the rest of this paper a video renting
administration system is used to illustrate various aspects
of the feature model. A quick domain analysis provides the
following domain components for the video-shop system: a
VideoShop component, a Video component and a Custo-
mer component. These three domain components are the
base components of this case. For the remaining part of the
paper components are typeset in bold. Features are typeset
underlined. The following features have been selected for
this case:

. VideoRental: A Customer can rent a Video

. ReturnVideo: A Customer can return a Video that is
rented
. AmountDiscount: A Customer receives a certain
discount when renting more then one Video
. RegularCustomerDiscount: A regular Customer receives
a certain discount when renting a Video
. AgeControl: Only a Customer above a certain age may
rent a certain Video.

These features are selected because they illustrate the
various issues of the feature model. The system should
always contain the features VideoRental and ReturnVideo,
for the system to have a minimal of functionality. Both
features, however, will not be part of the base components
because the specification of the features might change over
time. The other features are optional. Some features are
dependent on each other, e.g. all optional features depend on
VideoRental. Also, some features will have feature
interaction, for example AmountDiscount and Regular-
CustomerDiscount, both influence the amount of money a
customer has to spend.

Figure 2 presents an overview of the video-shop case.
The different features of the video-shop, e.g. VideoRental,
ReturnVideo, etc., can be found on the left side. The base
components (Videoshop, Customer, Video) are found on

the top. The features consist of one or more roles, for
example the VideoRental feature consists of the
following roles (roles are in teletype): Contract,
Contract Maintenance, RentedItem, Renter
and Maintenance.

The first role, Contract of the VideoRental
feature, introduces a new concept into the feature model.
The Contract role introduces a new component in the
composition, the Contract, which is not directly related to
any existing base component. New concepts in the domain
may be added by roles defining new components.

Because features are decomposed further into roles, the
core of our composition method consists of mapping the
defined roles onto the base components. The mapping of
the different features and roles is visualised in Fig. 2. For
each of the features the roles are presented and the
functionality of the roles is visualised by displaying
the signatures of the corresponding methods. Furthermore,
the functionality of the base components is visualised.

When a role is mapped onto a base component an
intermediate component is created (we refer to these
intermediate components as actors); these are the little
rectangles in the middle. Each actor has a unique name, for
example the name of the Contract actor is A1-4. The first
number indicates that the actor belongs to the first feature
(i.e. VideoRental). The second number indicates the base
component to which the role has been mapped. The
Contract role has been mapped to a new 4th base
component.

3 Formalising the notion of features

Composition of features such as described in Section 2 is far
from trivial. Therefore, to be able to identify potential
composition problems, the notion of features is formalised.
In Section 4, we use this formal model to derive the
properties of the composition operator.

int rents(Video[])Renter

V
ideoR

ental
R

eturnV
ideo

Videoshop
constructor Videshop()
Video[] getAllVideos() 

addVideo(Video)
removeVideo(Video)

Customer[] getAllcustomers
addCustomer(Customer)

removeCustomer(Customer)

Video

constructor(String, int)
setTitle(String)
String getTitle()

setPrice(int)
int getPrice() 

Customer

constructor Customer(String)
setName(String)

String getName()

base components

features

contract

constructor Contract(Customer, Video)
setCustomer(Customer)
Customer getCustomer()
setVideo(Video)
VideogetVideo() 

Contract
maintenance

addContract(Contract)
removeContract(Contract)
Contract[] getAllContracts

Rented item boolean isRented()

Returning returns(Video[])

A
m

ount
discount

Amount
discount int rents(Video[])

R
eg. C

ust.
D

iscount

Regular
customer

setRegular(boolean)
boolean getRegular() 

Reg. cust.
discount

int rents(Video[])

A
ge C

ontrol

Customer
age

setBirthDay(Date)

Date getBirthDate(Date)
int getAge() 

Video
minimum age

setMinAge(int)
int getMinAge() 

Age control boolean mayRent(Video)
int rents(Video[])

Contract

A1-4

A2-2

A3-2

A4-2

A5-3

A1-3

Expired
contract

setExpired(boolean)
boolean getExpired() 

Renting
maintenance boolean isRented()

A2-4

A2-3

roles methods of roles

A1-2

A5-2

Fig. 2 Features, roles and actors of video shop renting system

IEE Proc.-Softw., Vol. 151, No. 4, August 2004 189



The feature model is formally defined in terms of sets.
Mappings of elements (e.g. A ! B) of one set to elements of
another set denote relationships between those elements.

In the model a method signature is denoted by an
operationSignature, a unique identifier for the complete
definition of the method itself without an implementation; for
example, in Java this is the header of a method, including the
method name, the list of parameters, and the type of the
returned value. A set of such signatures is called an interface:

interface ¼ foperationSignatureiji 2 signatureSetg
With this notation an interface is denoted as a set
of operation signatures, named operationSignature1;
operationSignature2; etc., where signatureSet is the
complete set of the available operation signatures.

A role is a set of interfaces and a one-to-one mapping of
the operation signatures of the interfaces to implementations
of these operation signatures. In imperative languages this
implementation can be seen as a code block, i.e. the body of
a method without the header.

A role can now be defined as:

role ¼ {
finterfacekjk 2 interfaceSetg;
foperationSignatureki

! implementationki
j

k 2 interfaceSet ^ i 2 signatureSetkgg
The mapping describes that an operation signature is
implemented by associating an implementation with the

operation signature. A role is a partial implementation,
mapped onto a component.

Separate roles in a feature are required to model the
fact that one component can have multiple roles in the
context of a feature. To do the mapping of a role onto
a base component an intermediate form may be used. In a
feature the implementations are mapped onto actors. An
actor is a set of roles from a feature, mapped to a base
component. An actor can be seen as an intermediate
component.

A feature is a set of roles, a set of actors, and a many-to-
many mapping from roles to actors, i.e.:

feature ¼ ffrolerjr 2 roleSetg;
factorojo 2 actorSetg;
frolei ! actorjji 2 roleSet ^ j 2 actorSetgg

A role may be mapped to more than one actor. Also, more
than one role can be mapped to the same actor. One role can
map to more than one actor, if the corresponding code is
going to be used in more than one component. Although this
will in general be considered a signal of bad design, it is not
excluded in our model.

A software product family (SPF) consists of all features
and all base components:

SPF ¼
ffeaturef j f 2 featureSetg[
fbaseComponentojðo 2 baseSetÞg

base components

product

actorsfeatures

s1 > i1

s7 > i7

s2 > i2

s4 > i3

s8 > i8

R1

R2

R3

F1

s3 > i2

s6 > i5

s5 > i4

R4

R5

F2

s6 > i6

s1 > i1

s9 > i9

R6

R7

F3

A2-2

A3-2

A1-3

A2-3

derived
component

1

RI1

RI8

RI2

RI3

RI4

RI5

RI6

RI5

RI1

RI7

A1-
4

none

A3-4

A1-2

legend

operation
signature >

implementation
role

set of
interfaces

feature

derived
component

2

derived
component

3

derived
component

4

BC 1 BC 2 BC 3

Fig. 3 Graphical representation of feature composition

IEE Proc.-Softw., Vol. 151, No. 4, August 2004190



A specific product, derived from a SPF, consists of a
selected number of features, a set of derived components
and the mapping from the actors to the derived component
implementations, which in turn are derived from the base
components, i.e.:

product ¼
fffeaturesjs 2 selectedFeatures � featureSetg;
fcomponentcjðc 2 compSetÞg;
factori ! componentiji 2 actorSets ^ j 2 compSetgg
The set of derived components is derived from the set of base
components, through the mapping of the actors to the base
components. The component set is explicitly included, as
there can be a need for base components which do not have
roles mapped on them but are used by included features.

For example, this is the case for BC1 in Fig. 3. As a
consequence of this definition, the set of derived com-
ponents contains at least as many elements as the set of base
components, i.e.

fbaseComponentog � fcomponentscg
The transformation from a base component to a derived
component is not formalised here. This transformation is the
main issue in our approach and is investigated further in the
following Sections.

Figure 3 illustrates our approach: methods are mapped
onto the components, through the actors. Actors may
introduce new components, which are independent of the
defined base components.

These new components are dependent on an additional,
initially empty, base component none.

Note that we have introduced three types of components:
the base components, new components and derived
components. The base components come from a domain
model or are legacy components. The new components are
components introduced by the roles of new features.
The derived components are components generated for a
specific derivation.

Our model currently does not model feature dependen-
cies. The reason for this is that modelling dependencies
complicates the feature model too much for our purposes.
Therefore, the assumption has been made that the
dependencies among the features are known and can be
resolved before applying the composition operator.

Feature dependencies only influence the order in which
the composition operator is applied. However, this does not
affect how the composition operator should work. Conse-
quently we do not explicitly model feature dependencies
because they are not relevant for our purpose of examining
the properties of the composition operator.

4 Composition operator

In this Section, the composition operator for the feature
model is investigated. The composition operator in the
feature model is used to compose features with base
components. A feature, however, consists of one or more
roles that map onto an actor. This Section investigates how
an actor can be composed of roles and base components,
what the associated composition problems are and how
these problems may be solved.

4.1 Introduction

An actor consists of roles and base components. In the
feature model, the derived components contain the func-
tionality of the corresponding base components and actors
of the selected features that are mapped to the base
component. As mentioned earlier, feature dependencies

complicate the composition process. Ideally the order in
which features are mapped to base components would not
affect the semantics of the derived components. However,
because of the dependencies the order does matter (i.e. the
composition operator is not commutative). Conceptually,
the actors are accumulated on top of the base components
(i.e. each actor is composed with the composition of all
previous actors and the base components). Each actor
combines various roles of a feature that are mapped to the
same base component.

For example, Fig. 4 visualises the composition of two
roles (R1 and R2). To simplify the composition problem,
Fig. 4 does take into account that an actor can be composed
with a base component or another actor. However, this has
no consequences for the composition operator. Both roles
(R1 and R2) consist of one operation, denoted by S1 and S2;
and an implementation for this operation (i.e. I1 and I2).
The actor that results from the composition of role A and B
should contain the unified behaviour of roles A and B. Both
implementations A and B are considered to be black boxes.
The composition of the actor then becomes the problem of
‘gluing’ both implementations together, as denoted in Fig. 4
with the question marks.

4.2 Analysing the composition of roles

Both operation signature and implementation have an effect
on the ‘glue’ that is needed to compose the implemen-
tations. By looking at the relationships between the
operation signatures and the implementations, four different
types of composition can be identified:

1. Signatures and implementations are all different. Figure 3
illustrates this: roles R2 (with s2 ! i2) and R6 (with
s6 ! i6). R2 is mapped onto actor A1-2 and R6 is mapped
onto actor A3-2. Both A1-2 and A3-2 are mapped onto the
same base component BC2. An example in the video shop
(Fig. 2) is the Renter and Returning roles.

This situation does not raise any problems because there
is no interaction between the implementations.
2. The signatures are different and the implementations are
equal. In Fig. 3 this is illustrated in roles R2 (with s2 ! i2)
and R4 (with s3 ! i2). Role R2 is mapped onto actor A1-2
and R4 onto A2-2. Both A1-2 and A2-2 are mapped onto the
same base component BC2. The video shop example does
not contain this situation.

This situation does not present any problems either. It
might signal bad design because different signatures can be

R2

R1

actor

I1

I2

S1

???

S2

Fig. 4 Composition of an actor

IEE Proc.-Softw., Vol. 151, No. 4, August 2004 191



implemented using the same implementation so the
signatures might be considered equal instead of different.
3. Both the signatures and implementations are equal. This
looks like copy–paste reuse and also a bad practice. In Fig. 3
this is illustrated in roles R1 (with s1 ! i1) and R7 (again
s1 ! i1). R1 is mapped onto actor A1-4, R7 onto A3-4 and
both actors are mapped onto the same base component BC4.
The video shop example does not contain this situation.
Although code fragments appear double in the resulting
application there are no serious problems. Problems may
arise, however, when maintenance is needed (code needs to
be repaired in different places). A simple solution for this
kind of problems is simply mapping the different code
fragments to just one fragment.
4. The signatures are equal and the implementations are
different. In Fig. 3 this is illustrated in roles R4 (with
s6 ! i5) and R6 (with s6 ! i6) Role R4 is mapped onto
actor A2-2, R6 onto actor A3-2 and both actors are mapped
onto the same base component BC2. In the video shop case
an example of this situation can be found with the operation
rents in the roles Renter and AmountDiscount.
This is a serious problem that requires further investigation.
The remainder of this Section is devoted to this problem.

Of the four described combinations for composing the roles,
only the last one is problematic. The combination of one
signature with more than one implementation can be
illustrated best with Lego building blocks. An operation
signature is the header and the implementation the body of a
method. Equal operation signatures therefore means that the
headers are equal, and thus the parameter list and return type
of the methods implementing the operation signature are
equal – only the body is different.

A Lego brick can be seen as a shape representing the
operation signature: the shape of the top of the brick
illustrates the parameter list and the shape of the bottom of
the brick illustrates the return type. The inside of the brick
represents the implementation. Because in situation four,
the signature is the same for both implementations, the Lego
bricks have the same shape. This results in three ways to
combine the implementations, as illustrated in Fig. 5:

A. No input parameters, no output. The operation
signature of the implementations has no return type and
no parameters. This is the easiest situation because the
implementations may just be concatenated.
B. Input is equal to output. If the implementations have
the same input type as the return type, the implementations
may be piped together. However, this requires that the
semantics of the input and output match.
C. Input and output are different. In this situation the
implementations can neither be concatenated nor piped
together. Some glue code may be needed to transform both
implementations into one implementation.

In all cases a transformation is needed that combines two
different implementations into one implementation for the
same operation signature. In Lego terms this compares to
building a new stone with the same shape (i.e. with the same
input parameters and output parameter). Problems arise
because of initialisation at the beginning of each of the two
implementations, the output parameters of each of the
implementations, and side-effects such as, for example,
exception handling and results arising.

Any implementation of a feature composition will need to
make specific design choices with respect to these
transformations. Next we look at three alternatives for
these transformations. In Section 5, we discuss a prototype
algorithm we developed in Java where several design
choices with respect to these transformations are made.

4.3 Composing implementation blocks

There are several ways of combining the two implemen-
tations with the same operation signatures, but there are
three basic forms:

. Concatenation: The implementations can be concate-
nated: ia; ib or ia; ib: Concatenating the implementations can
only be done if the output of the first implementation can be
used as input for the second. Thus, concatenation can only
be used in situations A and B of Fig. 5. Even then, side-
effects such as exception handling may prevent successful
concatenation.
. Skipping: One of the implementations can be skipped:
ia or ib: Skipping one of the implementations requires an
additional criterion to be able to select which one of the
implementations to skip.
. Implementation mixing: The implementations may be
mixed (e.g. by superimposing [12], inheritance or del-
egation). Mixing the implementations, the last possibility of
the three, requires knowledge of both the implementations
ia and ib: Suppose ia is in a feature Fa and ib is in a feature
Fb and Fa is dependent on the feature Fb: Then it is possible
to use ib everywhere in the code of ia; because they have
equal operation signatures. At this point this is best
illustrated by comparing this kind of mixing with using an
original method of a superclass in the redefined method in
the subclass by calling super in Java.

There are a number of issues with the different combination
strategies described above:

. Scope of variables: Both implementations may have a
common set of local variables with different semantics,
which may raise some conflicts when both implementations
are combined. A possible solution is to automatically
rename conflicting local variables.
. Side-effects: Both implementations may have conflicting
side-effects. For example, both implementations may throw
an exception. The code of the second implementation may
never be executed if the first implementation throws an
exception. There are many subtle ways both implemen-
tations may conflict which need to be considered when
combining the implementations.

It should be pointed out that other approaches (e.g. AspectJ
[13, 14]) exhibit the same sort of problems. In particular,
AspectJ has become a complex language due to the fact that
it tries to solve=work around these issues.

4.4 Summary

In this Section the formal model of the feature composition
model has been used to examine where exactly this
composition becomes problematic, namely when combining

i1

i2

i1

i2

i1

i2

situation A situation B situation C

Fig. 5 Graphical representation of variations of having one
signature with two implementations

IEE Proc.-Softw., Vol. 151, No. 4, August 2004192



implementations with the same signature into one
implementation. We have outlined three strategies, that
may be combined, for doing so. However, there are a
number of issues that prevent a universal solution to this
problem. Any implementation of our feature composition
model requires that these issues be addressed in some way.
In the following Section we will outline the composition
algorithm we used to implement the video shop prototype.

5 Prototype implementation of feature model

In this Section a prototype implementation of the feature
model is presented. The implementation has been
implemented in the object-oriented programming language
Java. The prototype, the implementation choices and
potential alternative solutions are presented. The Section
ends with an overview of implementation issues and their
solutions.

5.1 Prototype

The prototype that is presented in this Section is intended as
a proof of concept. Consequently, a limitation of this is that
the prototype is missing some features that would be
available in a complete implementation. The composition
operator as implemented only supports one variant of the
implementation mixing composition solution (see
Section 4.3). In addition, an important limitation is that
automatic product derivation is not supported with a
compiler. Instead, the transformation of the features and
the base components into the derived components is done
manually. However, it is possible to automate this in the
future.

The main motivation for building the prototype was to
demonstrate that the composition technique described
earlier can be implemented in a mainstream programming
language, such as Java. However, features are not a first-
class entity in Java. Consequently, the feature model entities
have to be mapped to Java language constructs. Some of the
design choices regarding this mapping are:

. Feature: A feature is a collection of roles in the feature
model. Both features and roles do not have a representation
in the Java language. However, Java supports the concept of
a package that may be used to group various classes
together. The prototype uses the package construct to group
roles of the same feature together.
. Role: In the feature model a role is a collection of
interfaces and some code blocks. A Java class also has
interfaces and code blocks. Therefore a role is implemented
as a Java class in our prototype.
. Base component: Similarly, base components are also
implemented as Java classes.
. Actor: The goal of feature composition is to combine the
base components and the roles in such a way that the result
is has the composed behaviour of both. When a role is
mapped to a base component an intermediate placeholder
class (i.e. an actor) is created that inherits from the base
component class.
. Derived component: Derived components are the result
of the composition of selected features and base
components. As stated before, actors combine base
components and roles using inheritance. However, the
derived components should incorporate all the composed
behaviour of all the actors and base components. Since Java
does not have multiple inheritance, the derived component
cannot be constructed by letting them inherit from all the
actors classes. To work around this problem, actors inherit
from each other. Consequently, the last actor of a base

component will have the required composed behaviour of a
derived component. Therefore the derived component is an
empty placeholder Java class, which inherits from the last
actor defined on a base component. An example of this can
be found in Fig. 6. A more in-depth description of the
composition process and an algorithm for the composition
in the Java language can be found in [15].

In Fig. 6 a UML example of the prototype for the feature
model of Fig. 1 is presented. The packages of the prototype
are visualised as grey boxes which can contain other
packagers or classes. The classes are the white rectangles
and inheritance is illustrated as an arrow from the subclass
to the parent class.

5.2 Potential issues for automatic
composition

This Section presents a description of the various
implementation issues that arose during the implementation
of the prototype. The found issues are believed to be general
for implementing automatic feature composition based on
the feature model. The main issues found during the
implementation of the prototype are:

. the lack of a dependency model in the feature model

. an instantiation problem in the roles

. traceability of roles, features and actors.

The lack of a dependency model in the feature model is an
issue an implementation has to deal with. The feature model
assumes that a feature earlier introduced is not dependent on
a later feature. The fact that this does not have to be the case
in an implementation requires modelling of the dependen-
cies at least at the implementation level. Dependencies also
help to define the context of a feature in which a role is
specified; hence it restricts the knowledge an implementer
needs to implement a role. Experience has taught that there
are four types of dependencies:

. Dependency between roles of the same feature: An
example of dependencies among roles in the same feature
can be found in the VideoRental feature of the video-shop
case (see Fig. 2). One can only rent a Video if the concept of
a Contract is introduced (this is in the Contract-role)
and the necessary Contract operations in the Customer and
Video (these are in the ContractMaintenance-role)
are known.
. Dependency between roles of different features: Depen-
dencies between roles of different features are the basis for
feature dependencies. Feature dependencies in the feature
model are the result of roles depending on roles or actors of
a different feature. An example is the role ExpiredCon-
tract of ReturnVideo, which is dependent on the
VideoRental feature, because of the needed concept of a
Contract. This concept is introduced in the VideoRental
feature by the Contract role.
. Dependency between a role and an actor: This depen-
dency is different from a role depending on another role,
because in this dependency a role is dependent on the
composition of a role and a specific base component, which
is an actor. An example is the Returning role of the
Return-Video feature. The Contract that the Returning
role uses should have the Contract role (from the
VideoRental feature) and also the ExpiredContract
role (from the ReturnVideo feature), to be able to expire a
contract for this Customer.
. Dependency between a role and a composition of multiple
actors. This dependency is a dependency between a role and
a composition of roles and a base component. An example

IEE Proc.-Softw., Vol. 151, No. 4, August 2004 193



of this dependency is in the Returning role of the
ReturnVideo feature. The Video returned should contain the
ContractMaintenance role and the RentingMain-
tenance role to be able to determine whether the Video is
already rented and to add a new Contract to the Video if
this is not the case.

The prototype implements the two role related dependencies
with the help of the traditional Java dependency model
(i.e. the use of the import statement). The two other
dependencies are only partially realised. The recursive way
actors are composed, makes the use of traditional Java
dependencies between a role and an actor semantically
different.

The second implementation issue is the instantiation
problem. At the moment the roles are written it is not
determined which class should be instantiated, because
other features can be added or removed on the fly. Observe
that the last actor of a component contains the complete
composed behaviour for that component; this is due to the
recursive composition behaviour of the actors. Each of the
components has its own derived component, which should
contain the complete composed behaviour for that com-
ponent depending on the selected features.

The derived component therefore could inherit from the
last defined actor for the component. If, during the
derivation process, the derived component confirms to this
inheritance and has a stable name, then it can be instantiated
in the different roles.

Another implementation issue is the traceability of
roles, features and actors, which is required for debugging
the derived components. In the prototype the traceability
of the different actors is accomplished by the first class
representation of the actors. The name of the package in
which the actor class is defined is determined by the
feature and role names. The name of the actor class is
equal to the name of the base component on which it is
mapped, resulting in a complete reverse mapping from the
derived components back to the roles, features and base
components.

5.3 Summary

This Section presented a prototype implementation of the
feature model. The composition process used in the
implementation was motivated and explained. The concrete
form of features, roles and actors in the implementation was
presented. Implementation issues such as the lack of a
dependency model in the feature model, traceability of
roles, features and base components, and an instantiation
problem were discussed.

6 Related work

This Section provides an overview of related work and their
relationship with this paper. Separation of concerns,
features, role modelling, and software product families
and software architecture are the four areas of interest of
which related work is examined.

features composition

feature2

role3

role2

derivations

base components

base components::BaseComponent1 base components::BaseComponent2

derivations::BaseComponent1 derivations::BaseComponent2

composition.feature2.role3::BaseComponent2

feature1

feature1::Role1

feature2

feature2::Role2

feature2::Role3

composition.feature2.role2::BaseComponent1

feature1

role1

composition.feature1.role1::BaseComponent1 composition.feature1.role1::BaseComponent2

Fig. 6 UML diagram of prototype implementation of Fig. 1

IEE Proc.-Softw., Vol. 151, No. 4, August 2004194



6.1 Separation of concerns

Separation of concerns is the appliance of the divide-and-
conquer paradigm on software design. By separating
different concerns in separated entities the design becomes
easier, but the ‘gluing’ of the pieces becomes harder.

Subject orientated programming (SOP) [16] uses the
concept of different views on an entity. Each view has it
own object hierarchy. Composition rules define how the
different object hierarchies can be combined into a single
unified object hierarchy. Our approach differs in the focus,
which is on the collaboration aspect of feature related
variability and not on functional hierarchical differences.

Aspect oriented programming (AOP) [13] uses the
concept of aspects to capture functionality that is crosscut
in normal object decomposition. So-called join points
provide hooks to merge aspects with the objects. One of
the implementations of AOP is AspectJ [14]; here the join
points are the method activations. A conceptual model
stating what aspects are is missing in AOP. The presented
feature model in this paper can be used as a conceptual
model for aspects, with the aspects implementing the
composition of our feature model.

Multi-dimensional separation of concerns [17], as
implemented in the HyperJ [18] approach, models different
concerns in independent individual dimensions. Rules
defining the relationships between the independent entities
of the dimensions guide the necessary composition process
for system generation. Our feature model can be viewed as a
two-dimensional instance of a multidimensional separation
of concerns model. The first dimension is the concern of the
base components, the second the feature related variability
dimension. The resulting matrix of actors is very similar to a
composition expression in hyperslice programming. How-
ever, our model is different as it explicitly distinguishes
features, and adds additional semantics (interface, roles) and
notation (see Fig. 3). The feature model is not restricted to
only these two dimensions of separation of concerns,
because no restrictions on the dimensionality of the base
components or features are defined.

The composition problem found in this paper (see Section
4) is universal for multi-dimensional separation of concerns,
because each concern model will only describe a part of the
behaviour of an entity. However, each concern model needs
to overlap=relate to other concern models, otherwise a
composed view of an entity is not possible. Multi-
dimensional separation of concern therefore has the inherent
problem that an operation of an entity could have multiple
behaviours that should be combined, resulting in a
composition problem.

6.2 Features

A more global view of how features can bridge the gap
between the problem and solution domain is presented in
[9]. In their view features are composed out of requirements
fragments and realised in one or more design fragments,
which make up the complete design. In this perspective,
features can be seen as an example of early aspects [6] – a
crosscutting concern during the requirement engineering
and architecture design phase. This paper presents a more
detailed description of how the design fragments, i.e.
aspects, making up the feature can be modelled and
composed for making the complete design.

Our approach is not unique in trying to model features in
the solution domain. The feature-oriented domain analysis
(FODA) [3] method is a method for identifying features
during domain analysis. FODA uses the representation of
feature trees to visualise the variability and dependencies of

features. Later, the feature-oriented reuse method (FORM)
[4], which is a superset of FODA, was developed to
prescribe how the FODA feature model could be used to
develop domain architectures and components for reuse.
The main difference between our approach and FORM is the
traceability of features at the design and implementation
level, which is not the case with FORM. This traceability is
lost during the FORM application-engineering phase.

Prehofer [19, 20], uses feature oriented programming
(FOP) to compose features into objects. FOP is an extension
of the object-oriented programming paradigm. It uses
separate entities called lifters to model feature interaction
and separates core functionality from feature functionality.
Our approach differs in two ways; the first is that a first class
entity (the actor) for the composed behaviour is present,
enabling the definition of a feature based on the composed
behaviour of two other features. The second difference is
that a feature is not one static class but consists of different
roles being mapped onto different domain components.

Zave [10] discusses a distributed feature composition
technique (DFC) for telecommunication services. She uses a
pipe & filter style architecture, with the features being
components, switches and routers connecting the com-
ponents with connectors to form a chain of components
through which data can move. Components can be added
and removed by the switch, thereby changing the current
feature set. The main difference with our approach is the fact
that we do not require a particular architectural style to be
used and features do not have to be contained in a single
component.

The relationship between features and SPFs is also
mentioned in [5], which proposes a feature-driven aspect-
oriented product-line CBSE. The main idea is to use a
feature-driven analysis and design method like FeatuRSEB
[21] to develop a feature model. One or more aspect-
orientated implementation techniques [22] can then be used
to implement features in separate code fragments, which in
turn can be composed based on the selected features for a
given composition. The global idea is the same as the
approach in this paper; however, the focus of this paper is
more on the composition of features, whereas [5] is more a
global modelling view.

6.3 Role modelling

The idea of role modelling has also been studied by other
authors. The OOram method [23] uses role models based on
collaborations of different roles. Two or more role models
can be synthesised to form a new and more complex role
model. The general role modelling ideas presented in
OOram are used at various abstraction levels. The main
difference with our approach is in the synthesis or
composition of two role models. In OOram this is only
done at a structural level; that is, only the structural
requirements are validated – compositional problems have
to be solved by the developer him=herself.

Role models can also be integrated into object-oriented
frameworks [24]. The main focus of the role model used
in this approach is on the interface part. The notation
proposed in [24] could be used to denote the relationships
between the roles of the features in our model. The main
difference is that a coupling between an interface and an
implementation of a role is not made in their model –
something that our feature model does. The composition
problem we have identified is therefore not relevant in
their approach, because the composition problem finds its
roots in a coupling between an interface and an
implementation.

IEE Proc.-Softw., Vol. 151, No. 4, August 2004 195



Fowler [25] defines design patterns that can be used to
implement roles in an object-oriented language. The main
concept of the patterns is that the objects are dealing with a
single object that has multiple changeable types. An object
is therefore aware of the multiple typing of the other objects
and has to act on this, which in the feature model does not
have to be the case, because we want to be able to develop
unrelated features independently.

The use of mixins [26] – abstract subclasses representing
a mechanism for specifying classes that will eventually
inherit form a super class – is another approach to compose
collaborations. The difference with our approach lies in the
mapping of the roles of the collaborations to the objects.
These can only be mapped to a single domain object,
and multiple roles cannot be mapped to the same domain
object – something our feature model can.

6.4 Software product families and software
architecture

The software product family (SPF) [1] is an approach to
develop software, not on an application base but on the basis
of a family of related applications. The commonalities
between the individual products (applications) can be used
to create so-called common assets, which are reusable
components that can be customised for the individual
products. The field of variability management [27] of SPFs
mainly concerns how the differences between the products
can be managed. This paper presents a method about how
the common assets can be customised for a specific product
based on a selection of features and is therefore a form of
variability management.

In the context of SPF, [28] also use features to customise
the common assets to derive a product based on a selection
of features. They use packages as features and the merging
of source trees to accomplish feature composition. The
merging of the source trees takes place at so-called variation
points. A variation point in their approach is a simple switch
statement, defining the different variations on the code level.
A problem with this approach is the definition of the
variation points. The variation points have to be pro-
grammed out manually in the form of switches, and this
mixes the feature related code with the common asset code.
This reduces the traceability and the reuse capabilities of the
feature related code, because of the lack of first class
representation, which is present in our approach.

The software architecture (SA) [29] of each derived
product is a variant of the SPF architecture. The feature
model incorporates the components of the SPF architecture
through the use of the base components. The feature model
can therefore modify the architecture of a product by
adapting the existing base components by mapping new
roles of features on it and introducing new connectors and
components resulting from features.

7 Conclusions and future work

In this paper, we have investigated the potential of using the
early aspect of features in the solution domain of software
product families (SPFs). Our main focus was on the design
and implementation level. Starting at the design level a
feature model was presented, modelling features. The model
showed how features could be modelled as a collection of
roles, thereby relating for the first time a feature model to a
role model. The roles in turn can be played by different
basecomponents, resulting in actors. At the implementation
level a way to implement the model is outlined. The model
and the outlined implementation strategy are illustrated and
validated with a prototype implementation.

With the help of a formalised version of the model a
compositional problem is identified. The composition of
two roles in an actor becomes problematic when both roles
have different implementations for the same method. To
solve the composition problem there are three potential
solutions: skipping, concatenation and mixing. One or more
of the three solution forms can be used to solve composition
problems.

By predefining how the composition is done and which
composition solution to use in the case of a composition
problem, we can keep the composition of our feature model
complete, consistent, deterministic and implementable.
This facilitates the automatic derivation of products in an
SPF based on a selection of features.

Remaining open issues that we intend to address in future
work are:

. Automatic composition support: An open issue of the
prototype is the absence of a compiler that supports the
composition process. At the moment the necessary
composition steps still have to be done manually, which
makes the application of the composition process a very
time-consuming and error-prone one. However, we have
already defined an algorithm for the composition process,
which can easily be programmed out, automating the
composition process.
. Scalability of the feature model: Scalability of the feature
composition model is one of the main aspects that demand
additional validation. Although the feature composition
model was designed for use in SPFs, it has not yet been
demonstrated whether the model can be scaled up to this
level of scale.
. Lack of a dependency model: The feature model does not
include a dependency model. The combinations of features
that are possible for product derivation are directly related
to the feature and roles dependencies. So, it is important to
extend the feature model with a dependency model. The first
steps have already been taken in Section 5.2, where four
dependency relation types are already identified.
. Validation of the feature model: A correct and complete
validation of the feature model is difficult to accomplish.
Cases can be used to validate the feature model, as does the
video-shop case in this paper, for example.

These open issues form the basis for further work. We
would like to investigate how automatic composition
support can help with the scalability of the feature model.
For decent automatic composition support the feature
model should be extended to include a dependency model.
Additional research is planned with an additional case
helping us to investigate the scalability of the feature model
and providing additional validation of our approach.

8 References

1 Bosch, J.: ‘Design & use of software architectures – adopting and
evolving a product-line approach’ (Addison-Wesley, Harlow, 2000)

2 Bosch, J.: ‘Maturity and evolution in software product lines:
approaches, artefacts and organization’. Proc. 2nd Software Product
Line Conf. (SPLC2), San Diego, August 2002, pp. 257–271

3 Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., and Peterson, A.S.:
‘Feature oriented domain analysis (FODA) feasibility study’. Technical
Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA

4 Kang, K.C.: ‘FORM: a feature-oriented reuse method with domain-
specific architectures’, Ann. Softw. Eng., 1997, 5, pp. 354–355

5 Griss, M.L.: ‘Implementing product-line features by composing
component aspects’. Proc. 1st Int. Software Product Line Conf.,
Denver CO, August 2000, pp. 271–288

6 Rashid, A., Sawyer, P., Moreira, A., and Araujo, J.: ‘Early aspects: a
model for aspect-oriented requirements engineering’. Proc. IEEE
Joint Int. Conf. on Requirements Engineering, Essen, Germany,
9–13 September, 2002, pp. 199–202

IEE Proc.-Softw., Vol. 151, No. 4, August 2004196



7 Gibson, P.: ‘Feature requirements models: understanding interactions’.
Presented at IEEE 4th Int. Workshop on Feature Interactions
in Networks and Distributed Systems (FIW), Montreal, Canada,
June 1997

8 Griss, M.L.: ‘Implementing product-line features with component
reuse’, Lect. Notes Comput. Sci., 2000, 1844, pp. 137–152

9 Turner, C.R., Fuggetta, A., Lavazza, L., and Wolf, A.L.:
‘A conceptual basis for feature engineering’, J. Syst. Softw., 1999, 49,
(1), pp. 3–15

10 Zave, P.: ‘Feature-oriented description, formal methods, and DFC’.
Proc. FIRE-works Workshop on Language Constructs for Describing
Features, Glasgow, 15–16 May 2000, pp. 11–26

11 Agha, O.A.: ‘Actors: a model of concurrent computation in distributed
systems’ (MIT Press, Cambridge, MA, 1986)

12 Bosch, J.: ‘Superimposition: a component adaptation technique’,
Inf. Softw. Technol., 1999, 41, pp. 257–273

13 Kiczalez, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J-M., and Irwin, J.: ‘Aspect oriented programming’. Proc.
11th European Conf. on Object-oriented Programming (ECOOP),
Jyväskylä, Finland, 9–13 June 1997, pp. 220–242

14 Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and
Griswold, W.G.: ‘An overview of AspectJ’, Lect. Notes Comput. Sci.,
2001, 2072, pp. 327–353

15 Jansen, A.G.J.: ‘Feature based composition’. Master Thesis computer
science, University of Groningen

16 Harrison, W., and Ossher, H.: ‘Subject-oriented programming
a critique of pure objects’. Proc. 1993 Conf. on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA),
Washington, DC, 26 September–1 October 1993, pp. 411–428

17 Tarr, P., Ossher, H., and Harrison, W.: ‘N degrees of separation: multi-
dimensional separation of concerns’. Presented at Int. Conf. on
Software Engineering (ICSE), Los Angeles, CA, 16–22 May 1999,
pp. 419–443

18 Ossher, H., and Tarr, P.: ‘Multi-dimensional separation of concerns
and the hyperspace approach’, in Akcit, M. (Ed.): ‘Software

architectures and component technology’ (Kluwer, Boston, 2001),
Chapter 10.

19 Prehofer, C.: ‘Feature-oriented programming: a fresh look at objects’,
Lect. Notes Comput. Sci. 1241

20 Prehofer, C.: ‘An object-oriented approach to feature interaction’.
Presented at 4th IEEE Workshop on Feature Interactions in Tele-
communications Networks and Distributed Systems, Montreal, Canada,
17–19 June 1997

21 Griss, M.L., Favaroe, J., and d’Alessandro, M.: ‘Integrating feature
modeling with the RSEB’. Proc. 5th Int. Conf. on Software Reuse,
Los Alamitos, CA, USA, 1998, pp. 76–85

22 Czarnecki, K., and Eisenecker, U.W.: ‘Generative programming.
methods, tools, and applications’ (Addison-Wesley, Boston, MA, 2000)

23 Reenskaug, T.: ‘Working with objects - The OOram software
engineering method’ (Manning, Greenwich, CT, 1996)

24 Riehle, D., and Gross, T.: ‘Role model based framework design and
integration’. Proc. Conf. on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), Vancouver, BC, 18–22
October 1998, pp. 117–133

25 Fowler, M.: ‘Dealing with roles’. Presented at 4th Annual Conf. on
Pattern Languages of programs’. Mantiello, Ullinios, USA,
2–7 September 1997

26 Smaragdakis, Y., and Batory, D.: ‘Implementing layered designs with
mixin layers’. Proc. 12th Eur. Conf. on Object-Oriented Programming
(ECOOP), Brussels, July 1998, pp. 550–570

27 van Gurp, J., Bosch, J., and Svahnberg, M.: ‘On the notion of variability
in software product lines’. Proc. Working IEEE/IFIP Conf. on Software
Architecture (WICSA), Amsterdam, 28–31 August 2001, pp. 45–54

28 van Deursen, A., de Jonge, M., and Kuipers, T.: ‘Feature-based product
line instantiation using source-level packages’. Proc. 2nd Software
Product Line Conference (SPLC2), San Diego, CA, 19–22 August
2002, pp. 217–234

29 Bass, L., Clements, P., and Kazman, R.: ‘Software architecture in
practice’ (Addison-Wesley, Reading, MA, 1998)

IEE Proc.-Softw., Vol. 151, No. 4, August 2004 197




