From SPLsto Open, Compositional Platforms

Jilles van Gurp & Christian Prehofer
Smart Space Lab
Nokia Research Center
Helsinki, Finland

Abstract. In this position paper we reflect on how software development in large
organizations such as ours is slowly changing from being top down managed, as is
common in SPL organizations, towards something that increasingly resembles what is
happening in large open source organizations. Additionally, we highlight what this
means in terms of organization and tooling.

Trends and | ssues

Over the past decade of our involvement with SaféwRroduct Lines, we have seen the
research field grow and prosper. By now, many cangsahave adopted SPL approaches
for their core software development. For exampla, @vn company, Nokia, features
prominently on the SEIs Product Line hall of fars&[2006]. Recently, we [Prehofer et
al. 2007], and others [Ommering 2004] have pubtistzaticles on the notion of
compositional development that decentralizes tveldpment of software platforms and
products. The motivation for our work in this ansathat we have observed that the
following trends are affecting software development

Widening platform scope and more diverse products. As “victims” of their
own success, successful product lines allow for dieation of an ever wider
range of products. Necessarily, these products heveasingly less in common
with each other. Particularly, they are likely tavke substantial product specific
requirements and require increasing amounts ofaldity in the platform
provided features to deal with conflicting and dapping requirements in the
base platform. In other words, the percentage o€tfanality shared across all
products relative to the total amount of functiaiyah the platform is decreasing.
At the same time, the percentage of platform assstslly used in any particular
product is also decreasing.

Platforms stretch over multiple organizations. As platform and product
development starts to span multiple organizati@mities (companies, business
units, open source projects, etc), more opennegrds different and conflicting
requirements, features, roadmaps and processearedt development entities
is required. This concerns both open source soévaad commercial platforms
that are developed and productized differentlytdtparty companies.

Time to market and innovation speed. While time to market has always been a
critical issue, it is particularly an issue withetgrowing size and complexity of
Software Product Lines. In general, large scaléwsoé projects tend to have
longer development cycles. In the case of SoftwRmeduct Lines that have to
cater for more and more heterogeneous productgthesf development cycles

tends to increase as complexity of the work relatediefining, realizing and
testing new functionality grows increasingly complélowever, time to market
of features does not only include the product tiegelopment cycle but also the
time needed to do product derivation as well asdinelopment cycles of any
external software the Software Product Line intega\Worst case is that a
feature first needs to be integrated in one ofdldEpendencies; then it needs to
be integrated into the next major release of théwaoe Product Line before
finally a software product with the new feature d@ndeveloped and put in the
market.

We are seeing examples of this in Nokia as welk &mmple, Nokia has software
development spread over several major phone phasfofS30, S40, S60 and Linux
Maemo) and launches multiple products from eachthoise platforms every year.
Interesting to note here is that Nokia has nevallyeetired a mobile phone software
platform and is actively using all of them. Rougiiyeaking, S40 evolution is in sync
with the popularization of the notion of Softwar@&uct Lines since the mid nineties. It
is indeed this product line that is featured onlibore mentioned SEI SPL hall of fame
[SEI 2006].

Development for products and platforms is spreast smany Nokia locations all over
the globe as well as a complex network of subcotdra, customers and supplying
companies. Additionally, the use of open sourcéwsoke and the intensive collaboration
Nokia has with many of the associated projectsadoBing more complexity here. Finally,
time to market is of course very important in thebife phone market. Products tend to
be on the market for only short time (e.g. 6-12 thepand developing them from a
stable software platform can take more than a yeaome cases. This excludes time
needed for major new releases of our software giatf Consequently, disruptive new
features in the platform may take years to reaemiharket in the form of new phones.

The way large organizations such as Nokia manageoaganize their software and
platform development is constantly pushing the tsnaf what is possible with software
engineering & architecting tools and methodologyokid is one of a handful of
companies world wide that manage tens of milliohsamle across its product lines and
products.

We see Software Product Lines as a way to devdafigare that has arguably been very
successful in organizations like ours. However, waiso note that increasingly
development practice is deviating from practiceat thre prescribed by literature on
Software Product Lines particularly with respect dentralized definition, control,
ownership and management of software assets arttligiso Therefore, we argue that
now the research community needs to adapt to #visreality as well.

The complexity and scale of the development orgditia increasingly make attempts
to centrally manage it futile and counter produstiConflicts of interest between
stakeholders, bureaucracy, politics, etc are &dictihg centralized platform and product
decision making and can end up leading to unwogabimpromises or delays in the
software development process.

Additionally, it is simply becoming impossible tewklop software without depending
on at least some key open source projects. Inorglgsihe industry is also participating
as an active contributor in the open source comiywu@rguably, most of the open

source community now consists of software deve®gponsored in some way by for
profit organizations. For example, Nokia is a vagjive participant in the mobile Linux

community (the Maemo Linux platform) and ships pro such as the N810 internet
tablet where the majority of lines of code is aljueoming from externally owned and

run open source projects and even direct compegfieog. Intel and Motorola).

This changes the game of balancing product andoptatrequirements, needs and
interests substantially from what is generally assdi in a classical SPL context where a
single company develops both platform and produnct®ouse and where it is possibly to
drive both product and platform development in@down fashion. This simply does not
work in a context where substantial amounts ofaalitsoftware in a product are coming
from external sources that are unwilling / unlikétytake orders from internal product
managers or other types of executives externdleio organization.

Effectively, this new reality necessitates a déf@rapproach to software development.
Rather than driving a top down decomposition ofdpiis and features and managing
development and software assets per this hieraeshis very much the consequence of
implementing practices advertised in SPL literatune propose to adopt a more
compositional style of development.

Compositional Development

In our earlier work [Prehofer et al. 2007], we gl an approach to adopt a more
compositional approach to development. Rob van Ommgpéhas argued along similar
lines but still takes the traditional perspectiveé a (large) company managing a
population of products [Ommering 2002][Ommering 2DMHowever, what we propose
here is to further decentralize development andarmmg similar to the open source
community where many independent development tedroemponents, framework and
product owners are working together. Each of theams is acting to represent their own
interests (and presumably those of whomever therk iar). Their perspective on the
external world is simply that of upstream and dawe@sn dependencies. Downstream are
the major users and customers that use the softwe@eteam produces. These
stakeholders act as primary source of requirenamdsprobably also funding. Upstream,
teams operate that produce software required forguand developing the software.
These teams in turn depend on their downstreanndepeies and funding.

This decentralized perspective is very differewinfrthe centralized perspective and
essentially allows each team to optimize for wkatequired from them downstream and
what is available to them upstream. For examplguirements for each team come
primarily from their downstream dependencies. Sitloere is no central controlling
entity that dictates requirements, picking up thesgiirements and prioritizing them is
very much the task of the teams themselves. Ofseptiney need to do so in cooperation
with their downstream dependencies. Generally, @slbe when crossing organizational
boundaries, requirements are not dictated but rdtfeedevelopment teams try to asses
the needs of their most important customers.

Organization

As Conway's Law [Conway 1968] predicts, the araiiteal decomposition of software
is reflected in organizations. In many open souammmunities, project team
dependencies reflect the architecture decompositidn software into packages,
frameworks, libraries, components, or other consenunits of software decomposition.
Obviously, without at least some structure and rgameent in place, the approach
advocated here results in total anarchy, whichas ax good organizational model to
accomplish anything but chaos.

Again, we look at the open source world where omgions such as Ubuntu, Eclipse,
Apache and Mozilla are driving development of thamds of projects. Each of these
organizations has a surprisingly sophisticated rupgagional structure that comes with
rules, best practices, decision making processesy\ile there are no binding contracts
enforcing these, participants in the community r@guired to play by the rules or risk
being ignored.

In practice this means, participants voluntarilynpdy with practices and rules and
take part in what is often called a meritocracy rehienportant decisions are taken by
those who have the merits to do so. Generally, rdgiires a track-record of making
important contributions and having the trust of dwmnmunity. For example, in the
Eclipse foundation, which was founded by IBM, thigans that individuals from some
of their major competitors such as BEA and Red #&lztally lead some of the key
projects under the eclipse umbrella. These indalslare essentially trusted by IBM to
do the right things even though they work for aonapmpetitor.

Organizations such as Eclipse exist to represemtctimmon interests of the project
teams they are composed of. For example the ediqps®lation, which is very much a
corporate driven (and financed) institution, repreés a broad consortium of stakeholders
that covers pretty much the entire spectrum of Jawval increasingly also non-Java)
enterprise, desktop and mobile/embedded softwdatecedevelopment tooling. In the
past two years, they have organized two major, kameous releases of the major
projects. In their latest release, which goes ke nme of Europa, they managed to
synchronize the release process of around 20 of tbp level projects which are
collectively developed by thousands of developensiing from dozens of companies.
Many of these companies are competitors. For exanmBEA and IBM are directly
competing in the enterprise market and major couators to multiple eclipse projects.

What this proves is that the way the Eclipse Fotiodaorganizes development is
extremely effective and scalable because it inwld®dzens of organizations and
hundreds/thousands of individuals producing, irdgégg and testing an enormous
amount of new software in a very short time fraf@eganizing like this brings in the
necessary flexibility to seamlessly work with numes internal and external teams and
acknowledges the reality that even internally refeg between teams can be complex and
difficult to manage centrally.

Tooling

A consequence of decentralizing is that aligning tise of tools across development
teams becomes essential. When collaborating, pishé€kools between teams are at least
similar and preferably compatible/the same. SPleassh has over the past few years
focused on tooling for variability management, ¢gafation management and
requirements management. However, getting thesés tadopted and using them
effectively in a context of thousands of softwarevelopment teams that are
collaborating is quite a challenge; especially sintany of these tools are either in house
developed or only used in a handful of companies.

Tooling in the open source community tends to foonsthe essentials. That being
said, the OSS community has also produced manyla@went tools that are now used
on a massive scale. For example, Mozilla has hauoaeering role through their
contribution of important tools such as BugzilladaBonsai (bug tracking and build
monitoring). The whole point of the Eclipse foundatseems to be development tools.
Additionally, they have a project called equinoxatthmplements a very advanced
framework that provides many interesting variapilitechnologies and has put into
mainstream use notions of using API versioning mmyided and required interfaces on
components. In short, there seems to be a gradigahtion of SPL like tool features to
mainstream tooling. Additionally, eclipse is of c¢s@ a popular platform for developing
such tooling in the research community.

Conclusions and Futurework

In this position paper we tried to highlight a f@ivthe key issues around the ongoing
trend from integrational development towards a mopen ecosystem where many
stakeholders work on many pieces of software thairdegrated into products by some
of the stakeholders. We are currently working onaditle about what it means to go
from a software development practice to a compmsdi approach in terms of
organizational models, practices and other aspkrcthat article, we will list a number of
practices that we associate with compositional lbgweent and evaluate these against
practices in open source communities as well ascesl SPL case studies from the
research community.

Arguably, SPLs have vastly improved software demelent in many companies over
the past decade or so. Therefore, the key issubdanext decade will be re-aligning with
the identified trends towards larger software depelent ecosystem while preserving
and expanding the benefits that SPL developmerd heaught.

We do not see compositional development vs. SPEeldpment as a black and white
kind of thing but instead regard this as a widecspen of development practices that
each may or may not be applied by individual congmnThe more they apply them, the
more compositional their development becomes. incase, the right set of practices is
of course highly dependent on context, domain,ettakders, etc. However, we observe
that in order to scale development and in ordevddk with hundreds or even thousands
of globally and organizationally distributed soft@adevelopers effectively, it is
necessary to let go of centralized control. Conmtposl development in this open
environment is vastly more complex, organic, anavedelieve, more cost effective.

References

[Conway 1968] M. E. Conway, How do committees inydbatamation, 14(4), pp. 28-
31, 1968.

[Ommering 2002] R. van Ommering, Building produabpplations with software
components, proceedings of Proceedings of the Btetnational Conference on
Software Engineering (ICSE 2002), pp. 255-265, 2002

[Ommering 2004] R. Van Ommering, Building ProduabpBlations with Software
Components, Ph. D thesis, University of Groningg4.

[Prehofer et al. 2007] C. Prehofer, J. van Gur@Bakch, Compositionality in Software
Platforms, in A. De Lucia, F. Ferrucci, G. Tortok, Tucci eds., Emerging Methods,
Technologies and Process Management in Softwarmé&sring, Wiley, 2008.

[SEI 2006] Software Engineering Institute, Produdine Hall of Fame,
http://www.sei.cmu.edu/productlines/plp_hof.htn0B.

