
Variability in Software Systems
The Key to Software Reuse

Licentiate thesis

Jilles van Gurp

Department of Software Engineering and Computer Science

ISBN 91-631-0266-8
© Jilles van Gurp, 2000

Printed in Sweden
Kaserntryckeriet AB
Karlskrona 2000

Contact Information:

Jilles van Gurp
Department of Mathematics & Computer Science
University of Groningen
PO BOX 800
NL-9700 AV Groningen
The Netherlands
Tel.: +31 050 3633948
Email: jilles@cs.rug.nl
URL: http://www.cs.rug.nl/~jilles

This thesis is submitted to the Research Board at Blekinge Institute of Technology, in
partial fulfillment of the requirements for the degree of Licentiate of Engineering

Abstract

Reuse of software assets has been, and continues to be the holy grail
of software engineering. In this thesis we argue that a prerequisite for
reusability is variability. In order to reuse a piece of software, it needs to
be adapted to the environment in which it will be reused. With the
arrival of object oriented frameworks and software product lines, variability
and the associated variability techniques are becoming more and more
important. In this thesis, four papers are included that all, in some way,
are related to variability. In the introduction we discuss object oriented
frameworks and software product lines; we introduce a conceptual
model for reasoning about variability; we take a closer look at so called
late variability and examine the consequences of variability for the
development process of software product lines and software product line
based applications.

Acknowledgements
The work presented in this thesis was financially supported by Nutek, Axis Communi-
cations and Symbian.
First of all, I would like to thank Jan Bosch for giving me the opportu-
nity to come to Sweden. His supervision has been invaluable for both
my master thesis and this thesis. Further more I would like to thank the
members of the RISE group for being good colleagues. Thank you
Mikael, Suzanne, PO, Michael, Magnus, Daniel, Charly, Lars and of
course Cecilia. Mikael in particular I would like to thank for all the
valuable discussions we’ve had. These discussions resulted in a paper
that I feel is important and in fact forms the basis for this thesis.

In addition, I would like to thank Magnus Oestvall of Symbian and
Torbjörn Söderberg of Axis Communications for their personal support
and involvement in my research.

Furthermore I would like to thank the home front, consisting of my
father Paul, my mother Ineke, my sister Aukje as well as all the members
of the Dutch colony in Ronneby.

At the moment of writing, the moving boxes are already in my room.
Soon I will be leaving Sweden to continue doing research in Groningen
where Jan Bosch is giving me another opportunity to do research. I’m
looking forward to a continued, fruitful relationship.

Variabilit
Contents
Overview of the papers 1

Introduction 3

1. OO Frameworks .. 6
1.1 Definitions .. 6
1.2 Whitebox & Blackbox Use of a Framework 8
1.3 Role Oriented Programming ... 9
1.3.1 Roles in OO Design ... 11
1.3.2 Inheritance vs Delegation ... 12
1.3.3 Objective motivation for using Roles 13
1.4 Frameworks and Roles ... 16
2. Software Product Lines .. 18
2.1 Examples of SPLs .. 20
2.1.1 Axis Communications AB .. 20
2.1.2 Symbian ... 21
2.1.3 Mozilla ... 21
2.2 Characteristics of a SPL ... 22
3. Variability .. 23
4. Late Variability Techniques .. 27
4.1 Run-time variability techniques 28
4.1.1 Component Configuration 28
4.1.2 Dynamic Binding ... 29
4.1.3 Interpretation ... 30
4.2 Late variability in a framework for finite state machines 30
4.3 Open Issues ... 32
y in Software Systems: the Key to Software Reuse - Licentiate thesis i

i

4.3.1 Subjective Views ... 33
4.3.2 Cross cutting functionality .. 33
5. The Development Process .. 35
5.1 SPL Development ... 35
5.2 Variability Identification & Planning in SPLs36
5.3 SPL Instantiation Process ... 38
6. Contributions of the papers .. 39
7. Future Research .. 40
8. Conclusion ... 41
9. References .. 42

Paper I: On the Implementation of Finite State
Machines 45

1. Introduction ... 45
2. The state pattern .. 47
2.1 FSM Evolution .. 48
2.2 FSM Instantiation ... 50
2.3 Managing Data in a FSM .. 51
3. An Alternative .. 52
3.1 Conceptual Design .. 52
3.2 An Implementation ... 54
4. A Configuration Tool ... 56
4.1 FSMs in XML ... 56
4.2 Configuring and Instantiating 57
5. Assessment ... 57
6. Related Work ... 60
7. Conclusion ... 61
8. References .. 63

Paper II: Design, implementation and evolution of object
oriented frameworks: concepts & guidelines 65

1. Introduction ... 65
2. The Haemo Dialysis Framework 68
3. Framework organization ... 71
3.1 Blackbox and Whitebox Frameworks72
3.2 A conceptual model for OO frameworks74
3.3 Dealing with coupling ... 78
3.4 Framework Instantiation .. 79
4. Guidelines for Structural Improvement81
i Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

Variabili
4.1 The interface of a component should be separated from its
implementation ... 81

4.2 Interfaces should be role oriented 82
4.3 Role inheritance should be used to combine different role

interfaces ... 83
4.4 Prefer loose coupling over delegation 86
4.5 Prefer delegation over inheritance 87
4.6 Use small components ... 88
5. Additional Recommendations .. 90
5.1 Use standard technology .. 90
5.2 Automate configuration .. 92
5.3 Automate documentation .. 93
6. Related Work ... 94
7. Conclusion .. 96
7.1 What is gained by applying our guidelines 96
7.2 Future work .. 97
8. Acknowledgements .. 97
9. References .. 97

Paper III:SAABNet: Managing Qualitative Knowledge in
Software Architecture Assessment 101

1. Introduction .. 101
2. Methodology ... 105
3. SAABNet ... 106
3.1 Qualitative Specification ... 106
3.2 Quantitative Specification ... 110
4. SAABNet usage .. 111
5. Validation .. 113
5.1 Case1: An embedded Architecture 113
5.1.1 Diagnostic use .. 113
5.1.2 Impact analysis ... 115
5.2 Case2: Epoc32 .. 117
5.2.1 Quality attribute prediction 118
5.2.2 Quality attribute fulfillment 120
6. Related Work ... 121
7. Conclusion .. 123
8. References .. 124

Paper IV: On the Notion of Variability in
ty in Software Systems: the Key to Software Reuse - Licentiate thesis iii

i

Software Product Lines 127

1. Introduction ... 127
1.1 Software Product Lines .. 128
1.2 Goal of this article ... 129
2. Features ..130
2.1 Definition of feature .. 131
2.2 Feature Interaction .. 132
2.3 Notation .. 133
3. Variability in Software Product Lines 133
3.1 Variability .. 135
3.2 Features and Variability ... 138
4. Cases/Examples .. 142
4.1 EPOC ...142
4.2 Axis Communications ... 143
4.3 Billing Gateway ... 143
4.4 Mozilla .. 144
5. Variability Patterns ... 144
5.1 Recurring Patterns ... 147
5.2 Management of Variability .. 149
5.3 Adding new Variants .. 150
6. Variability Mechanisms .. 150
6.1 Variant Entity .. 152
6.1.1 Architectural Design ... 152
6.1.2 Detailed Design .. 157
6.1.3 Implementation .. 158
6.1.4 Compilation ... 160
6.1.5 Linking ... 161
6.2 Optional Entity ... 163
6.2.1 Architectural Design ... 164
6.2.2 Detailed Design .. 165
6.3 Multiple Coexisting Entities 166
6.3.1 Detailed Design .. 167
6.3.2 Multiple Coexisting Component Specializations168
6.3.3 Implementation .. 169
7. Planning Variability .. 170
7.1 Identification of Variability .. 170
7.2 Planning Variability ... 171
8. Related Work ... 172
v Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

Variabilit
9. Conclusions ... 175
9.1 Contributions ... 176
9.2 Future Work ... 176
10. Acknowledgements .. 176
11. References .. 177
y in Software Systems: the Key to Software Reuse - Licentiate thesis v

v
i Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

Variabilit
Overview of the papers
The following papers are included in this thesis:

� Paper I: J. van Gurp, J. Bosch, “On the Implementation of
Finite State Machines“, in Proceedings of the 3rd Annual
IASTED International Conference Software Engineering and
Applications, IASTED/Acta Press, Anaheim, CA, pp. 172-178,
1999.

� Paper II: J. van Gurp, J. Bosch, “Design, implementation and
evolution of object oriented frameworks: concepts & guidelines”,
Accepted for publication in Software Practice & Experience.

� Paper III: J. van Gurp, J. Bosch, “SAABNet: Managing Qualita-
tive Knowledge in Software Architecture Assessment“, Proceed-
ings of the 7th IEEE conference on the Engineering of Computer
Based Systems, pp. 45-53, April 2000.

� Paper IV: M. Svahnberg, J van Gurp, J. Bosch, “On the notion
of variability in software product lines“, Submitted, June 2000.

Both paper I and IV were based on and inspired by the earlier work in
my master thesis [Van Gurp 1999]. Earlier versions of Paper III have
also been presented at two workshops [Van Gurp & Bosch 1999b][Van
Gurp & Bosch 2000a].
y in Software Systems: the Key to Software Reuse - Licentiate thesis 1

Overview of the papers

2
 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

Variabilit
Introduction
Reuse of software has been a long-standing goal for many software
developing organizations. Development of techniques such as Object
Oriented (OO1) Frameworks and Software Product Lines (SPL2) has
given rise to the belief that such reuse is now possible, given the right
conditions. OO Framework technology, which became increasingly
popular during the last decade, helps developers to create domain spe-
cific applications and in some organizations gave birth to Software
Product Lines: collections of frameworks and other reusable assets that
can be tailored to create concrete software products relatively fast com-
pared to developing from scratch.

An important thing we have come to realize in our research of OO
Frameworks and SPLs, is that software reuse is all about variability. If
reusable software would be made in such a way that it could only be
used in a single way, it would only be used in a single way (namely
exactly the way it was intended to be used). Hence, it would not be very
reusable, since it would be impossible to use it in a situation with
slightly different requirements.

The following quote from [Simonyi 1999] captures our point of
view perfectly: “I am not surprised that parameterization by preprocessor

1. Note that we use the prefix OO as an abbreviation for Object Oriented. Often, we
will omit this prefix if it is clear from the context that the OO paradigm is applica-
ble.

2. Due to the very frequent usage of “Software Product Line“ in this thesis, we will use
the abbreviation SPL in the remainder of this thesis.
y in Software Systems: the Key to Software Reuse - Licentiate thesis 3

Introduction

4

directives has been a sturdy meme which has spread in legacy code despite of
its numerous disadvantages. This could only have happened because param-
eterization is very useful - it is the key to reuse, one of the great goals of soft-
ware engineering.”. Simonyi, correctly identifies variability techniques,
such as parameterization with preprocessor directives, as essential for the
reuse of software.

With this in mind, we can distinguish two ways of reusing:

� Use lots of small, single purpose components and provide varia-
bility by implementing it in the glue code used to compose these
components. While this approach may work fine for small sys-
tems, this way of reusing software does not scale up very well. As
the system grows larger, the glue code will require more attention
and it may be more profitable to implement everything from
scratch. This may very well be a reason why OO technology never
fully delivered on its promises (i.e. increased reuse through inher-
itance and class libraries). Decomposing a system into tiny pieces
(i.e. objects), makes the job of composing the pieces much more
expensive.

� Use large components with some amount of variability built in.
This approach requires less effort when composing the compo-
nents but at the same time involves a larger effort in creating the
components. To make large software pieces reusable, variability is
essential. Without variability, the assumptions under which the
reusable pieces of software are developed, break down quickly and
render the software pieces useless since they cannot be adapted.

Obviously the second approach is more attractive to companies seek-
ing to make their software reusable. The benefit of reusing large pieces
of code is clearly higher than that of reusing a small piece of code. In
addition it is easier to manage a few large pieces of code than managing
many smaller pieces of code. The balance between large and small pieces
can be illustrated with the make all - buy all spectrum from [Szyperski
1997] (see Figure 1). Having many small pieces results in flexibility,
however, that comes at the price of reduced cost efficiency (due to
higher integration cost). Having large pieces of software is much more
cost effective, however, investments are still needed to add the variabil-
ity.
Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

Variabilit
In this thesis we discuss the concept of variability in software sys-
tems. We claim that a good understanding of this concept may help
building more reusable systems, as we believe variability is the key to
making reusable software.
This thesis consists of an introduction and four papers, written over the
past two years. The purpose of the introduction is to present the vision
that underlies the four papers. In addition, it lays the basis for future
research.

We have identified that the term variability is the connecting concept
between the four articles. Before introducing the notion of variability in
Section 3, we first introduce OO Frameworks and software product
lines in Section 1 and Section 2. Frameworks and SPLs are very much
related technologies. and both depend on the usage of variability tech-
niques. The most important differences between SPLs and OO Frame-
works are pointed out in Section 2. In Section 4 we will focus on so
called late variability. Late variability is in our opinion important for
improving reusability of software. A problem that the COTS (compo-
nents of the shelf) industry faces, for instance, is that customers want to
be provided with source code of components in order to be able to
adapt these components to their needs. Using late variability tech-
niques, changing the source code might be avoided. Section 5 highlights
some aspects of the development process that are relevant when working
with SPLs. In addition a method for working with variability in a SPL is

Figure 1. Spectrum of flexibility and cost efficiency

Cost
efficiency

Flexibility

0 100
y in Software Systems: the Key to Software Reuse - Licentiate thesis 5

Introduction

6

introduced. In Section 7, we look forward to future work. And, finally,
in Section 8 we conclude our introduction.

1. OO Frameworks

A framework can be defined as “a partial design and implementation for
an application in a given domain“ [Bosch et al. 1999]. An Object Ori-
ented Framework can then be defined as a set of classes, partially imple-
menting an application in a certain domain. In this section we will
refine this definition and introduce some related terminology. In addi-
tion we will discuss the use of role interfaces in OO Frameworks.

1.1 Definitions

When we look at OO languages such as Java or C++, we typically find
different kinds of entities. Java, for instance, has classes (both abstract
and concrete), interfaces, packages and JavaBean components. C++, on
the other hand, has classes (virtual, abstract and concrete), header files,
templates and namespaces. When used in combination with a compo-
nent model such as COM or Corba there may also be IDL (interface
definition language) files describing the interface of components. A
framework may contain all of the above entities. Each of these entities
serves a different purpose. To abstract from either language, we’ll use the
following terminology.

� A class contains attributes (data) and methods (behaviour). In
both Java and C++, classes can be used as a type. Objects that are
instantiated from a particular class have that class as a type. The
type is used by the compiler and the run-time environment to
determine whether method calls to an object are legal and
whether certain assignments are legal.

� An abstract class is an incomplete class. This means that in
addition to type information it may exhibit some behaviour.
However, it is not possible to instantiate abstract classes. Abstract
classes serve as superclasses for groups of related classes that
inherit both type and behaviour.
Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

1. OO Frameworks

Variabilit
� An interface contains declarations of methods and attributes.
Since an interface does not contain implementation, it is purely a
type. Although C++ does not have an interface construct, virtual
classes with only abstract methods can be used to simulate them.
Also see [Beveridge 1998] on how to use mixin interfaces.

� A component, according to [Szyperski 1997], is "A software com-
ponent is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third par-
ties". When this definition is limited to OO components, the fol-
lowing definition is obtained: an Object Oriented Component is a
class (since the OO paradigm does not provide us with any other
units of composition) intended for composition with other com-
ponents, with an explicitly specified interface and explicit context
dependencies only. Since this makes nearly any class a component
we add as a restriction that the interface must be available sepa-
rately (e.g. as a Java interface, a C++ virtual class or an IDL file) so
that we can separate type and behaviour.

� A module is a construct for bundling related classes, components
and interfaces. Java has a package keyword in the language to
support modules, whereas in C++ a combination of namespaces
and preprocessor directives can be used to define modules. Typi-
cally, modules are used as units of compilation. As such they are
useful for consideration in configuration management. E.g. by
expressing dependencies between modules rather than classes
complexity can be reduced (this approach is used by Axis, see
Section 2.1.1). It is easy to confuse modules with components.
Szyperksi uses the following phrase to distinguish modules from
components: “Nevertheless, one aspect of full fledged components is
not normally supported by module concepts. There are no persistent
immutable resources that come with a module, beyond what has been
hardwired as constants in the code. Resources parameterize a compo-
nent. Replacing these resources allows the component to be configured
without the need to rebuild it“ [Szyperski 1997]. Szyperski also
notes that most modern languages support both classes and mod-
ules.
y in Software Systems: the Key to Software Reuse - Licentiate thesis 7

Introduction

8

So, an Object Oriented Framework is a set of classes, abstract classes,
interfaces and OO components bundled in a set of modules that par-
tially implement an application in a particular domain.

Our definition of an OO component has a few weaknesses that need
further discussion. Szyperski speaks of independent deployment and
explicit context dependencies. Obviously these two notions are essential to
any component definition. However, classes cannot be deployed inde-
pendently since they usually depend on (potentially all) other classes in
the system. A solution would be to declare all these related classes as part
of the OO component and distribute the component as a package con-
taining all related classes. However, this may lead to the interesting
problem of overlapping components (i.e. two components that share a
subset of related classes). This would make it difficult to deploy the first
component without deploying the other. An additional problem is that
in the context of OO frameworks, a component effectively is equal to
the framework it is a part of (since the framework contains related
classes and components). Consequently one might choose to consider
the entire framework as a component. However, this conflicts with
Szyperski’s view of a component as a unit of composition.

Alternatively, the dependencies could be made explicit, making it
possible to deploy components independently. However, this is not fea-
sible in medium to large grained systems since the number of dependen-
cies that need to be made explicit rises exponentially.

For reasons of clarity we choose not to equate OO components to
the unit of modularization since this makes composition so much
harder (also see [Bosch 1999] for composition problems in frame-
works). Consequently, independent deployment of an OO component
can only take place after modularization has taken place. Typically com-
ponents are deployed in the form of one or more binary files (e.g. dll
files or jar files) that may contain several OO components (i.e. compo-
nent classes in the package).

It should be noted that this way of viewing OO components is in
line with industrial practice. Java for example has a package construct
that is typically used to bundle related classes. Some of these classes are
then marked as JavaBeans (by the developer) to indicate that they
should be treated as components. Microsoft’s new component language,
C# (pronounced C sharp), explicitly makes each class a COM compo-
nent and uses C++ like namespaces for modularization (see [Microsoft
2000] for details on this new language).
Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

1. OO Frameworks

Variabilit
1.2 Whitebox & Blackbox Use of a Framework

We refer to the process of creating an application using a framework as
framework instantiation and to the resulting application as a framework
instance. If more than one framework is used, then the resulting applica-
tion is an instance of more than one framework.

Generally, a distinction is made between blackbox and whitebox
frameworks [Johnson & Foote 1988]. A blackbox framework contains
readily usable components. Developers can use a blackbox framework
by creating instances of the provided components. Since the interface of
a component is available, there is no need for developers to know about
how the component is implemented or how the framework with which
it was created works.

In whitebox frameworks on the other hand, there are no readily
usable components. In order to use such a framework, developers have
to extend (abstract) classes or implement interfaces. To do so, they need
to understand how the framework works. Usually an OO framework
has both blackbox and whitebox framework characteristics. Developers
can pick a suitable component from the provided components or imple-
ment their own using the framework, if the provided components do
not provide the needed functionality. The distinction between whitebox
and blackbox reuse was first suggested in [Johnson & Foote 1988] and
further refined in [Roberts & Johnson 1998].

In [Parsons et al. 1999], a framework consists of frozen spots (already
coded, reusable software pieces) and hot spots1 (flexible elements, e.g. an
abstract class). This corresponds to our notion of blackbox and white-
box characteristics of a framework. One could think of the blackbox
characteristics as the collection of all frozen spots and the whitebox
characteristics as all the hot spots in a framework. The term hotspots
was also used in the context of OO Frameworks in [Pree 1994].

1.3 Role Oriented Programming

An important notion in Szyperski’s definition of a component is that a
component is a unit of composition. Unfortunately, when we look at

1. In Section 3 we will introduce the term variability point. Hot spots can be seen as
variability points in detailed designs. Frozen spots may also be variability points,
the difference with a hotspot is that these variability points are bound at a later time
(e.g. blackbox components are typically configured at run-time).
y in Software Systems: the Key to Software Reuse - Licentiate thesis 9

Introduction

1

OO systems we often find ourselves in the situation with a high degree
of coupling. Any class seems to be connected with any other class in the
system (either directly or indirectly). More coupling between compo-
nents means higher maintenance cost (McCabe's cyclomatic complexity
[McCabe 1976], Law of Demeter [Lieberherr 1989]). In [Chidamber &
Kemerer 1994] the following definition of good OO design is given:
“good software design practice calls for minimizing coupling and maximiz-
ing cohesiveness“.

We refer to connections between classes and components as depen-
dencies. A dependency may be the result of one class delegating mes-
sages to another. Since the second class is needed for execution of the
first class we say that the first class depends on the second one. We dis-
tinguish two types of dependencies between components:

� Implementation dependencies. The references used in the rela-
tions between components are typed using concrete classes or
abstract classes.

� Interface dependencies. The references used in the relations
between components are typed using only interfaces. This means
that in principle the component's implementation can be
changed (as long as the required interfaces are preserved). It also
means that any component using a component with interface X
can use any other component implementing X.

The disadvantage of implementation dependencies is that it is more
difficult to replace the objects the component delegates to. The new
object must be of the same class or a subclass as the original object.
When interface dependencies are used, the object can be replaced with
any other object implementing the same interface. So, interface depen-
dencies are more flexible and should always be preferred over implemen-
tation dependencies.

Clearly, a component that has only implementation dependencies on
other classes cannot be considered to be a unit of composition since it
depends on all of the other classes in the application. This problem can
be solved by converting the implementation dependencies to interface
dependencies and by providing easy ways of changing the implementa-
tion of that interface (e.g. by providing get/set methods for the variable
containing the reference).

By doing so, it is avoided that a component becomes dependent on a
particular implementation of an interface. Systems composed of such
0 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

1. OO Frameworks

Variabilit
components can be changed easily, even at run-time, which is exactly
what we would like to have in an OO framework. However, there is one
remaining issue. If only one interface is used to describe the type of a
class, then most likely there is only one implementation of that class. So
despite the fact that the component is not depending on an implemen-
tation directly, in practice it is depending on that single implementa-
tion.

This problem works two ways: It ties a single implementation to a
single interface. Neither is likely to be used independent of the other. So
reuse of implementation is obstructed since the implementation is tied
to a particular interface and reuse of the interface is also obstructed since
it is tied to the implementation.

This problem can be addressed by using multiple interfaces. Both
Java and C++ classes can implement more than one interface1. This fea-
ture can be used to split an interface into smaller interfaces. We refer to
these smaller interfaces as roles. A component implementing multiple
interfaces can play different roles in the system depending on which
interface is used as a type for references to it. Role oriented programming
[Reenskaug 1996][d’Souza & Wills 1999][Riehle & Gross 1998], as we
prefer to call this style of programming, enables developers to write
reusable components. Unlike the single interface for one component,
roles are generally applicable to more than one component. Conse-
quently, components using a component in a particular role, can be
configured to use a wide range of different components.

Unlike the monolithic type of interface, role interfaces are likely to
have more than one implementation because they are smaller. Thus the
problem of interface reuse is solved. And since there are more imple-
mentations that share subsets of their interface, it is easier to reuse these
implementations in different contexts.

1.3.1 Roles in OO Design

The idea of role orientation has also been applied in OO design meth-
ods such as Catalysis [d’Souza & Wills 1999] and OORam [Reenskaug

1. Although C++ does not have an interface construct, it does support multiple inher-
itance. So a class can inherit from more than one virtual class containing only vir-
tual methods. This may result in a slight performance penalty (because of virtual
method lookups) but also results in a more robust system than would be the case if
header files were used to do the job.
y in Software Systems: the Key to Software Reuse - Licentiate thesis 11

Introduction

1

1996]. In both methods, references between objects are typed using
roles. Consequently, component interactions can be described using
only roles. In Catatalysis, this is done using so called type models

OORam makes a difference between classifier role diagrams and object
collaborations that are instances of the latter. A classifier role is a name
tag for an object in a certain role. Unlike an interface, which is a pure
type, classifier roles have identity meaning that classifier role can map
onto only one object in a collaboration. However, an object can take
part in a collaboration under more than one name (e.g. an object can
collaborate with itself).

The notion of the classifier role is the most important difference of
OORam with Catalysis. However, in our opinion it is an important dif-
ference, since OORam classifier role diagrams are an ideal way to
express the dynamics of an OO framework without naming the
involved objects. During implementation of a framework, the different
classifier roles can be translated into regular interfaces. These interfaces
in turn can be used to create abstract classes and components to facili-
tate whitebox and blackbox use of the framework.

The idea of role models somewhat matches the idea of framework
axes as presented in [Demyer et al. 1997]. The three guidelines pre-
sented in that paper aim to increase interoperability, distribution and
extensibility of frameworks. To achieve this, the authors separate the
implementation of the individual axes as much as possible.

1.3.2 Inheritance vs Delegation

Szyperski [Szyperski 1997] argues that there are three aspects to inherit-
ance: inheritance of interfaces, inheritance of implementation and sub-
stitutability (i.e. inheritance should denote an is-a relation between
classes). Role oriented programming provides a good alternative for the
first and the last aspect. Roles make it easy to inherit interfaces and since
roles can be seen as types they also take care of substitutability. Conse-
quently the remaining reason to use class inheritance is implementation
inheritance.

When it comes to using inheritance for reuse of implementation
there are the problems of increased complexity [Chidamber & Kemerer
1994][Daly et al. 1995] and less run-time flexibility [Paper IV]. Also,
implementation inheritance has not been a particularly successful way
of reuse, apart from a limited number of situations [Parsons et al. 1999].
2 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

1. OO Frameworks

Variabilit
For this reason we believe it is better to use a more flexible delegation
based approach using roles, in most cases. The main advantage of dele-
gation is that delegation relations between objects can be changed at
runtime and don’t need to be hard wired in the source code (which is
what inheritance does).

A problem one needs to be aware of when using delegation is the Self
problem, first discussed in [Lieberman 1986]. This problem arises when
an object forwards a method to another object. If the forwarded method
calls a method that is available in the both objects, the method in the
object to which the method was delegated is called rather than the orig-
inal object. This problem does not occur when using inheritance (i.e. if
a method m1in a superclass calls a method m2 in the same class, a sub-
class that overrides m2 will cause m1 to call the new version of m2).

1.3.3 Objective motivation for using Roles

The work of Kemerer & Chidamber [Chidamber & Kemerer 1994]
describes a metric suite for object oriented systems. The suite consists of
six different types of metrics that together make it possible to do mea-
surements on OO systems. The metrics are based on so called view-
points that were gained by interviewing a number of expert designers.
Based on these viewpoints Kemerer and Chidamber presented the afore-
mentioned definition of good design: “good software design practice calls
for minimizing coupling and maximizing cohesiveness“.

Cohesiveness is defined in terms of method similarity. Two methods
are similar if the union of the sets of class variables they use is substan-
tial. A class with a high degree of method similarity is considered to be
highly cohesive. A class with a high degree of cohesiveness has methods
that mostly operate on the same properties in that class. A class with a
low degree of cohesiveness has methods that operate on distinct sets. I.e.
there are different, more or less independent sets of functionality in that
class.

Coupling between two classes is defined as follows: “Any evidence of a
method of one object using methods or instance variables of another object
constitutes coupling“ [Chidamber & Kemerer 1994]. A design with a
high degree of coupling is more complex than a design with a low
degree of coupling. Based on this notion, Lieberherr et al. created the
law of Demeter [Lieberherr 1989] which states that the sending of mes-
sages should be limited to
y in Software Systems: the Key to Software Reuse - Licentiate thesis 13

Introduction

1

� Argument classes (i.e. any class that is passed as an argument or
self)

� Instance variables.

The use of roles in a design makes it possible to have multiple views
on one class. These role perspectives are more cohesive than the total
class since they are limited to a subset of the class’ interface. A correct
use of roles ensures that object references are typed using the roles rather
than the classes. This means that connections between the classes are
more specific and general at the same time. More specific because they
have a smaller interface and more general because the notion of a role is
more abstract than the notion of a class. While roles do nothing to
reduce the number of relations between classes, it is now possible to
group the relations in interactions between different roles, which makes
them more manageable.

Based on these notions of coupling and cohesisiveness, Kemerer and
Chidamber created six metrics [Chidamber & Kemerer 1994]:

� WMC: weighted methods per class. This metric reflects the
notion that a complex class (i.e. a class with many methods and
properties) has a larger influence on its subclasses than a small
class. The potential reuse of a class with a high WMC is limited
though, since such a class is application specific and will typically
need a lot of adaptation. A high WMC also has consequences for
the time and resources needed to develop and maintain a class.

� DIT: depth of inheritance tree. This metric reflects the notion
that a deep inheritance hierarchy constitutes a more complex
design. Classes deep in the hierarchy will inherit a lot of behav-
iour which makes it difficult to predict their behaviour.

� NOC: number of children. This metric reflects the notion that
classes with a lot of subclasses are important classes in a design.

� CBO: coupling between object classes. This reflects that excessive
coupling prevents reuse and that limiting the number of relations
between classes helps to increase their reuse potential.

� RFC: response for a class. This measures the number of methods
that can be executed in response to a message. The larger this
number, the more complex the class. In a class hierarchy, the
4 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

1. OO Frameworks

Variabilit
classes at the bottom have a higher RFC than the classes at the
top. A higher RFC for a system expresses the fact that implemen-
tation of methods is scattered throughout the class hierarchy.

� LCOM: lack of cohesiveness in methods. This metric reflects the
notion that non cohesive classes should probably be split in two
classes (to promote encapsulation) and that classes with low cohe-
siveness are more complex.

The most important effect of introducing roles into a system is that
relations between components are no longer expressed in terms of
classes but in terms of roles. The effect of this transformation can be
evaluated by looking at the effect on the different metrics:

� WMC: Roles model only a small part of a class interface. The
WMC value of a role is typically smaller for a role than for a class.
Components are addressed using the role interfaces, a smaller part
of the interface needs to be understood than when the same com-
ponent is addressed using its full interface.

� DIT: The DIT value will increase since inheritance is the mecha-
nism to impose roles on a component. It has to be noted though
that roles only define the interface, not the implementation. So
while the DIT grows, this has no consequences for the distribu-
tion of implementation throughout the inheritance hierarchy.

� NOC: Since role interfaces are typically located in the top of the
hierarchy, the NOC metric will typically be high. In a conven-
tional class hierarchy, a high NOC for a class expresses that class is
important in the hierarchy. Similarly, roles with a high NOC are
important. Roles with high NOC values contribute to the homo-
geneity of the interfaces of the components and classes lower in
the hierarchy, which makes it easier to understand what these
components do.

� CBO: The CBO metric will decrease since classes no longer refer
to other classes but only to roles. Because roles are typically small,
one role will be coupled to only a handful of other roles.

� RFC: Since roles do not provide any implementation, the RFC
value will not increase. It may even decrease because class inherit-
ance will no longer be necessary to inherit interfaces but only to
inherit implementation.
y in Software Systems: the Key to Software Reuse - Licentiate thesis 15

Introduction

1

� LCOM: Roles typically are very cohesive in the sense that the
methods for a particular role are very much related. So roles will
typically have a lower LCOM value.

Based on the analysis of these six metrics it is safe to conclude that:

� Roles reduce complexity (improvement in CBO, RFC and
LCOM metrics) in the lower half of the inheritance hierarchy
since inter component relations are moved to a more abstract
level. This is good because this generally is the largest part of the
system.

� Roles increase complexity in the upper half of the inheritance
hierarchy (Higher DIT and NOC values).

The increased complexity in the top half of the inheritance hierarchy
is not necessarily a bad thing. Rather the inherently complex informa-
tion of how components interact is concentrated in one spot instead of
being spread all over the class hierarchy.

1.4 Frameworks and Roles

In [Bosch et al. 1999] and [Bosch 1999], a number of issues are dis-
cussed that arise when multiple frameworks are used to build an appli-
cation. These issues can be summarized as follows:

� Framework gap. The provided frameworks do not provide all the
needed functionality. Thus additional development is required. A
relevant issue to consider is which framework(s) benefit(s) from
this development, if any.

� Framework overlap. This is a more serious problem because this
forces developers to choose between implementations. Often such
a choice leads to significant changes in the one or more of the
frameworks to reflect the choice.

� Functionality integration. Frameworks typically offer two ways of
usage: whitebox reuse (i.e. framework classes are extended by
application classes) and blackbox reuse (i.e. the application
instantiates components in the framework). When components
6 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

1. OO Frameworks

Variabilit
are needed that use more than one framework, significant
amounts of glue-code may need to be written to integrate the
functionality both frameworks provide.

� Architectural mismatch. This type of problem occurs when the
frameworks involved use different architectural styles [Bushmann
et al. 1996]. Because of this, the frameworks cannot be composed
easily. Usually significant development in both frameworks is
needed to solve this problem

A major cause for these problems is the monolithic nature of many
frameworks. For this reason it may be beneficial to adopt a more modu-
lar approach. One approach that has been suggested in [Pree & Koskim-
ies 1999] is the concept of a framelet. A framelet is a small framework,
typically consisting of no more than 10 classes that implements func-
tionality for a very narrow domain. To avoid architectural mismatch,
framelets may not assume to be in control of the application. Applica-
tions can be created by integrating multiple framelets. The idea of con-
sidering framelets as components is interesting but conflicts with our
definition of a component as a unit of composition. The framelet con-
cept has some deficiencies.

� First of all it does not take into account that most useful compo-
nents are associated with more than one role model. In our view,
role models are orthogonal to objects.

� As a consequence we don’t believe much useful behaviour could
be put in the frozen spots of small framelets and as discussed
before, inheritance would be a particularly bad solution for com-
bining behaviour from different framelets. So using framelets to
built an application would require considerable effort since most
of the behaviour is not provided by the framelets.

� A third deficiency of the framelet concept is that it does not seem
to take into account that multiple implementations of a particular
interface may exist. Due to the explicit size limitations, it would
not be possible to have two implementations of a component in
one framelet. Yet, that is exactly what would be necessary to make
the components plug compatible (since the framelet also contains
the interfaces).
y in Software Systems: the Key to Software Reuse - Licentiate thesis 17

Introduction

1

Nevertheless, framelets are an interesting concept that may be of use
during analysis and design. For example, see [Pasetti & Pree 2000] for a
discussion on how framelets in conjunction with use cases and hotspots
can help design a framework. Also adopting a framelet approach may
help avoid the framework integration issues outlined above.

The main problem with the framelet concept is that it mixes imple-
mentation and interfaces. In our view those two should be strictly sepa-
rated using role models. A framework then consists of one or more role
models and a set of components implementing roles from these role
models. This addresses all three problems we found in the framelet
approach.

A similar approach to framelets can be found in [Kristensen 1997],
where role model implementations are used as subjects [Harrison &
Osscher 1993]. These role model implementations are similar to the
framelet concept, and consequently suffer from similar problems. How-
ever, the approach taken in [Kristensen 1997] does take into account
that composition has to take place (contrary to [Pree & Koskimies
1999]). The suggested approach provides several solutions to likely
composition problems.

A third approach can be found in [Riehle & Gross 1998]. In this
work concepts and terminology are presented to use compositions of
role models as a basis for frameworks. Unlike the framelet aproach and
the approach in [Kristensen 1997], implementation is not part of the
composition. Rather they use an approach similar to role synthesis pre-
sented in [Reenskaug 1996]. These role compositions are then used to
(partially) implement a framework.

Considering the current state of the art (i.e. programming languages
such as Java), we believe that the approach in [Riehle & Gross 1998]
and [Reenskaug 1996] is closest to industrial practice. However we
anticipate that approaches such as aspect oriented programming [Kicza-
lez et al. 1997] and subject oriented programming [Harrison & Osscher
1993] will become more important in the future, enabling approaches
such as in [Kristensen 1997].

In this section we discussed some framework related technology and
argued the importance of role oriented programming to improve flexi-
bility in frameworks. Later in this thesis (Section 4.2), we will present a
case that employs some of these techniques. As stated in the introduc-
tion, we believe that variability is the key to reuse. Flexibility increasing
techniques such as role oriented programming, improve variability and
8 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

2. Software Product Lines

Variabilit
thus improve reusability. The case presented in Section 4.2 clearly dem-
onstrates that such techniques are important when variability is a
requirement.

2. Software Product Lines

While frameworks are usually targeted to specific domains (e.g. user
interfaces, database interaction etc.), software product lines are used to
capture the commonalities between a group of related software prod-
ucts. Just like a product line in a car factory is used to create different
kinds of cars from standard parts, a software product line is used to cre-
ate different kinds of software products using standard pieces of soft-
ware. In both a car factory product line and a software product line,
productivity is improved by providing standardized, reusable assets and
construction mechanisms. However, this also constrains the products
since in the design of the product line all sorts of assumptions are made
about the products that are going to be created with it. E.g. a product
line for cars will make assumptions about the number of wheels, dimen-
sions, etc. in order to streamline production. Similarly, a software prod-
uct line makes all sorts of assumptions about the requirements of the
applications that are going to be created using it. More importantly, the
requirements that are expected to change result in variability in the soft-
ware whereas requirements that are not expected to change may be hard
to vary in products due to lack of support of the SPL to do so.

While frameworks and SPLs often use the same technologies (which
contributes to the confusion of these two terms) there are two differ-
ences that are worthwhile to point out:

� Scope. OO Frameworks are generally domain specific. It is not
uncommon to use more than one framework to create an applica-
tion. SPLs tend to be company or branch specific and usually
cover several domains that are relevant in that company.

� Scale. SPLs are usually much larger than frameworks. Generally,
all reusable software in a company (components, class libraries,
frameworks, etc.) is considered to be part of the SPL. Often SPL
specific tools are implemented to make working with the SPL eas-
ier (e.g. Axis Communications AB uses a set of scripts to build
products from the code repository).
y in Software Systems: the Key to Software Reuse - Licentiate thesis 19

Introduction

2

If we take a historic perspective on software engineering, an evolving
trend towards reusable software can be observed. It started with struc-
tured programming which allowed programmers to reuse code in the
form of procedures. In [McIlroy 1969] the word software component
was used for the first time. At the time the term referred to procedures
(McIlroy had reusable mathematical functions in mind). Function
libraries and later class libraries allowed companies to reuse small pieces
of code. In the eighties, software frameworks and component technol-
ogy became popular as a way of reusing larger pieces of code. Finally,
SPLs recently appeared as the new way of reusing. What will come after
SPLs remains to be seen. However, if this trend progresses, the next hur-
dle is inter-organizational reuse.

From this small overview we can learn that over the years, companies
have become more conscious of reuse. Especially SPLs require careful
planning and generally require more effort to develop than individual
products. However, if the SPL approach is applied successfully, the cost
of developing new products is reduced so much that it justifies the ini-
tial investment.

A second observation we can make is that for each of the reuse
approaches we mentioned, third party assets have appeared. In the
eighties, commercial compilers were generally shipped with an accom-
panying function or class library and there were also companies who
specialized in delivering libraries. During the nineties, complete frame-
works were shipped with integrated development environments and
there was a growing component market (especially GUI components).
In our view, the same will happen with SPLs (i.e. inter-organizational
reuse is the next big thing). Currently there are already some vendors
that are shipping products (e.g. Java 2 Enterprise Edition) that make it
easy to develop enterprise applications. Mozilla can be seen as the first
SPL for web development and in our opinion it is more than likely that
third party SPLs will appear for other domains as well.

However, third party provided SPLs are very much the exception
currently. The main reasons for this are that creating a SPL for third
parties puts extra requirements on software quality, documentation and
support. In addition, SPLs are complex pieces of software that usually
are not readily applicable outside the company they were developed for.
0 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

2. Software Product Lines

Variabilit
2.1 Examples of SPLs

In our research, we have encountered several product lines. In this sec-
tion we provide a short introduction to some of them. These cases will
be referenced as examples in the remainder of this introduction as well
as in some of the included papers.

2.1.1 Axis Communications AB

Axis Communications AB is an international company that develops its
software in Lund (Sweden). They produce several types of server appli-
ances that can be used to connect, for example, printers, scanners, cam-
eras or CD-ROMs to a network. The hardware devices they produce,
replace the computer that these devices would normally be connected to
for network connectivity. Axis, uses a proprietary CPU called Etrax. On
top of the Etrax processor runs a proprietary operating system that runs
all of the components needed to operate the connected devices and con-
nect to a network.

Axis’ success is based on the fact that they can easily adapt their soft-
ware to the needs of the various devices connected (basically any PC
peripheral ranging from harddisks to webcams is supported at the
moment) as well as different network standards (TCP/IP, ethernet,
token ring, USB). Because of this, Axis can develop new products rela-
tively fast. Most of Axis’ products are based on the same product line1.
This product line is consists of a number of frameworks and subsystems
implementing those frameworks. One of the important frameworks is
the file system framework, which has quite a few implementations (FAT,
NFS, SMB, ISO 9660, etc.). Typically, a new product bundles a num-
ber of existing subsystems. If necessary, new subsystems are developed or
existing subsystems are adapted. Sometimes these changes also require
changes in the frameworks (resulting in maintenance in other sub-
systems).

1. Due to historic reasons, the printer server line is based on a different code base.
Also, Axis has recently been experimenting with alternative embedded operating
systems such as Ecos and embedded Linux.
y in Software Systems: the Key to Software Reuse - Licentiate thesis 21

Introduction

2

2.1.2 Symbian

Symbian is a consortium, owned by five major telecom companies
(Ericsson, Nokia, Psion, Motorola and Matsushita). They develop an
operating system, called EPOC, for use in mobile telephones and PDAs
(Personal Digital Assistant). EPOC consists of a kernel, device drivers,
an application framework and a number of applications. The EPOC
platform can be easily adapted to the various requirements these devices
have. Main areas of variation are display size, network bandwidth and
memory size. Contrary to Axis and Mozilla (see below), Symbian does
not deliver complete products. Rather it delivers products that are
licensed to a range of companies (including the members of the consor-
tium). These companies then use these products to create a custom ver-
sion of the EPOC operating system, tailored to the requirements of the
products they make (ranging from low end mobile telephones to high
end PDAs).

Since the devices, to which EPOC is targeted, are very diverse, Sym-
bian works with so called device families that implement a so called
Device Family Requirement Definition (DFRD). Currently there are
three device families: the landscape display communicator family, the
portrait display communicator family and a smart phone family. The
main difference between these families is the display size, but there are
also differences in e.g. memory size, keyboard and CPU speed. For each
family there is a reference device for which Symbian guarantees correct
behaviour of the software [Bosch 2000].

2.1.3 Mozilla

Mozilla is an open source project [Mozilla 2000], started by Netscape.
Its aim is to provide developers with a platform for developing web
applications. At the moment of writing, the project is in the early Beta
stage. Right now, the mozilla platform provides a browser component
(Gecko), a networking component (Necko), a user interface definition
language (XUL), skinning abilities (Chrome), a cross platform compo-
nent model (XPL) and many other technologies. These components
and techniques have already been used to build, for instance, a web
browser (actually, there are already several web browsers based on the
gecko component), a mail and news client, an IRC chat client and an
2 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

2. Software Product Lines

Variabilit
XML enabled terminal program called XMLTERM (for a more com-
plete overview check the mozilla website [Mozilla 2000]).

It is expected that the Mozilla platform will be adopted for a lot of
different applications as soon as the APIs are stabilized. Right now
Netscape is expected to release a version of Netscape Communicator
based on the mozilla platform within a few months. The application of
a number of modern variability techniques as well as the open develop-
ment process makes Mozilla an excellent research subject for SPL
research.

2.2 Characteristics of a SPL

While there are a lot of differences between the SPLs introduced in the
previous section, there are a few commonalities worth mentioning:

Scale. Each of the product lines we have encountered are large systems.
They tend to be comprised of at least a few hundred thousand lines of
code, but often more than that. Also much of this code is reused in con-
crete SPL instances. In the case of Symbian, the SPL is the product the
company delivers.

Components. All of the SPLs discussed in Section 2.1 are modularized
and SPL instances tend to vary in composition and configuration of
these modules. In both the Symbian and the Mozilla case, a COM like
component model is used whereas Axis uses a less advanced component
model (due to tighter memory and performance requirements) based on
compile time configuration of the various subsystems. In all three cases,
the most important components are large and tend to be relatively inde-
pendent of other components.

Blackbox reuse. Each of the SPLs employs blackbox reuse for their
components. Mozilla uses an IDL like language for describing compo-
nent interfaces, Symbian uses mixin classes (similar to Java’s interface
construct) and Axis uses the abstract classes from the various frame-
works for accessing the components. Because of this, it is relatively easy
to replace or enhance components in new SPL instances.

Stability of interfaces. In each of the cases we have encountered, the
SPL is developed in parallel with a few SPL instances. As a consequence,
the interfaces tend to evolve during development of the SPL instances.
Usually such changes in the SPL are the result of requirement changes
y in Software Systems: the Key to Software Reuse - Licentiate thesis 23

Introduction

2

in one or more SPL instances. Therefore, changes in the SPL are not
necessarily a bad thing since they improve the overall quality of the SPL.

Versioning. As in any large system, configuration management and ver-
sioning are important tools for managing a SPL. There are four levels
subject to versioning in a SPL: the SPL, the individual components, the
source files and the SPL instances. Especially components are an impor-
tant unit for versioning since they are composed with other components
in SPL instances. In Axis, SPL instances are expressed using module
files. Module files explicitly define which versions of which subsystem
are to be composed. The build procedure uses these files to automati-
cally check out the right versions of source files for compilation. Sym-
bian also uses version numbers for each component since the EPOC
system is usually customized for a particular machine. Mozilla on the
other hand has bi-monthly releases (milestones) of the entire system.
Milestones are intended for testing purposes and are relatively stable in
comparison to the nightly builds. Consequently, third party developers
tend to develop their products for the most recent (or upcoming) mile-
stone.

3. Variability

In Section 1 and 2 we looked at frameworks and SPLs. In this section
we will look at one of the concepts behind both technologies: variability.
The Webster dictionary provides us with the following definition of
variable: “able or apt to vary : subject to variation or changes“. Conse-
quently, variability is the ability to be subject to variation. Essential is
the notion that not only do we want to reuse what is in a framework or
SPL, we want to customize what we reuse.

The purpose of both a framework and a SPL is to be reused to build
product specific code. However, if we only wanted to reuse, it would be
quite trivial to build either a framework or a SPL. In addition to being
able to reuse we also want to vary. It is exactly this that makes it hard to
make frameworks or SPLs. Being able to vary requires knowledge: What
needs to be varied? What does not need variation? What are the avail-
able variants? Can we add new variants? If so, when is the last point in
time that variants can be added? Who adds the variants (e.g. the user,
the developer)? When do we pick a variant? These are all relevant ques-
tions that need to be answered when building a product line. The
4 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

3. Variability

Variabilit
answers will affect how the system is built and more importantly, con-
strain what is possible with the resulting system. Wrong answers to these
questions will translate into design errors that may be expensive to fix or
work around once the system is delivered.

To help address these questions in a proper way, a firm understand-
ing of variability is needed. From the questions above, it can be deduced
that there are a few notions that are important:

� Time. During development, a system transforms from require-
ments to a full software system (see Figure 2 and Figure 3). At
some point a design decision will be ‘delayed’, i.e. variability is
introduced. Later, variants are put in the system.

� Representation. As illustrated in Figure 2, system development
is a sequence of transformations of representations of the system
(possibly iterative). In each of these representations, variability
may be introduced.

� Variants. A number of variants is associated with each variability
point.

User input, technology, expectations

Requirement Specification

Architecture Description

Design Documentation

Source Code

Compiled Code

Linked Code

Running Code

Requirement Collection

Architecture Design

Detailed Design

Implementation

Compilation

Linking

Execution

Figure 2. Representations & transformation processes

Transformation ProcessSystem Representation

User Actions
y in Software Systems: the Key to Software Reuse - Licentiate thesis 25

Introduction

2

� Ownership. With large systems such as SPLs, it is likely that dif-
ferent parties are involved in its development and usage. Conse-
quently, variants for a particular variability point may be delivered
by different parties.

A complicating matter is that a system exists in multiple representa-
tions that change over time. In the waterfall model, the development
process starts with requirements, then an architectural design is made,
after that a detailed design is made, then the design is implemented.
This results in binary code that needs to be linked with other pieces of
code, once that is done the result is a system that can be executed. Dur-
ing execution there is a constantly changing running system. This pro-
cess is illustrated in Figure 2.

Software development can be seen as a process that constrains the
number of systems that can be built. The goal is to have one running
system at run-time that meets the requirements. The development starts
with requirements collection. The system is constrained from all possi-
ble systems to those systems that meet the requirements. In the next step
the system is constrained to all systems that meet the requirements and
adhere to the architecture design. There may be more than one feasible
architecture, but only one is chosen. Each step of the development con-
strains the system more until there is only one system at run-time. Note
that the running system is not static unlike the previous representations.
It changes under the influence of user actions, events from the operating
system, etc.

In Figure 3, we have illustrated how variability can help avoid con-
straining the system too early. Variability helps delaying constraining of
the system. On the left, a system with early selection of variants is illus-
trated while on the right a system with late selection of variants is
shown. Both systems ultimately converge to a single running system,
but the system on the right can be varied more, even just before execu-
tion.

This may be beneficial for both developers and end users. With late
selection of variants, developers are able to offer a larger variety of prod-
ucts to their customers. End users may also benefit from variability in
the products since that allows them to customize their software.

We like to think of variability as delaying a design decision. These
design decisions always apply to a particular element of the representa-
tion at hand (e.g. the architectural system or the compiled code). We
call these elements variability points. For example, during architecture
6 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

3. Variability

Variabilit
design, the system is described in terms of components and connectors.
Consequently, a variability point in the architecture design could either
be a component or a connector.

A variability point can be thought of as a generic element in a repre-
sentation, which at a later time is replaced with a variant. Variability
points can be in three states:

� Implicit. As can be seen in Figure 3, a system is constrained over
time (i.e. design decisions are taken). This means that variability
exists in the system before it is explicitly introduced into the sys-
tem. We refer to this kind of variability as implicit (i.e. the fact
that a particular element of the system will be variable has not
been made explicit yet).

� Designed. At some point in the development, a design decision is
explicitly delayed. From then on, the variability point is designed.

� Bound. Once a variability point is designed, it can be bound to a
particular variant.

Associated with a variability point are its variants. Those variants do
not have to be known yet when the variability point is designed but may
be added later (e.g. plugins). We distinguish between the states open and

Possible systems

Running code

Linked code

Compiled code

Source code

Design Documentation

Architecture Description

Requirement Specification

User expectations, technologies

1

Figure 3. The Variability Funnel with early and delayed variability

Possible systems

1

y in Software Systems: the Key to Software Reuse - Licentiate thesis 27

Introduction

2

closed for a variability point at a particular representation level, to indi-
cate whether new variants can be added to a variability point. As an
example consider the netscape plugin mechanism. The decision that
Netscape can use plugins is taken in the architecture design, so after
architecture design there is a variability point for plugins in the architec-
ture. This variability point was implicit before architecture design since
the requirement specification does not tell how the functionality of a
plugin has to be integrated with the system. Plugins are downloaded by
users and then installed. This requires a restart of the program so the
variability point is open at link-time (the plugins are dynamically linked
into the system) but closed during run-time and before link-time.

4. Late Variability Techniques

In this section, we discuss late variability (i.e. variability that can be
bound late in the development process). As can be deduced from Figure
3, the point of having variability in a system is to delay certain design
decisions. There are a few reasons why delaying design decisions can be
beneficial:

� Going back into the development cycle to use a different variant
is expensive. Imagine that Netscape would have to be redesigned,
implemented, tested and deployed in order to introduce a new
plugin.

� The different representations of the system are handled by differ-
ent people. E.g. the architecture design is handled by software
designers and the running system is handled by users. Some deci-
sions should be made by users, which means that software design-
ers should design the ability to make that choice into the system.

� The stream of new and changed requirements generally does not
stop after product delivery. Post delivery variability techniques
help address these requirements more cost effectively for already
deployed systems.

Unfortunately there are drawbacks as well. Mechanisms and tech-
niques used to add runtime variability may conflict with the quality
requirements (e.g. performance or memory size), they may be more dif-
ficult to implement and they may make the system more complex.
8 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

4. Late Variability Techniques

Variabilit
4.1 Run-time variability techniques

There are several common techniques that are used for post delivery
variability (i.e. variability after the system has been delivered and
deployed). In this section we will highlight three of them: component
configuration, dynamic binding and interpretation.

4.1.1 Component Configuration

This type of variability can be found in nearly any system that employs
components. By setting parameters and properties in the component,
the behaviour of the component is varied. Typically, applications pro-
vide functionality to set the parameters for the various components and
behaviour for storing typical values of parameters in a configuration file.

Advantages. The main advantage of this approach is that it is an easy
way of adding customizability to a component.

Disadvantages. The variability points, covered by this technique, are
closed before delivery of the component to the user (i.e. the variants are
fixed)1. As a consequence, this mechanism can only be used for the sim-
pler types of variability.

Example. The best example of component configuration are the GUI
components that are generally found in application frameworks. Typi-
cally these components need to be configured before use in a program.

4.1.2 Dynamic Binding

To allow for structural changes in the composition of components in an
application, dynamic binding can be used. In a traditional system,
source code is compiled and then statically linked into an executable.
With dynamic binding, however, the linking occurs at run-time. As a
consequence, different parts of the program can be developed separately.
In addition, multiple variants of a particular part of the program may
exist. Dynamic binding is used in most operating systems to provide
system libraries containing standard functions and access to the operat-

1. An exception to this is the situation where configuration is used in combination
with dynamic binding, i.e. one of the parameters of the component is a reference to
another component that can be dynamically bound.
y in Software Systems: the Key to Software Reuse - Licentiate thesis 29

Introduction

3

ing systems API. However, dynamic binding can also be used to substi-
tute entire components.

Advantages. The use of dynamic binding has several advantages: Com-
ponents can be developed and even delivered separately. Also, since
components can be added at run-time, the variability points, covered by
this technique, are still open after delivery of the product. This makes it
possible to replace components with updated versions, to use different
components depending on the state of the program and even for install-
ing entirely new components after delivery (e.g. plugins).

Disadvantages. The introduction of dynamic binding to a program
makes it considerably more difficult to test an application. Since the
program can consist of arbitrary compositions of a possibly infinite
number of components that are not all available before delivery, it is vir-
tually impossible to test all possible compositions of the components. A
second disadvantage is that the dynamic binding mechanism can
involve a performance penalty. In C++, for example, virtual method
calls (which are typically used in a dynamic binding situation) are more
expensive than non virtual method calls. Also, the compiler cannot per-
form certain optimizations because not all code is available at compila-
tion time1.

Example. In Mozilla, dynamic linking is used extensively to add com-
ponents and plugins. Symbian also uses dynamic linking and typically
delivers new components for EPOC in the form of dlls (dynamic link
libraries).

4.1.3 Interpretation

Excessive use of the previous techniques causes the complexity of creat-
ing an application to increase. To address this, scripting can be used.
Script languages are interpreted languages that typically are easier to use
than system programming languages. Examples of commonly used
scripting languages are JavaScript, Visual Basic, Perl and Python. Typi-

1. Modern virtual machines, such as Java Hotspot, address this issue by using a
dynamic compiler that compiles and optimizes at run-time using profiling infor-
mation. Since all components are known and available at run-time, the dynamic
compiler can do optimizations a static compiler cannot do.
0 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

4. Late Variability Techniques

Variabilit
cally these languages are used in conjunction with other components/
applications.

Advantages. Since, non reusable behaviour (e.g. glue code) can be
implemented using scripting languages, the components can be made
more generic. In [Ousterhout 1998], scripting languages are envisioned
as the key to COTS (Components Of The Shelf) type of reuse since the
scripting can be done by other people than the component developer.
According to Ousterhout, developers should implement difficult or
reusable behaviour in components and use scripting languages to imple-
ment the non-reusable glue code.

Disadvantages. Interpreted languages are typically an order of magni-
tude slower than compiled languages. This makes them unsuitable for
implementation of performance critical parts of a program. Also, since
they typically have weak typing, scripting languages are not suitable for
implementing complex parts of a program.

Example. A good example of the power of scripting (more or less
reflecting Ousterhout’s vision) is the Mozilla system. Mozilla heavily
relies on scripting to implement applications. Typically a Mozilla appli-
cation (e.g. the mail and news client) consists of a number of C++ com-
ponents that are scripted using javascript and configured using XML
files. Consequently, Mozilla applications are highly customizable.

4.2 Late variability in a framework for finite state
machines

Late variability is not just something that can be added to an existing
product. It requires careful planning an design in order to work. This is
one of the reasons why [Bosch 2000] claims that opportunistic reuse
(i.e. the reuse of code that was not explicitly designed for reuse) is not
effective. To illustrate how the architecture of a system is influenced by
requirements for late variability, we will discuss the architecture of the
Finite State Machine (FSM) Framework presented in [Paper I]
(included in this thesis).

The main motivation for building this framework was the observa-
tion that existing finite state machine implementations consist of highly
coupled code, which causes the maintenance process to be slow and
complex. As a reason for the tangled code we identified that structure
y in Software Systems: the Key to Software Reuse - Licentiate thesis 31

Introduction

3

and behaviour that are nicely separated during design, are tied together
during implementation. This makes it difficult to make changes in the
structure of a finite state machine without affecting the behaviour and
vice versa.

As a design goal we set the requirement that the framework should
separate the two and make it possible to change the structure of the
finite state machine (FSM) without affecting behaviour. In addition, a
design goal was to be able to use graphical tools for laying out the finite
state machine’s structure. Ideally, no recompilation should be needed
after a structural change.

With these requirements in mind, we identified that such a system
was not possible using the conventional solution, which employs the
state pattern [Gamma et al. 1995]. In the state pattern, the various
states of a FSM are represented as subclasses of an abstract State class.
Because the State subclasses all have the same super class, they can be
substituted in the class that holds a reference to the current state. State
transitions are implemented as methods in the State subclasses that
change that reference and exhibit some behaviour.
While the state pattern is probably an efficient solution in, for example,
network protocol implementations, it cannot meet our requirements
since it relies on a technique (i.e. inheritance) that can only be applied at
implementation time. So, we decided to design a blackbox framework
instead. In Figure 4, a diagram is presented that explains how the com-
ponents in the FSM framework interact. In essence, the inheritance
relations of the state pattern solution have been replaced with delegation
relations to other components. Also, explicit, blackbox representations
of important FSM concepts are provided.

aContext

aState
aStateaTransition

anEvent

anAction

sends

triggers

has a
is associated with

has a

has a

has a executes

sets state/uses context

Figure 4. The FSM Framework’s components.

anEvent
2 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

4. Late Variability Techniques

Variabilit
The most important change is that state transitions now have an
explicit representation whereas in the state pattern they are represented
implicitly by procedures that are also responsible for setting the target
state. In our solution, a transition is associated with a source and target
state and an action component (implementation of the command pat-
tern [Gamma et al. 1995]) that encapsulates the behaviour.

Since all the components are blackbox, FSMs can be created by com-
posing these components. Since the FSM specific behaviour is fully
encapsulated by the action components, we were able to write a small
configuration tool that takes an XML description of the FSM and con-
structs a working FSM from it. While our implementation relies on
serialized action components, we could also have used a scripting lan-
guage to connect the various events in an FSM to behaviour.

Although, arguably, our solution is not suitable for performance crit-
ical applications, we were able to demonstrate that the overhead of the
mechanisms used to provide the flexibility was acceptable in compari-
son to the state pattern implementation. This example clearly shows
that the clever use of the techniques described in Section 4.1, can help
providing run-time variability. The most important conclusion that can
be drawn from this example is that whitebox reuse should be avoided if
run-time variability is required.

4.3 Open Issues

Following the guidelines outlined in [Paper II], will definitely help
achieving the forms of run-time variability outlined above. These guide-
lines focus on delivering black box reuse and reduce dependencies on
implementation-time variability techniques, such as inheritance. How-
ever, while the three described mechanisms add a considerable amount
of variability to an application, there are some issues that cannot be
addressed this way.

4.3.1 Subjective Views

Object oriented programming partitions programs into classes. The
whole idea behind object oriented programming is that the world can
be modeled in terms of objects and classes. However, in [Harrison &
Osscher 1993], it is demonstrated that there are some problems with
this assumption. They give an example of a tree class that is used by dif-
y in Software Systems: the Key to Software Reuse - Licentiate thesis 33

Introduction

3

ferent users (a bookkeeper, a lumberjack and a bird). These users are
using the same object but use it for completely different purposes. Con-
sequently, they require different functionality from the tree class. Harri-
son and Ossher call this subjective views. In addition to the
functionality, also the way things are classified is subjective. In the tree
example a lumberjack might distinguish between hardwood and soft-
wood trees whereas a bird might prefer to distinguish between trees that
are suitable for building a nest in and trees that are unsuitable for nest-
ing.

SPLs are systems that are typically used in more than one product,
each different from the other. Consequently, the class decomposition
offered by the SPL is likely to be a compromise between the different
subjective views of the SPL instances on the system. While this is proba-
bly not a big problem for SPLs that are only used in a few products, it is
likely to be a major problem for long lived, frequently used product
lines.

Implementing such different views at implementation time can be
handled by using, for example, role models (e.g. [Kristensen 1997]).
But adding new views or changing existing views (i.e. adding or chang-
ing interfaces) after product delivery is more difficult. This is a major
problem when introducing new, third party components. Often, there
are incompatibilities between the new component and the existing sys-
tem. Presently the only way to solve this is to go back in the develop-
ment cycle and change the product so that it can work together with the
new component. As this is likely to have affect large parts of the system,
existing, running systems will have to be stopped and updated to incor-
porate the new component.

4.3.2 Cross cutting functionality

A related problem is cross cutting functionality. This type of functional-
ity consists of features that when implemented affect large parts of the
system and typically are not contained by classes or components. Exist-
ing programming techniques do not support implementing this type of
features very well. Typically variability in this type of features is handled
using preprocessor directives. Also there are some research efforts that
allow for better separation of concern (e.g. Aspect Oriented Program-
ming [Kiczalez et al. 1997] and Subject Oriented Programming [Harri-
son & Osscher 1993]).
4 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

5. The Development Process

Variabilit
A simple example is debug information. Almost any large software
product generates debug information when tested. However, since this
behaviour is of no interest after delivery and typically makes the product
larger and slower, this feature is disabled when the product is delivered.

Another example of crosscutting functionality is synchronization
functionality typically needed in concurrent programs. Adding such
functionality to a program typically has consequences for large parts of
the program. Consequently, it is very hard to introduce variability in for
instance the synchronization algorithms.

Currently, even the compile-time support for variability in crosscut-
ting features is poor. Consequently, there are no obvious ways to add or
bind variants of crosscutting features to a product after delivery. While,
both Aspect Oriented Programming and Subject Oriented Program-
ming in their current incarnations are implementation-time mecha-
nisms, there is no fundamental reason why similar techniques cannot be
used at run-time.

One useful application of this would be the network implementation
in the EPOC system developed by Symbian. One of the problems Sym-
bian is currently facing is that the devices using EPOC need to be able
to adapt to changes in the network. E.g. when a user is using a PDA in
his own office, it communicates with trusted equipment (e.g. the users
PC) using a fast connection (e.g. though a cable connected to the PC).
However, when the user leaves the office, he needs to communicate with
an untrusted environment (e.g. the printer at a customer) using a nar-
row bandwidth connection (e.g. infrared). The software in the PDA
needs to adapt to these changes by enhancing security settings and
changing networking behaviour (e.g. checking for new mail is not possi-
ble over infrared connections with the printer). The feature of adapting
to different network environments crosscuts many components in a
PDA and is triggered by a single event (i.e. the changing of the network
connection).

5. The Development Process

As pointed out in [Bosch 2000], opportunistic reuse is not very effec-
tive. Therefore, developing and using a SPL has consequences for the
development process. In this section we look at both the SPL develop-
ment process and the SPL instantiation process. In addition we high-
y in Software Systems: the Key to Software Reuse - Licentiate thesis 35

Introduction

3

light an essential step in the process of developing a SPL: variability
planning.

Traditionally the development process is decomposed into the phases
of the waterfall model:

� Requirement Specification

� Architecture Design

� Detailed Design

� Implementation

� Testing

� Deployment & Maintenance

These phases are repeated iteratively for object oriented systems. This
model is often used in organizations to manage the development pro-
cess. However, since the model only applies to a single software product,
some refinements are necessary when we discuss frameworks and soft-
ware product lines.

5.1 SPL Development

Organizations using a software product line approach usually have sev-
eral software products under development, each with their own devel-
opment cycle. Also the development cycles tend to have some
dependencies. Often, this is reflected in the organizational structure. In
some cases we encountered, it was quite common to have a department
for each product and one department for building the product line. In
these kind of organizations, the SPL department is responsible for
evolving the product line and uses the input of its users (the product
development departments) to do so.

Although other types of organizations exist ([Bosch 2000] discusses
four organization forms), this teaches us an important lesson: SPL
developers are typically other people than developers of SPL based prod-
ucts. Typically, a SPL is constantly under development. A good SPL will
last at least a couple of years and during this time it is tweaked and
extended to meet the constant flow of new requirements. The longer
the SPL has been in use the more reluctant an organization will be to
replace it (due to an ever growing investment in the existing code base).
6 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

5. The Development Process

Variabilit
SPL based products on the other hand are typically developed as a
project. When development is started, a date for the release is set. Typi-
cally, these projects take a snapshot of the SPL as a starting point for
development. Because of this, the architecture and detailed design
phases can be shortened since most of the design is derived from the
SPL rather than created from scratch.

In [Bosch 2000], a method for developing software architectures is
discussed. In this iterative method, an initial design of the system is cre-
ated based on purely the functional requirements. In subsequent itera-
tions the design is adapted based on the input of architecture assessment
methods that verify whether the design meets the quality requirements.
A number of architecture transformations are suggested that may help
meeting certain types of quality requirements.

The underlying theory of this method is that the optimal architec-
ture is a compromise between different quality requirements. Optimiz-
ing for all quality requirements is simply not possible since there are
conflicting quality requirements (e.g. performance and flexibility).

Though, ideally, quantitative assessment techniques are used to do
the assessments, qualitative assessment techniques remain an important
tool in assessing a software architecture, however. This is especially true
early in the development when little quantifiable assets are available. As
pointed out in [Paper III], important design decisions are made in this
early stage of development, thus increasing the importance of qualita-
tive assessment techniques.

5.2 Variability Identification & Planning in SPLs

An important activity in SPL development is identifying variability
points. As discussed earlier, variability points are a way of delaying
design decisions. Delaying design decisions is necessary for all those
design decisions that are likely to be product specific. Not identifying a
variability point when a SPL is created may mean that at a later stage the
SPL may require considerable maintenance activity (triggering more
maintenance in already deployed products to remain compatible with
the SPL) to incorporate the needed variability. There are a number of
problems that may arise from this situation:
y in Software Systems: the Key to Software Reuse - Licentiate thesis 37

Introduction

3

� Broken compatibility. Products developed before incorporating
the variability will not be compatible with the revised SPL.
Adapting them may not be cost effective.

� Forked development. When adapting old products to the new
SPL is not an option, developers may be faced with a double
maintenance effort. The old products will still need to be sup-
ported and consequently the old, now obsolete version of the SPL
will need maintenance also.

� Exclusion of products. If the required effort for incorporating
the needed variability in a SPL is too much, the products that
require this variability will either have to be developed without
the SPL or not may not be developed at all.

Variability can be identified by analyzing requirements (both func-
tional and quality requirements) for products that will be developed
with the future SPL. Whenever there are conflicting or mutual exclusive
requirements between two sets of product requirement sets, the SPL will
have to be flexible enough to implement both products, preferably in a
convenient way.

We have found that features are a suitable way of expressing variabil-
ity. Whereas requirements are independent of implementation details
[Zave & Jackson 1997][Paper IV], features can be seen as groupings of
requirements that are implementation specific. A feature bundles both
functional and quality requirements that are put on a product. The
combination is specific to the implementation, unlike the individual
requirements.

In [Bosch 2000], the following definition of a feature is used: “a logi-
cal unit of behaviour that is specified by a set of functional and quality
requirements“. The point of view taken in this book is that a feature is a
construct used to group related requirements (“there should at least be an
order of magnitude difference between the number of features and the num-
ber of requirements for a product line member“). In other words, features
are a way to abstract from requirements. It is important to realize there
is a n-to-n relation between features and requirements. This means that
a particular requirement (e.g. a performance requirement) may apply to
several features in the feature set and that a particular feature may meet
more than one requirement. Also, in [Gibson 1997], features are identi-
fied as “units of incrementation as systems evolve“.
8 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

5. The Development Process

Variabilit
In [Paper IV] we propose a notation for expressing variability in
terms of features. The notation supports the notion of optional features,
mutual exclusive variants of a feature, non exclusive variants of a feature
and external features. In addition the notion of binding time (as dis-
cussed earlier) is incorporated in the notation. This notation is very suit-
able for a variability analysis of the requirements.

After the variability points have been identified, mechanisms need to
be chosen for implementing them. When doing so, it is a good idea to
consider what was discussed in the previous sections about frameworks
and SPLs as well as the mechanisms outlined in [Paper IV].

5.3 SPL Instantiation Process

SPL instantiation is the process of using and adapting a SPL in order to
get a working product that meets product specific requirements. Typi-
cally the following tasks are performed in this process:

� Identifying product specific requirements

� Selecting reusable components from SPL

� Selecting components from the SPL that are reusable after some
adaptation

� Binding and adding variants for the variability points in the
selected components.

� Implementing new components for both the SPL and the product
instantiation

� Integrating the resulting components and performing product
specific development

� Maintaining the product: generally three types of maintenance are
distinguished: perfective maintenance (e.g. optimizing the imple-
mentation), adaptive maintenance (e.g. adapting to changes in
the SPL, adding features), corrective maintenance (e.g. fixing
bugs).

Depending on budgets, maturity of the product line and type of
organization, attention can be given to improving the SPL when imple-
menting the product specific features. However, often, the short term
y in Software Systems: the Key to Software Reuse - Licentiate thesis 39

Introduction

4

goal of delivering a product, conflicts with the long term goal of
improving the SPL.

6. Contributions of the papers

In [Paper I], a blackbox framework for developing finite state machines
(FSM) is presented. The main contribution in this paper is that it dem-
onstrates how object oriented programming can be used to achieve run
time variability. It also makes clear that structure, interaction and behav-
iour need to be separated explicitly to achieve the kind of flexibility we
required from the FSM implementation.

The experience we gathered from [Paper I] formed the basis for the
conceptual model presented in [Paper II]. A second contribution of
[Paper II] is the set of guidelines. These guidelines help a developer
structure a framework in such a way that it conforms to the conceptual
model.

After we had conceived our guidelines and constructed the guide-
lines in [Paper II], we started thinking about how to verify whether a
software system conforms to the conceptual model. This resulted in
[Paper III], where we present a method for automating architecture
assessment. The method is based on the notion of qualitative assessment
and focusses on assessments early in the development process. The pro-
totype we created uses the conceptual model to judge the quality of soft-
ware architectures.

In [Paper IV], we focus on the concept of variability. The main con-
tribution of this paper is that it defines and introduces terminology for
variability related issues. The concept of a variability point is introduced
and a number of attributes (open/closed, implicit/designed/bound,
open/closed) is associated with it. Using this terminology, we were able
to identify three recurring variability patterns that were used to catego-
rize a number of variability mechanisms.

As mentioned in the beginning of this introduction, we have identi-
fied variability as the connecting concept between the papers. Looking
back, we can say that [Paper I] is about introducing late variability in a
OO framework for FSMs. In [Paper II] the guidelines and conceptual
model are aimed at making frameworks more flexible (i.e. improving
the variability). The prototype in [Paper III] does not include the term
variability, but it does reflect our ideas of what makes an architecture
0 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

7. Future Research

Variabilit
flexible and easy to maintain and those ideas are closely related to vari-
ability. Finally, [Paper IV] is about the notion of variability in general.

7. Future Research

We intend to focus on the technical side of late variability in our future
research. Our latest article, “On the notion of variability in software
product lines“ provides a good introduction to this topic. There are two
things that become apparent after reading this work:

� There is a need for variability techniques that allow for late bind-
ing of variability since that allows for greater customization just
before or even after delivery of a product. The longer the variabil-
ity can be delayed, the more general the software product. A soft-
ware product becomes more reusable if it can be customized
more.

� Existing techniques do not facilitate this type of variability in a
straightforward way. Modern systems use dynamic linking and
run time configuration to delay variability. Usually some sort of
plugin mechanism is used. This works well for large components
or for providing plugins. However, there are some drawbacks for
smaller components. There are things like version management
and configuration that need to be taken into account. Also it is
very hard to introduce new crosscutting features without replac-
ing all the components.

The guidelines, outlined in [Paper II], are, in our opinion, essential
for facilitating late binding in a software architecture. They stress the
decomposition into small components and the use of role based inter-
faces. This allows developers to make arbitrary compositions of compo-
nents at a very late time. If scripting languages are used, the
composition can be delayed until run-time. However, these guidelines
are tailored for existing techniques that have been around for quite some
time now.

In [Paper IV], we touched upon some novel variability techniques
such as Aspect Oriented Programming [Kiczalez et al. 1997]. This
approach and others such as Subject Oriented Programming [Harrison
& Osscher 1993] or Intentional Programming [Aitken et al.
1998][Simonyi 1999], make it clear that the existing OO paradigm can
y in Software Systems: the Key to Software Reuse - Licentiate thesis 41

Introduction

4

be improved upon significantly. These improvements may be used to
better support variability.

The notion that underlies these novel approaches is that the OO par-
adigm does not make everything explicit. In [Paper I], for instance, we
had significant trouble separating structure, interactions and behaviour.
The state pattern, commonly used to implement state machines, mixes
these three. Separation of structure, interaction and behaviour is impor-
tant if variation is needed from either (as is the case in finite state
machines). Our requirement of run-time variability implied that we
needed run-time representations for all the entities we wished to vary.

We intend to research how these innovations in programming can be
used to address variability issues in SPLs. In this thesis we already iden-
tified that existing mechanisms for run-time variability, such as compo-
nent configuration, dynamic binding and interpretation do not address
certain types of variability (see Section 4.3).

8. Conclusion

In the beginning of this thesis we identified variability as the key to
reuse of software. Reusable software distinguishes itself from normal
software by supporting various kinds of variability. In the first two sec-
tions of this introduction we discussed both frameworks and SPLs. We
argued that the usage of roles can improve flexibility in OO Frame-
works.

In Section 3, a conceptual model for reasoning about variability was
presented. We have pointed out that introducing variability is the same
as delaying a design decision. We have introduced the notion of a vari-
ability point and provided terminology for reasoning about variability
points.

In Section 4, we discussed the merits of late variability techniques.
We discussed three techniques and evaluated the design of the FSM
Framework. In addition we identified two types of variability that are
poorly supported at the moment. Finally, in Section 5, we outlined the
influence of the SPL approach on the development process and pre-
sented a method for identifying and planning variability in SPLs.
2 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

9. References

Variabilit
9. References

[Paper I] J. van Gurp, J. Bosch, “On the Implementation of Finite
State Machines“, in Proceedings of the 3rd Annual IASTED
International Conference Software Engineering and Applications,
IASTED/Acta Press, Anaheim, CA, pp. 172-178, 1999.

[Paper II] J. van Gurp, J. Bosch, “Design, implementation and
evolution of object oriented frameworks: concepts & guidelines”,
Accepted for publication in Software Practice & Experience.

[Paper III] J. van Gurp, J. Bosch, “SAABNet: Managing Qualitative
Knowledge in Software Architecture Assessment“, Proceedings of
the 7th IEEE conference on the Engineering of Computer Based
Systems, pp. 45-53, April 2000.

[Paper IV] M. Svahnberg, J van Gurp, J. Bosch, “On the notion of
variability in software product lines“, Submitted, June 2000.

[Aitken et al. 1998] W. Aitken, B. Dickens, P. Kwiatkowski, O. de
Moor, D. Richter, C. Simonyi, “Transformation in Intentional
Programming“, Proceedings of the 5th international conference on
Software Reuse, IEEE Computer Society Press, 99 114-123, 1998.

[Beveridge 1998] J. Beveridge, “Using Mixin Interfaces to Define
Classes “, Visual C++ Developers Journal, August 1998.

[Bosch et al. 1999] J. Bosch, P. molin, M. Matsson, P.O. Bengtsson,
“Object Oriented Frameworks - Problems & Experiences“, in
“Building Application Frameworks”, M.E. Fayad, D.C. Schmidt,
R.E. Johnson (editors), Wiley & Sons, 1999.

[Bosch 1999] J. Bosch, “Evolution and Composition of Reusable
Assets in Product-Line Architectures: A Case Study”, Proceedings of
the First Working IFIP Conference on Software Architecture,
February 1999

[Bosch 2000] J. Bosch, Design & Use of Software Architectures -
Adopting and Evolving a Product Line Approach, Addison-Wesley,
ISBN 020167494-7, 2000.

[Bushmann et al. 1996] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, M. Stal, Pattern-Oriented Software Architecture: A
System of Patterns, John Wiley & Sons, 1996.

[Chidamber & Kemerer 1994] S. R. Chidamber, C. F Kemerer, “A
Metrics Suite for Object Oriented Design“, IEEE Transactions on
Software Engineering, Vol. 20 no. 6, pp. 476-493, June 1994.

[Daly et al. 1995] J. Daly, A. Brooks, J. Miller, M. Roper, M. Wood,
“The effect of inheritance on the maintainability of object oriented
software: an empirical study“, Proceedings of the international
y in Software Systems: the Key to Software Reuse - Licentiate thesis 43

Introduction

4

conference on software maintenance, pp. 20-29, IEEE Society Press,
Los Alamitos, CA USA, 1995.

[Demyer et al. 1997] Demeyer S, Meijler TD, Nierstrasz O, Steyaert
P. Design Guidelines For Tailorable Frameworks. In
Communications of the ACM. October 1997; 40(10):60-64.

[Gamma et al. 1995] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Publishing Co., Reading MA, 1995.

[Gibson 1997] J. P. Gibson,”Feature Requirements Models:
Understanding Interactions”, in Feature Interactions In
Telecommunications IV, Montreal, Canada, June 1997, IOS Press.

[Van Gurp 1999] J. van Gurp, “Design Principles for Reusable,
Composable and Extensible Frameworks“, Master Thesis,
University of Karlskrona/Ronneby, Sweden 1999.

[Van Gurp & Bosch 1999b] J. van Gurp, J. Bosch, “Using Bayesian
Belief Networks in Assessing Software Designs”, Proceedings of ICT
Architectures '99 , Amsterdam, November 1999.

[Van Gurp & Bosch 2000a] J. van Gurp, J. Bosch, “Automating
Software Architecture Assessment”, Proceedings of NWPER 2000,
Lillehammer, Norway, May 2000.

[Harrison & Osscher 1993] W. Harrison, H. Ossher, “Subject-
Oriented Programming (A Critique of Pure Objects)“, Proceedings
of OOPSLA ‘93, pp 411-428.

[Johnson & Foote 1988] R. Johnson, B. Foote, “Designing Reusable
Classes“, Journal of Object Oriented Programming, June/July 1988,
pp. 22-30.

[Kiczalez et al. 1997] G. Kiczalez, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J-M. Loingtier, J. Irwin, “Aspect Oriented
Programming“, Proceedings of ECOOP 1997, pp. 220-242.

[Kristensen 1997] B. B. Kristensen, “Subject Composition by Roles“,
Proceedings of the 4th International Conference on Object-Oriented
Information Systems (OOIS'97), Brisbane, Australia, 1997

[Lieberherr 1989] K.J. Lieberherr, I.M. Holland, “Assuring Good style
for Object Oriented Programs”, IEEE Software, September 1989,
pp. 38- 48.

[Lieberman 1986] H. Lieberman, “Using Prototypical Objects to
Implement Shared Behavior in Object-Oriented Systems”, First
Conference on Object-Oriented Programming Languages, Systems,
and Applications (OOPSLA 86), ACM SigCHI, Portland, Oregon,
September 1986. Also in Object-Oriented Computing, Gerald
Peterson, ed., IEEE Computer Society Press, 1987.
4 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

9. References

Variabilit
[McCabe 1976] T.J. McCabe, “A Complexity Measure”, IEEE
Transactions of Software Engineering, 1976; vol 2, pp 308-320.

[McIlroy 1969] M. D, McIlroy, “Mass produced software components”,
in P. Naur and B. Randell, editors, Software Engineering. Report
on a Conference Sponsored by the NATO Science Committee,
Garmisch, Germany, 7th to 11th October, 1968, pages 138 150.
NATO Science Committee, 1969.

[Microsoft 2000] Microsoft, “C# Introduction and Overview“, http://
msdn.microsoft.com/vstudio/nextgen/technology/csharpintro.asp,
last checked August 2000.

[Mozilla 2000] Mozilla website, http://www.mozilla.org, last checked
August 2000.

[Ousterhout 1998] J.K. Ousterhout, “Scripting: Higher Level
Programming for the 21st Century”, in IEEE Computer, May
1998.

[Parsons et al. 1999] D. Parsons, A. Rashid, A. Speck, A. Telea, “A
Framework for Object Oriented Frameworks Design“, Proceedings
of TOOLS ‘99, pp. 141-151, IEEE Society, 1999.

[Pasetti & Pree 2000] A. Pasetti, W. Pree, "Two Novel Concepts for
Systematic Product Line Development", Proceedings of the First
Software Product Line Conference, Aug 2000, Denver, Colorado
(USA).

[Pree 1994] Pree W. Design Patterns for Object-Oriented Software
Development, Addison-Wesley, Reading Mass, 1994.

[Pree & Koskimies 1999] W. Pree, K. Koskimies, “Rearchitecting
Legacy Systems - Concepts and Case Study“, First working IFIP
Conference on Software Architecture (WICSA’99), pp. 51-61, 1999.

[Reenskaug 1996] T. Reenskaug, Working with Objects, Manning
publications, 1996.

[Riehle & Gross 1998] D. Riehle, T. Gross, “Role Model Based
Framework Design and Integration“, Proceedings of OOPSLA ‘98,
pp 117-133, 1998.

[Roberts & Johnson 1998] D. Roberts, R. Johnson, "Patterns for
Evolving Frameworks", in Pattern Languages of Program Design 3
p471-p486, Addison-Wesley, 1998.

[Simonyi 1999] Charles Simonyi, “The future is intentional“, IEEE
Computer, May 1999.

[d’Souza & Wills 1999] D. d’Souza, A.C. Wills, “Composing
Modeling Frameworks in Catalysis“, in “Building Application
Frameworks“, M.E. Fayad, D.C. schmidt, R.E. Johnson (editors),
Wiley & Sons, 1999.
y in Software Systems: the Key to Software Reuse - Licentiate thesis 45

Introduction

4

[Szyperski 1997] C. Szyperski, “Component Software - Beyond Object
Oriented Programming”, Addison-Wesley 1997.

[Zave & Jackson 1997] P. Zave, M. Jackson, “Four Dark Corners of
Requirements Engineering“, ACM Transactions on Software
Engineering and Methodology, Vol. 6. No. 1, Januari 1997, p. 1-30.
6 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

I

PAPER I

On the Implementation of Finite State Machines

Jilles van Gurp, Jan Bosch

IASTED International Conference Software Engineering and Applications

October, 1999
Variabilit
Abstract. Finite State Machines (FSM) provide a powerful way to describe
dynamic behavior of systems and components. However, the implementation
of FSMs in OO languages, often suffers from maintenance problems. The
State pattern described in [1] that is commonly used to implement FSMs in
OO languages, also suffers from these problems. To address this issue we
present an alternative approach. In addition to that a blackbox framework
is presented that implements this approach. In addition to that a tool is
presented that automates the configuration of our framework. The tool
effectively enables developers to create FSMs from a specification.

1. Introduction

Finite State Machines (FSM) are used to describe reactive systems [2]. A
common example of such systems are communication protocols. FSMs
are also used in OO modeling methods such as UML and OMT. Over
the past few years, the need for executable specifications has increased
[3]. The traditional way of implementing FSMs does not match the
FSM paradigm very much, however, thus making executable specifica-
tions very hard. In this paper the following definition of a State machine
will be used: A State machine consists of states, events, transitions and
actions. Each State has a (possibly empty) State-entry and a State exit
y in Software Systens: the Key to Software Reuse - Licentiate thesis 45

On the Implementation of Finite State Machines

4

action that is executed upon State entry or State exit respectively. A tran-
sition has a source and a target State and is performed when the State
machine is in the source State and the event associated with the transi-
tion occurs. For a transition t for event e between State A and State B,
executing transition t (assuming the FSM is in State A and e occurred)
would mean: (1) execute the exit action of State A, (2) execute the
action associated with t, (3) execute the entry action of State B and (4)
set State B as the current state.

Mostly the State pattern [1] or a variant of this pattern is used to
implement FSMs in OO languages like Java and C++. The State pattern
has its limitations when it comes to maintenance, though. Also there are
two other issues (FSM instantiation and data management) that have to
be dealt with. In this paper we examine these problems and provide a
solution that addresses these issues. Also we present a framework that
implements this solution and a tool that allows developers to generate a
FSM from a specification.

As a running example we will use a simple FSM called WrapAText
(see figure 1). The purpose of this FSM is to insert a newline in a text
after each 80 characters. To do so, it has three states to represent a line
of text. In the Empty State, the FSM waits for characters to be put into
the FSM. Once a character is received, it moves to the Collect State
where it waits for more characters. If 80 characters have been received it
moves to the Full State. The line is printed on the standard output and
the FSM moves back to the Empty State for the next line of text. The
remainder of this paper is organized as follows: In section 2. issues with
the State pattern are discussed. In section 3., a solution is described for
these issues and our framework, that implements the solution, is pre-

Empty Collect

Full

Figure 1. WrapAText

feedChar

feedChar

EOL (end of line)release
6 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

2. The state pattern

Variabilit
sented. A tool for configuring our framework is presented in section 4..
In section 5. assessments are made about our framework. Related work
is presented in section 6.. And we conclude our paper in section 7..

2. The state pattern

In procedural languages, FSMs are usually implemented using case
statements. Due to maintenance issues with using case statements, how-
ever, we will not consider this type of implementation. By using object
orientation, the use of case-statements can be avoided through the use
of dynamic binding. Usually some form of the State pattern is used to
model a finite State machine (FSM) [1]. Each time case statements are
used in a procedural language, the State pattern can be used to solve the
same problem in an OO language. Each case becomes a State class and
the correct case is selected by looking at the current state-object. Each
State is represented as a separate class. All those State-classes inherit
from a State-class. In figure 3 this situation is shown for the WrapAText
example. The Context offers an API that has a method for each event in
the FSM. Instead of implementing the method the Context delegates
the method to a State class. For each State a subclass of this State class
exists. The context also holds references to variables that need to be
shared among the different State objects. At run-time Context objects
have a reference to the current State (an instance of a State subclass). In
the WrapAText example, the default State is Empty so when the system
is started Context will refer to an object of the class EmptyState. The
feedChar event is delivered to the State machine by calling a method
called feedChar on the context. The context delegates this call to its cur-
rent State object (EmptyState). The feedChar method in this object
implements the State transition from Empty to Collect. When it is exe-
cuted it changes the current State to CollectState in the Context.

We have studied ways of implementing FSMs in OO languages and
identified three issues that we believe should be addressed: (1) Evolution
of FSM implementations. We found that the structure of a FSM tends
to change over time and that implementing those changes is difficult
using existing FSM implementation methods. (2) FSM instantiation.
Often a FSM is used more than once in a system. To save resources,
techniques can be applied to prevent unnecessary duplication of objects.
(3) Data management. Transitions have side effects (actions) that
y in Software Systens: the Key to Software Reuse - Licentiate thesis 47

On the Implementation of Finite State Machines

4

change data in the system. This data has to be available for all the transi-
tions in the FSM. In other words the variables that store the data have
to be global. This poses maintenance issues.

2.1 FSM Evolution

Like all software, Finite State Machine implementations are subject to
change. In this section, we discuss several changes for a FSM and the
impact that these changes have on the State pattern. Typical changes
may be adding or removing states, events or transitions and changing
the behavior (i.e. the actions). Ideally an implementation of a FSM
should make it very easy to incorporate these modifications. Unfortu-
nately, this is not the case for the State pattern. To illustrate FSM-evolu-
tion we changed our running example in the following way: we added a
new State called Checking; we changed the transition from Collect to
Collect in a transition from Collect to Checking: we added a transition
from Checking to Collect. This also introduced a new event: notFull;
we changed the transition from Collect to Full in a transition from
Checking to Full. The resulting FSM is shown in figure 2.

The implementation of WrapAText using the State pattern is illus-
trated in figure 3. To do the changes mentioned above the following
steps are necessary: First a new subclass of WrapATextState needs to be
created for the new State (CheckingState). The new CheckingState class
inherits all the event methods from its superclass. Next the CollectState’s
feedChar method needs to be changed to set the State to CheckingState
after it finishes. To change the source State of the transition between
Collect and Full, the contents of the EOL (end of line) method in Col-
lectState needs to be moved to the EOL method in CheckingState. To
create the new transition from Checking to Collect a new method needs
to be added to WrapATextState: notFull(). The new method is automat-

Figure 2. The changed WrapAText FSM

Empty Collect

Full

feedChar

EOL

release

Checking

notFull
feedChar
8 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

2. The state pattern

Variabilit
ically inherited by all subclasses. To let the method perform the transi-
tion its behavior will have to be overruled in the CheckingState class.
The new method also has to be added to the Context class (making sure
it delegates to the current state).

Code for a transition can be scattered vertically in the class hierarchy.
This makes maintenance of transitions difficult since multiple classes
are affected by the changes. Another problem is that methods need to be
edited to change the target state. Editing the source State is even more
difficult since it requires that methods are moved to another State class.
Several classes need to be edited to add an event to the FSM. First of all
the Context needs to be edited to support the new event. Second, the
State super class needs to be edited to support the new event. Finally, in
some State subclasses behavior for transitions triggered by the new event
must be added.

We believe that the main cause for these problems is that the State
pattern does not offer first-class representations for all the FSM con-
cepts. Of all FSM concepts, the only concept explicitly represented in
the State pattern is the State. The remainder of the concepts are imple-
mented as methods in the State classes (i.e. implicitly). Events are repre-
sented as method headers, output events as method bodies. Entry and
exit actions are not represented but can be represented as separate meth-
ods in the State class. The responsibility for calling these methods would
be in the context where each method that delegates to the current State
would also have to call the entry and exit methods. Since this requires
some discipline of the developer it will probably not be done correctly.

Since actions are represented as methods in State classes, they are
hard to reuse in other states. By putting states in a State class-hierarchy,
it is possible to let related states share output events by putting them in

Figure 3. The state-pattern.

+feedChar(in c : char)
+EOL()
+release()

Context

+feedChar(in c : char)
+EOL()
+release()

WrapATextState

+feedChar(in c : char)

EmptyState

+feedChar(in c : char)
+EOL()

CollectState

+release()

FullState

is in current state
y in Software Systens: the Key to Software Reuse - Licentiate thesis 49

On the Implementation of Finite State Machines

5

a common superclass. But this way, actions are still tied to the State
machine. It is very hard to use the actions in a different FSM (with dif-
ferent states). The other FSM concepts (events, transitions) are repre-
sented implicitly. Events are simulated by letting the FSM context call
methods in the current State object. Transitions are executed by letting
the involved methods change the current State after they are finished.
The disadvantage of not having explicit representations of FSM con-
cepts is that it makes translation between a FSM design and its imple-
mentation much more complex. Consequently, when the FSM design
changes it is more difficult to synchronize the implementation with the
design.

2.2 FSM Instantiation

Sometimes it is necessary to have multiple instances of the same FSM
running in a system. In the TCP protocol, for example, up to approxi-
mately 30000 connections can exist on one system (one for each port).
Each of these connections has to be represented by its own FSM. The
structure of the FSM is exactly the same for all those connections. The
only unique parts for each FSM instance are the current State of each
connection and the value of the variables in the context of the connec-
tion’s FSM. It would be inefficient to just clone the entire State
machine, each time a connection is opened. The number of objects
would explode.

Also, a system where the FSM is duplicated does not perform very
well because object creation is an expensive operation. In the TCP
example, creating a connection requires the creation of approximately
25 objects (states, transitions), each with their own constructor. To solve
this problem a mechanism is needed to use FSM’s without duplicating
all the State objects. The State pattern does not support this directly.
This feature can be added, however, by combining the State pattern
with the Flyweight pattern [1]. The Flyweight pattern allows objects to
be shared between multiple contexts. This prevents that these objects
have to be created more than once. To do this, all context specific data
has to be removed from the shared objects’ classes. We will use the term
FSM-instantiation for the process of creating a context for a FSM. As a
consequence, a context can also be called a FSM instance. Multiple
instances of a FSM can exist in a system.
0 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

3. An Alternative

Variabilit
2.3 Managing Data in a FSM

Another issue in the implementation of FSMs is data storage. The
actions in the transitions of a State machine perform operations on data
in the system. These operations change and add variables in the context.
If the system has to support FSM instantiation, the data has to be sepa-
rated from the transitions, since this allows each instance to have its own
data but share the transition objects with the other instances.

The natural place to store data in the State pattern would either be a
State class or the context. The disadvantage of storing data in the State
objects is that the data is only accessible if the State is also the current
state. In other words: after a State change the data becomes inaccessible
until the State is set as the current State again. Also this requires that
each instance has its own State objects. Storing the data in the Context
class solves both problems. Effectively the only class that needs to be
instantiated is the Context class. If this solution is used, all data is stored
in class variables of the Context class. Storing data in a central place
generally is not a good idea in OO programming. Yet, it is the only way
to make sure all transitions in the FSM have access to the same data. So
this approach has two disadvantages: It enforces the central storage of
data and to create a FSM a subclass of Context needs to be created (to
add all the variables). This makes maintenance hard. In addition, it
makes reuse hard, because the methods in State classes are dependent on
the Context class and cannot be reused with a different Context class.

3. An Alternative

Several causes can be found for the problems with the State pattern: (1)
The State pattern does not provide explicit representations (most are
integrated into the state classes) for all the FSM concepts. This makes
maintenance hard because it is not obvious how to translate a design
change in the FSM to the implementation and a design-change may
result in multiple implementation elements being edited. Also this
makes reuse of behavior outside the FSM hard (2) The State pattern is
not blackbox. Building a FSM requires developers to extend classes
rather than to configure them. To do so, code needs to be edited and
classes need to be extended rather than that the FSM is composed from
existing components. (3) The inheritance hierarchy for the State classes
complicates things further because transitions (and events) can be scat-
y in Software Systens: the Key to Software Reuse - Licentiate thesis 51

On the Implementation of Finite State Machines

5

tered throughout the hierarchy. Most of these causes seem to point at
the lack of structure in the State pattern (structure that exists at the
design level). This lack of structures causes developers to put things
together in one method or class that should rather be implemented sep-
arately. The solution we will present in this section will address the
problems by providing more structure at the implementation level.

3.1 Conceptual Design

To address the issues mentioned in above we modeled the FSM con-
cepts as objects. The implication of this is that most of the objects in the
design must be sharable between FSM instances (to allow for FSM
instantiation). Moreover, those objects cannot store any context specific
data. An additional goal for the design was to allow blackbox configura-

tion1. The rationale behind this was that it should be possible to sepa-
rate a FSM’s structure from its behavior (i.e. transition actions or State
entry/exit actions). In figure 4 the conceptual model of our FSM frame-
work is presented. The rounded boxes represent the different compo-
nents in the framework. The solid arrows indicate association relations
between the components and the dashed arrows indicate how the com-
ponents use each other.

1. Blackbox frameworks provide components in addition to the white box frame-
work (abstract classes + interfaces). Components provide a convenient way to use
the framework. Relations between blackbox components can be established
dynamically.

aContext

aState
aStateaTransition

anEvent

anAction

sends

triggers

has a
is associated with

has a

has a

has a executes

sets state/uses context

anEvent

Figure 4. The FSM Framework’s components.
2 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

3. An Alternative

Variabilit
Similar to the State pattern, there is a Context component that has a
reference to the current state. The latter is represented as a State object
rather than a State subclass in the State pattern. The key concept in the
design is a transition. The transition object has a reference to the target
State and an Action object. For the latter, the Command pattern [1] is
used. This makes it possible to reuse actions in multiple places in the
framework. A State is associated with a set of transitions. The FSM
responds to events that are sent to the context. The context passes the
events on to the current state. The State maintains a list of transition,
event pairs. When an event is received the corresponding transition is
located and then executed (triggered). The transition object simply exe-
cutes its associated action and then sets the target State as the current
State in the context.

To enable FSM instantiation in an efficient way, no other objects
than the context may be duplicated. All the State objects, event objects,
transition objects and action objects are created only once. The implica-
tion of this is that none of those objects can store any context specific
data (because they are shared among multiple contexts). When, how-
ever, an action object is executed (usually as the result of a transition
being triggered), context specific data may be needed. The only object
that can provide access to this data is the context. Since all events are
dispatched to the current State by the context, a reference to the context
can be passed along. The State in its turn, passes this reference to the
transition that is triggered. The transition finally gives the reference to
the action object. This way the Action object can have access to context
specific data without being context specific itself.

A special mechanism is used to store and retrieve data from the con-
text. Normally, the context class would have to be sub-classed to contain
the variables needed by the actions in the FSM. This effectively ties
those actions to the context class, which prevents reuse of those actions
in other FSMs since this makes the context subclasses FSM specific. To
resolve this issue we turned the context into an object repository.
Actions can put and get variables in the context. Actions can share vari-
ables by referring to them under the same name. This way the variables
do not have to be part of the context class. Initialization of the variables
can be handled by a special action object that is executed when a new
context object is created. Action objects can also be used to model State
entry and exit actions.
y in Software Systens: the Key to Software Reuse - Licentiate thesis 53

On the Implementation of Finite State Machines

5

3.2 An Implementation

We have implemented the design described in the previous section as
a framework [4] in Java. We have used the framework to implement the
WrapAText example and to perform performance assessments (also see
section 5.). The core framework consists of only four classes and one
interface. In figure 1, a class diagram is shown for the framework’s core
classes.We’ll shortly describe the classes here: (1) State. Each State has a
name that can be set as a property in this class. State also provides a
method to associate events with transitions. In addition to that, it pro-
vides a dispatch method to trigger transitions for incoming events. (2)
FSMContext. This class maintains a reference to the current State and
functions as an object repository for actions. Whenever a new FSM-
Context object is created (FSM instantiation), the init action is exe-
cuted. This action can be used to pre-define variables for the actions in
the FSM. (3) Transition. The execute method in is called by a State
when an event is dispatched that triggers the transition. (4) FSM. This
class functions as a central point of access to the FSM. It provides meth-
ods to add states, events and transitions. It also provides a method to
instantiate the FSM (resulting in the creation and initialization of a new
FSMContext object). (5) FSMAction. This interface has to be imple-
mented by all actions in the FSM. It functions as an implementation of
the Command pattern as described in [1].

4. A Configuration Tool

In [5] a typical evolution path of frameworks is described. According to
this paper, frameworks start as whitebox frameworks (just abstract
classes and interfaces). Gradually components are added and the frame-
work evolves into a black box framework. One of the later steps in this
evolution path is the creation of configuration tools. Our FSM Frame-
work consists of components thus creating the possibility of making
such a configuration tool. A tool significantly eases the use of our frame-
work. since developers only have to work with the tool instead of com-
plex source code. As a proof of concept, we have built a tool that takes a
FSM specification in the form of an XML document [6] as an input.
4 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

4. A Configuration Tool

Variability in Software Systens: the Key to Software Reuse - Licentiate thesis 55

Fi
gu

re
 1

.
C

la
ss

di
ag

ra
m

 fo
r

th
e

FS
M

 F
ra

m
ew

or
k

-t
ar

ge
t:

S
ta

te
-a

ct
io

n
:F

S
M

A
ct

io
n

Tr
an

si
ti

on

+c
re

at
eF

S
M

In
st

an
ce

()
:F

S
M

C
on

te
xt

F
S

M

+
di

sp
at

ch
(in

ev
en

tN
am

e
:S

tr
in

g,
in

o
:O

bj
ec

t)
+

ge
t(

in
na

m
e

:S
tr

in
g)

:O
bj

ec
t

+
pu

t(
in

na
m

e
:S

tr
in

g,
in

o
:O

bj
ec

t)

-c
ur

re
nt

S
ta

te
:S

ta
te

-in
it

:F
S

M
A

ct
io

nF
S

M
C

o
n

te
xt

+d
is

pa
tc

h(
in

fs
m

c
:F

S
M

C
on

te
xt

,i
n

ev
en

tN
am

e
:S

tr
in

g,
in

o
:O

bj
ec

t)
+a

dd
T

ra
ns

iti
on

(in
t:

T
ra

ns
iti

on
,i

n
ev

en
tN

am
e

:S
tr

in
g)

-e
nt

ry
A

ct
io

n
:F

S
M

A
ct

io
n

-e
xi

tA
ct

io
n

:F
S

M
A

ct
io

n
-n

am
e

:S
tr

in
g

S
ta

te

+e
xe

cu
te

(in
c

:F
S

M
C

on
te

xt
,i

n
o

:O
bj

ec
t)

F
S

M
A

ct
io

n
-<

no
na

m
e>

1

-e
xe

cu
te

s *

-in
it

ac
tio

n
1

-e
xe

cu
te

s
up

on
fs

m
in

st
an

tia
tio

n
*

-h
as

1

-c
ur

re
nt

S
ta

te *

-e
nt

ry
&

ex
it

ac
tio

n
*

-e
xe

cu
te

s *

-t
o

*

-t
ar

ge
t

*

-c
re

at
es

1

-a
nI

ns
ta

nc
e

*

On the Implementation of Finite State Machines

5

4.1 FSMs in XML

In figure 5 an example of an XML file is given that can be used to create
a FSM. In this file the WrapAText FSM in figure 1 is specified. A prob-
lem in specifying FSMs using XML is that FSMActions cannot be mod-
eled this way. The FSMAction interface is the only whitebox element in
our framework and as such is not suitable for configuration by a tool.
To resolve this issue we developed a mechanism where FSMAction com-
ponents are instantiated, configured and saved to a file using serializa-
tion. The saved files are referred to from the XML file as .ser files. When
the framework is configured the .ser files are deserialized and plugged
into the FSM framework. Alternatively, we could have used the
dynamic class-loading feature of Java. This would, however, prevent the
configuration of any parameters the actions may contain.

4.2 Configuring and Instantiating

The FSMGenerator, as our tool is called, parses a document like the
example in figure 5. After the document is parsed, the parse tree can be

<?xml version="1.0"?>
<fsm firststate="Empty" initaction="initAction.ser">
<states>

<Statename="Empty"/>
<Statename="Collect" initaction="collectEntry.ser"/>
<Statename="Full" initaction="fullEntry.ser"/>

</states>
<events>

<event name="feedChar"/>
<event name="EOL"/>
<event name="release"/>

</events>
<transitions>

<transition sourcestate="Empty" targetstate="Collect"
event="feedChar" action="processChar.ser"/>

<transition sourcestate="Collect" targetstate="Collec
event="feedChar" action="processChar.ser"/>

<transition sourcestate="Collect" targetstate="Full"
event="EOL" action="skip.ser"/>

<transition sourcestate="Full" targetstate="Empty"
event="release" action="reset.ser"/>

</transitions>
</fsm>

Figure 5. WrapAText specified in XML
6 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

5. Assessment

Variabilit
accessed using the Document Object Model API that is standardized by
the World Wide Web Consortium (W3C) [7]. After it is finished the
tool returns a FSM object that contains the FSM as specified in the
XML document. The FSM object can be used to create FSM instances.
The DOM API can also be used to create XML. This feature would be
useful if a graphical tool were developed.

Describing the WrapAText FSM in XML is pretty straightforward, as
can be seen in figure 5. Most of the implementation effort is required
for implementing the FSMAction objects. Once that is done, the FSM
can be generated (at run-time) and used. Five serialized FSMAction
objects are pre-defined. Since the FSM framework allows the use of
entry and exit actions in states, they are used where appropiate. The
processChar action is used in two transitions. This is where most of the
work is done. The FSMAction uses the FSMContext to retrieve two
variables (a counter and the line of text that is presently created) that are
retrieved from the context. Also the Serializable interface is imple-
mented to indicate that this class can be serialized.

5. Assessment

In section 2., we evaluated the implementation of finite State machines
using the State pattern. This evaluation revealed a number of problems,
based on which we developed an alternative approach. In this section we
evaluate our approach with respect to maintenance and performance.

Maintenance. The same changes we applied in section 2.1 can be
applied to the implementation of WrapAText in the FSM framework.
We’ll use the implementation as described in section 4. to apply the
changes to. All of the changes are restricted to editing the XML docu-
ment since the behavior as defined in the FSMActions remains more or
less the same.To add the Checking state, we add a line to the XML file:
<State name="Checking"/>

Then we change the target State of the Collect to Collect transition
by changing the definition in the XML file. We do the same for the Col-
lect to Full transition. The new lines look like this:
<transition sourcestate="Collect"
targetstate="Checking"

event="feedChar" action="processChar.ser"/>
<transition sourcestate="Checking" targetstate="Full"

event="EOL" action="skip.ser"/>
y in Software Systens: the Key to Software Reuse - Licentiate thesis 57

On the Implementation of Finite State Machines

5

Then we add the transition from Checking to Collect:
<transition sourcestate="Checking"
targetstate="Collect"

event="notFull" action="skip.ser"/>
Finally the entry action of Collect is moved to the Checking State by

setting the initaction property in Checking and removing that property
in Collect. Changing a FSM implemented in this style does not require
any source editing (except for the XML file of course) unless new/differ-
ent behavior is needed. In that case the changes are restricted to creat-
ing/editing FSMActions.

Performance. To compare the performance of the new approach in
implementing FSMs to a traditional approach using the State pattern,
we performed a test. The performance measurements showed that the
FSM Framework was almost as fast as the State pattern for larger State
machines but there is some overhead. The more computation is per-
formed in the actions on the transitions that are executed, the smaller
the performance gap. To do the performance measurements, the Wrap-
AText FSM implementation was used. This is a very easy FSM to imple-
ment since most of the actions are quite trivial. Some global data has to
be maintained: a String to collect received characters and a counter to
count the characters. Two implementations of this FSM were created:
one using the State Pattern and one using our FSM Framework pre-
sented earlier.

Several different measurements were performed. First, we measured
the FSM as it was implemented. This measurement showed that the
program spent most of its time switching State since the actions on the
transitions are rather trivial. To make the situation more realistic loops
were inserted into the transition actions to make sure the computation
in the transitions actually took some time (more realistic) and the mea-
surements were performed again. Four different measurements (see fig-
ure 6) were done: (I) Measuring how long it takes to process 10,000,000
characters. (II) The same as (I) but now with a 100 cycle for-loop
inserted in the feedChar code. Each time a character is processed, the
loop is executed. (III) The same as (II) with a 1000 cycle loop. (IV) The
same as (II) with a 10000 cycle loop.

The loop ensures that processing a character takes some time. This
simulates a real world situation where a transition takes some time to
execute. In figure 6, a diagram our measurements is shown. Each case
was tested for both the State pattern and the FSM framework. For each
8 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

6. Related Work

Variabilit
test, the time to process the characters was measured. The bars in the
graph illustrate the relative performance difference. Not surprisingly the
performance gap decreases if the amount of time spent in the actions on
a transition increases. The numbers show that a State transition in the
FSM Framework (exclusive action) is about twice as expensive as in the
State Pattern implementation for simple transitions. The situation
becomes better if the transitions become more complex (and less trivial).
The reason for this is that the more complex the transitions are the
smaller the relative overhead of changing State is. This is illustrated by
case IV where the performance difference is only 13%.

In general one could say that the State pattern is more efficient if a
lot of small transitions take place in a FSM. The performance difference
becomes negligible if the actions on the transitions become more com-
putationally intensive. Consequently, for larger systems, the perfor-
mance difference is negligible. Moreover since this is only a toy
framework, the performance gap could be decreased further by optimiz-
ing the implementation of our framework. The main reason why State
transitions take longer to execute is that the transition object has to be
looked up in a hashtable object each time it is executed. The hashtable
object maps event names to transitions.

6. Related Work

State Machines in General. FSMs have been used as a way to model
object-oriented systems. Important work in this context is that of

0%

50%

100%

150%

200%

250%

FSM Framework 194% 193% 157% 113%

State Pattern 100% 100% 100% 100%

I II III IV

Figure 6. Performance measurements
y in Software Systens: the Key to Software Reuse - Licentiate thesis 59

On the Implementation of Finite State Machines

6

Harel’s Statecharts [2] and ObjChart [8]. ObjChart is a visual formal-
ism for modeling a system of concurrently interacting objects and the
relations between these objects. The FSMs that this formalism delivers
are too fine-grained (single classes are modeled as a FSM) to implement
using our FSM Framework. Rather our framework should be used for
more coarse-grained systems where the complex structure is captured by
a FSM and the details of the behavior of this machine are implemented
as action objects. Most of these approaches seem to focus on modeling
individual objects as FSMs rather than larger systems.

FSM Implementation. In the GoF book [1] the State pattern is intro-
duced. In [9], Dyson and Anderson elaborate on this pattern. One of
the things they add is a pattern that helps to reduce the number of
objects in situations where a FSM is instantiated more than once (essen-
tially by applying the flyweight pattern). In [10], a complex variant of
the State Pattern called MOODS is introduced. In this variant, the State
class hierarchy uses multiple inheritance to model nested states as in
Harel’s Statecharts [2]. In [11], the State pattern is used to model the
behavior of reactive components in an event centered architecture.
Interestingly it is suggested that an event dispatcher class for the State
machine can be generated automatically.

In [12] an implementation technique is presented to reuse behavior
in State machines through inheritance of other State machines. The
authors also present an implementation model that is in some ways sim-
ilar to the model presented in this paper. Our approach differs from
theirs in that it factors out behavior (in the form of actions). The
remaining FSM is more flexible (it can be changed on the fly if needed).
Our approach establishes reuse using a high level specification language
for the State machine and by using action components, that are in prin-
ciple independent of the FSM. Bosch [13] uses a different approach to
mix FSMs with the object-orientation paradigm. Rather than translat-
ing a FSM to a OO implementation a extended OO language that
incorporates states as first class entities is used. Yet another way of
implementing FSMs in an object-oriented way is presented in [14]. The
implementation modeled there resembles the State pattern but is a
slightly more explicit in defining events and transitions. It still suffers
from the problem caused by actions being integrated with the State
classes. Also data management and FSM instantiation are not dealt
with. The author also recognizes the need for a mapping between design
(a FSM) and implementation like there is for class diagrams. This need
0 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

7. Conclusion

Variabilit
is also recognized in [3], where several issues in implementing FSMs are
discussed.

Event Dispatching. Event dispatching is rudimentary in the current
version of our framework. A better approach can be found [15], where
the Reactor pattern is introduced. An important advantage of the way
events are modeled in our framework, however, is that they are blackbox
components. The Reactor pattern would require one to make subclasses
of some State class. A different approach would be to provide a number
of default events as presented in [16], where the author classifies events
in different groups.

Frameworks. A great introduction to frameworks can be found in [4].
In this thesis several issues surrounding object-oriented frameworks are
discussed. A pattern language for developing frameworks can be found
in [5]. One of the patterns that is discussed in this paper is the Black
box Framework pattern which we used while creating our framework.
Another pattern in this article, Language Tools, also applies to our con-
figuration tool.

7. Conclusion

The existing State pattern does not provide explicit representations for
all the FSM concepts. Programs that use it are complex and it cannot be
used in a blackbox way. This makes maintenance hard because it is not
obvious how to apply a design change to the implementation. Also sup-
port for FSM instantiation and data management is not present by
default. Our solution however, provides abstractions for all of the FSM
concepts. In addition to that it supports FSM instantiation and provides
a solution for data management that allows to decouple behavior from
the FSM structure. The latter leads to cross FSM, reusable behavior.

The State pattern is not blackbox and requires source code to be
written in order to apply it. Building a FSM requires the developer to
extend classes rather than to configure them. Alternatively, our FSM
Framework can be configured (with a tool if needed) in a blackbox way.
Only FSMActions need to be implemented in our framework. The
resulting FSMAction objects can be reused in other FSMs. This opens
the possibility to make a FSMAction component library. Our approach
has several advantages over implementing FSMs using the State pattern:
y in Software Systens: the Key to Software Reuse - Licentiate thesis 61

On the Implementation of Finite State Machines

6

States are no longer created by inheritance but by configuration. The
same is the case for events. Also, the context can be represented by a sin-
gle component. Inheritance is only applied where it is useful: extending
behavior. Related actions can share behavior through inheritance. Also
actions can delegate to other actions (removing the need for events sup-
porting more than one action). States, actions, events and transitions
now have explicit representations. This makes the mapping between a
FSM design and implementation more direct and consequently easier to
use. A tool could create all the event, State and context objects by sim-
ply configuring them. All that would be required from the user would
be implementing the actions. It is possible to configure FSMs in a
blackbox way. This can be automated by using a tool such as our FSM-
Generator.

There are also some disadvantages compared to the original State
pattern: The context repository object possibly causes a performance
penalty compared to directly accessing variables, since variables need to
be obtained from a repository. However a pretty efficient hashtable
implementation is used. The measurements we performed showed that
the performance gap with the State pattern decreases as the transitions
become more complicated. Also it could be difficult to keep track of
what’s going on in the context. The context is simply a large repository
of objects. All actions in the FSM read and write to those objects (and
possibly add new ones). This can, however, be solved by providing trac-
ing and debugging tools.

Future work. Our FSM framework can be extended in many ways. An
obvious extension is to add conditional transitions. Conditional transi-
tions are used to specify transitions that only occur if the trigger event
occurs and the condition holds true. Though this clearly is a powerful
concept, it is hard to implement it in a OO way. A possibility could be
to use the Command pattern again to create condition objects with a
boolean method but that would tie the conditions to the implementa-
tion thus they can’t be specified at the XML level. To solve this problem
a large number of standard conditions could be provided (in the form of
components). A next step is to extend our FSM framework to support
Statechart-like FSMs. Statecharts are normal FSMs + nesting + orthogo-
nality + broadcasting events [2]. These extensions would allow develop-
ers to specify Statecharts in our configuration tool, which then maps the
statecharts to regular FSMs automatically. The extensions require a
more complex dispatching algoritm for events. Such an extension could
2 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

8. References

Variabilit
be used to make the State diagrams in OO modeling methods such as
UML and OMT executable. Though performance is already quite
acceptable, much of our implementation of the framework can be opti-
mized. The bottlenecks seem to be the event dispatching mechanism
and the variable lookup in the context. Our current implementation
uses hashtables to implement these. By replacing the hashtable solution
with a faster implementation, a significant performance increase is
likely.

8. References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns -
Elements of Reusable Object Oriented software”, Addison Wesley, 1995.
[2] D. Harel , “Statecharts : a Visual Approach to Complex
Systems(revised)“, report CS86-02 Dep. App Math’s Weizman Inst.
Science Rehovot Israel, March 1986.
[3] F. Barbier, Henri Briand, B. Dano, S. Rideau, “The executability of
Object Oriented Finite State Machines“, Journal of Object Oriented
Programming, July/August 1998.
[4] M. Mattson, “Object-Oriented Frameworks – A Survey of
Methodological Issues”, Department of computer science, Lund
University, 1996.
[5] D. Roberts, R Johnson, "Patterns for evolving frameworks", Pattern
Languages of Program Design 3 (p471-p486), Addison-Wesley, 1998.
[6] http://www.w3c.org/XML/index.html.
[7] http://www.w3c.org/index.html.
[8] D. Gangopadhyay, Subrata Mitra, “ObjChart: Tangible
Specification of Reactive Object Behavior“, Proceedings of ECOOP ‘93,
p432-457 July 1993.
[9] P. Dyson, B. Anderson, “State Patterns“, Pattern Languages of
Programming Design 3, edited by Martin/Riehle/Buschmann Addison
Wesley 1998
[10] A. Ran, “MOODS: Models for Object-Oriented Design of State“,
Pattern Languages of Program Design 2, edited by Vlissides/Coplien/
Kerth. Addison Wesley, 1996
[11] A. Ran, “Patterms of Events“, Pattern Languages of Program Design,
edited by Coplien/Schmidt. Addison Wesley, 1995
[12] A. Sane, R. Campbell, “Object Oriented State Machines:
Subclassing Composition, Delegation and Genericity“, Proceedings of
OOPSLA ‘95 p17-32, 1995.
y in Software Systens: the Key to Software Reuse - Licentiate thesis 63

On the Implementation of Finite State Machines

6

[13] J. Bosch, “Abstracting Object State“, Object Oriented Systems,
June 1995.
[14] M. Ackroyd, “Object-oriented design of a finite State machine“,
Journal of Object Oriented Programming, June 1995.
[15] D. C. Schmidt, “Reactor: An Object Behavior Pattern for
Concurrent Event Demultiplexing and Event Handler Dispatching“,
Pattern Languages of Program Design, p529-546 edited by Coplien/
Schmidt. Addison Wesley, 1995.
[16] J. J. Odell, “Events and their specification“, Journal of Object
Oriented Programming, July/August 1994.
4 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

II
PAPER II

Design, implementation and evolution of object
oriented frameworks: concepts & guidelines

Jilles van Gurp, Jan Bosch

Submitted to Software Practice & Experience
Variable
Abstract. Object-Oriented Frameworks provide software developers with
the means to build infrastructure for their applications. Unfortunately,
frameworks do not always deliver on their promises of reusability and
flexibility. To address this, we have developed a conceptual model for
frameworks and a set of guidelines to build object oriented frameworks that
adhere to this model. Our guidelines focus on improving the flexibility,
reusability and usability (i.e. making it easy to use a framework) of
frameworks.

1. Introduction

Object-Oriented Frameworks are becoming increasingly important for
the software community. Frameworks allow companies to capture the
commonalities between applications for the domain they operate in.
Not surprisingly the promises of reuse and easy application creation
sound very appealing to those companies. Studies in our research group
[2][3][17][18][19] show that there are some problems with delivering
on these promises, however.

The term object-oriented framework can be defined in many ways. A
framework is defined in [2] as a partial design and implementation for
an application in a given domain. So in a sense a framework is an
incomplete system. This system can be tailored to create complete appli-
cations. Frameworks are generally used and developed when several
to set with Thesis Title - Variable to set with Thesis Sub Title 65

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

6

(partly) similar applications need to be developed. A framework imple-
ments the commonalities between those applications. Thus, a frame-
work reduces the effort needed to build applications [19]. We use the
term framework instantiation to indicate the process of creating an
application from a specific framework. The resulting application is
called a framework instance.

In a paper by Taligent (now IBM) [5], frameworks are grouped into
three categories:

� Application frameworks. Application frameworks aim to pro-
vide a full range of functionality typically needed in an applica-
tion. This functionality usually involves things like a GUI,
documents, databases, etc. An example of an application frame-
work is MFC (Microsoft Foundation Classes). MFC is used to
build applications for MS Windows. Another application frame-
work is JFC (Java Foundation Classes). The latter is interesting
from an Object Oriented (OO) design point of view since it
incorporates many ideas about what an OO framework should
look like. Many design patterns from the GoF book [10] were
used in this framework.

� Domain frameworks. These frameworks can be helpful to
implement programs for a certain domain. The term domain
framework is used to denote frameworks for specific domains. An
example of a domain is banking or alarm systems. Domain spe-
cific software usually has to be tailored for a company or devel-
oped from scratch. Frameworks can help reduce the amount of
work that needs to be done to implement such applications. This
allows to companies to make higher quality software for their
domain while reducing the time to market.

� Support frameworks. Support frameworks typically address
very specific, computer related domains such as memory manage-
ment or file systems. Support for these kinds of domains is neces-
sary to simplify program development. Support frameworks are
typically used in conjunction with domain and/or application
frameworks.

In earlier papers in our research group [2][17] a number of problems
with mainly domain specific frameworks are discussed. These problems
center around two classes of problems:
6 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

1. Introduction

Variable
� Composition problems. When developing a framework, it is
often assumed that the framework is the only framework present
when applications are going to be created with it. Often however,
it may be necessary to use more than one framework in an appli-
cation. This may cause several problems. One of the frameworks
may for instance assume that it has control of the application it is
used in and may cause the other frameworks to malfunction. The
problems that have to be solved when two or more frameworks
are combined are called composition problems. An Andersen
Consulting study [30], claims that "almost any OO project must
buy and use at least one framework to meet the user's minimum
expectations of functionality", indicating that nearly any project
will have to deal with composition problems.

� Evolution problems. Frameworks are typically developed and
evolved in an iterative way [18] (like most OO software). Once
the framework is released, it is used to create applications. After
some time it may be necessary to change the framework to meet
new requirements. This process is called framework evolution.
Framework Evolution has consequences for applications that have
been created with the framework. If API's in the framework
change, the applications that use it have to evolve too (to remain
compatible with the evolving framework).

In [18] and [30] a number of other problems concerning framework
deployment, documentation and usage are discussed. In [23] it is
argued that a reason for framework related problems is that the conven-
tional way of developing frameworks results in large, complex frame-
works that are difficult to design, reuse and combine with other
frameworks. In addition to that we believe that these problems are
caused by the fact that frameworks are not prepared for change. Yet,
change is inevitable. New requirements will come and the framework
will have to be changed to deal with them. One of the requirements
may be that the framework can be used in combination with another
framework (composition). If a framework is not built to deal with
changes, radical restructuring of the framework may be necessary to
meet new requirements. To avoid this, developers may prefer a quick fix
that leaves the framework intact. Unfortunately this type of solutions
makes it even more difficult to change the framework. Consequently,
over time these solutions accumulate and ultimately leave the frame-
to set with Thesis Title - Variable to set with Thesis Sub Title 67

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

6

work in a state where any change will break the framework and its
instances.

In this paper we present guidelines that address the mentioned prob-
lems. Our guidelines are largely based on experiences accumulated dur-
ing various projects in our research group, e.g. [1][2][17]. Our
guidelines aim to increase flexibility, reusability and usability. In order
to put the guidelines to use, a firm understanding of frameworks is nec-
essary. For this reason we also provide a conceptual model of how frame-
works should be structured.

In section 2 we introduce our running example: a framework for
haemo dialysis machines. In section 3 we elaborate on framework termi-
nology and methodology and introduce a conceptual model for frame-
works. This provides us with the context for our guidelines. In section 4
we introduce our guidelines for improving framework structure. Section
5 provides some additional recommendations, addressing non structure
related topics in framework development. And in section 6 we present
related work. We also link some of our guidelines to related work. We
conclude our paper in section 7.

2. The Haemo Dialysis Framework

In this section we will introduce an example framework that we will use
throughout the paper. As an example we will use the haemo dialysis
framework that was the result of a joint research project with Althin

Patient

H
2
0

The extra

The dialysis fluid circuit

corporal circuit

Filter

sensorheater

dialysis fluid
concentrate

= pump

Figure 1. The haemo dialysis machine
8 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

2. The Haemo Dialysis Framework

Variable
Medical, EC Gruppen and our research group [1]. The framework pro-
vides functionality for haemo dialysis machines (see figure 1).

Haemo dialysis is a procedure where water and natural waste prod-
ucts are removed from a patient's blood. As illustrated in figure 1, the
patient's blood is pumped through a machine. In this machine, waste
products and water in the blood go through a filter into the dialysis
fluid. The fluid contains minerals which go trhough the filter into the
patient's blood. The haemo dialysis machine contains all sorts of control
and warning mechanisms to prevent that any harm is done to the
patient.

These mechanisms are contrlolled by the before mentioned frame-
work. The framework offers support for different devices and sensors
within the machine and offers a model of how these things interact with
each other. Important quality requirements that need to be guaranteed
are safety, real-time behavior and reusability.

In figure 2, part of the framework is shown. In this figure the inter-
faces of the so-called logical archetypes are shown. Using these inter-
faces, the logical behavior of the components in a dialysis system can be
controlled. Apart from the logical behavior, some additional behavior is
required of components in the system. This additional behavior can be
accessed through interfaces from other support frameworks. In the
paper describing the haemo dialysis architecture [1], two support frame-
works are described: an application-level scheduling mechanism and a
mechanism to connect components (see figure 3).

So, the entire framework consists of three smaller frameworks that
each target a specific domain of functionality. Applications that are
implemented using this framework provide application specific compo-
nents that implement these interfaces. The components in the applica-
tion are, in principle, reusable in other applications. A temperature
sensor software component built for usage in a specific machine, for
example, can later be reused in the software for a new machine. Even the
use outside the narrow domain of haemo dialysis machines is feasible
(note that there are no dialysis specific interfaces).
to set with Thesis Title - Variable to set with Thesis Sub Title 69

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

7

+calculate()

«interface»
ControllingAlgoritmn

+getValue()
+setValue()

«interface»
Device

+reset()

«interface»
AlarmDetectorDevice

+normalise()
+denormalise()

«interface»
Normaliser

+activate()
+reset()

«interface»
AlarmHandler

*

0

1

*
1
0

Sends alarm events

hazard surveilance

Figure 2. The haemo dialysis core framework

+addPeriodicObject()

«interface»
Scheduler

+tick()

«interface»
PeriodicObject

schedules

+update()

«interface»
Target

+update()
+notify()
+pushconnect()
+pullconnect()

«interface»
Link

+notify()

«interface»
Observer

next push link

Figure 3. The scheduling and connector frameworks
0 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

3. Framework organization

Variable
3. Framework organization

Most frameworks start out small: a few classes and interfaces generalized
from a few applications in the domain [27]. In this stage the framework
is hard to use since there is hardly any reusable code and the framework
design changes frequently. Usually, inheritance is used as a technique to
enhance such frameworks for use in an application. When the frame-
work evolves, custom components are added that cover frequent usage
of the framework. Instead of inheriting from abstract classes, a devel-
oper can now use the predefined components, which can be composed
using the aggregation mechanism.

In Szyperski [31], blackbox reuse is defined as the concept of reusing
implementations without relying on anything but their interfaces and speci-
fications. Whitebox reuse on the other hand is defined as using a software
fragment, through its interfaces, while relying on the understanding gained
from studying the actual implementation.

Frameworks that can be used by inheritance only (i.e. that do not
provide readily usable components)are called whitebox frameworks
because it is impossible to use them (i.e. extend them) without under-
standing how the framework works internally. Frameworks that can also
be used by configuring existing components, are called blackbox frame-
works since they provide components that support blackbox reuse.
Blackbox frameworks are easier to use because the internal mechanism is
(partially) hidden from the developer. The drawback is that this
approach is less flexible. The capabilities of a blackbox framework are
limited to what has been implemented in the set of provided compo-
nents. For that reason, frameworks usually offer both mechanisms.
They have a whitebox layer consisting of interfaces and abstract classes
providing the architecture that can be used for whitebox reuse and a
blackbox layer consisting of concrete classes and components that inherit
from the whitebox layer and can be plugged into the architecture. By
using the concrete classes, the developer has easy access to the frame-
work's features. If more is needed than the default implementation, the
developer will have to make a custom class (either by inheriting from
one of the abstract base classes or by inheriting from one of the concrete
classes).
to set with Thesis Title - Variable to set with Thesis Sub Title 71

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

7

3.1 Blackbox and Whitebox Frameworks

In figure 4, the relations between different elements in a framework are
illustrated. The following elements are shown in this figure:

� Design documents. The design of a framework can consist of
class diagrams (or other diagrams), written text or just an idea in
the head of developers.

� Interfaces. Interfaces describe the external behavior of classes. In
Java there is a language construct for this. In C++ abstract classes
can be used to emulate interfaces. The use of header files is not
sufficient because the compiler doesn't involve those in the type
checking process (the importance of type checking when using
interfaces was also argued in Pree \& Koskimies [23]). Interfaces
can be used to model the different roles in a system (for instance
the roles in a design pattern). A role represents a small group of
method interfaces that are related to each other.

� Abstract classes. An abstract class is an incomplete implementa-
tion of one or more interfaces. It can be used to define behavior
that is common for a group of components implementing a group
of interfaces.

Design documents

Abstract Classes

Classes

Components

Interfaces

reflect

implement

implement

inherit

are a part of

Figure 4. Relations between the different elements in a framework
2 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

3. Framework organization

Variable
� Components. The term component is a somewhat overloaded
term. Therefore we have to be carefull with its definition. In this
article, the only difference between a component and a class is
that the API of a component is available in the form of one or
more interface constructs (e.g. java interfaces or abstract virtual
classes in C++). Like classes, components may be associated with
other classes. In figure 4, we tried to illustrate this by the are a part
of arrow between classes and components. If these classes them-
selves have a fully defined API, we denote the resulting set of
classes as a component composition. Our definition of a component
is influenced by Szypersi's discussion on this subject [31]. "A soft-
ware component is a unit of composition with contractally specified
interfaces and explicit context dependencies only. A software compo-
nent can be deployed independently and is subject to composition by
third parties". However, in this definition, Szyperski is talking
about components in general while we limit our selves to object
oriented components. Consequently, in order to fullfil this defini-
tion, an OO component can be nothing else than a single class
(unit of composition) with an explicit API.

� Classes. At the lowest level in a framework are the classes. Classes
only differ from components in the fact that their public API
(Application Programming Interface) is not represented in the
interfaces of a framework. Typically classes are used by compo-
nents to delegate functionality to. I.e. a framework user will typi-
cally not see those classes since he/she only has to deal with
components.

The elements in figure 4 are connected by labelled arrows that indi-
cate relations between these elements. Interfaces together with the
abstract classes are usually called the whitebox framework. The white-
box framework is used to create concrete classes. Some of these classes
are components (because they implement interfaces from the whitebox
framework). The components together with the collaborating classes are
called the blackbox framework.

The main difference between a blackbox framework and a whitebox
framework is that in order to use a whitebox framework, a developer has
to extend classes and implement interfaces. A blackbox framework, on
the other hand, consists of components and classes that can be instanti-
ated and configured by developers. Usually the components and classes
to set with Thesis Title - Variable to set with Thesis Sub Title 73

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

7

in a blackbox frameworks are instances of elements in whitebox frame-
works. Composition and configuration of components in a blackbox
framework can be supported by tools and is much easier for developers
than using the whitebox part of a framework.

3.2 A conceptual model for OO frameworks

Blackbox frameworks consist of components. In the previous section,
we defined a component as a class or a group of collaborating classes
that implement a set of interfaces. Even if the component consists of
multiple classes, the component is externally represented as one class.
The component behaves as a single, coherent entity. We make a distinc-
tion between atomic and composed components. Atomic components are
made up of one or just a few classes whereas a composed component
consists of multiple components and gluecode in the form of classes.
The ultimate composed component is a complete application, which for
example provides an interface to start and stop the application, a UI and
other functionality.

A component can have different roles in a system. Roles represent
subsets of related functionality a component can expose [26]. A compo-
nent may behave differently to different types of clients. That is, a com-
ponent exposes different roles to each client. A button, for instance, can
have a graphical role (the way it is displayed), at the same time it can
have a dynamic role by sending an event when it is clicked on. It also
has a monitoring role since it waits for the mouse to click on it.

Each role can be represented as a separate interface in a whitebox
framework. Rather than referring to the entire API of a component, a
reference to a specific role-interface implemented by the component can
be used. This reduces the number of assumptions that are made about a
component when it is used in a system (in a particular role). Ideally, all
of the external behavior of a component is defined in terms of inter-
faces. This way developers do not have to make assumptions about how
the component works internally but instead can restrict themselves to
the API defined in the whitebox framework(s). The component can be
changed without triggering changes in the applications that use it (pro-
vided the interface does not change).
4 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

3. Framework organization

Variable
The idea of using roles to model object systems has been used to cre-
ate the OORam method [24]. In this method so called role models are
used to model the behavior of a system. In our opinion this is an impor-
tant step forward from modeling the system behavior in terms of rela-
tions between classes. An important notion of the role models in [24] is
that multiple or even all of the roles in a role model may be imple-
mented by just one class. Also it is possible for a class to implement roles
from multiple role models. In addition it is possible to derive and com-
pose role models.

A good example of components and roles in practice is the Swing
GUI Framework in Java. In this complex and flexible framework the
compbination of roles and components is used frequently. An example
of a role is the Scrollable role which is present as a Java interface in the
framework. Any GUI component (subclasses of JComponent) imple-
menting this role can be put into a so-called JScrollpane which provides
functionality to scroll whatever is put in the pane. Presently, there are
four JComponents implementing the Scrollable interface out of the box
(JList, JTextComponent, JTree and JTable). However, it is also possible
for users to implement the Scrollable interface in other JComponent
subclasses.

The Scrollable interface only contains five methods that need to be
implemented. Because of this it is very simple for programmers to add
scrolling behavior to custom components. The whole mechanism fully
depends on the fact that the component can play multiple roles in the
system. In fact all the Scrollpane needs to know about the component is
that it is a JComponent and that it can provide certain information
about its dimensions (through the Scrollable interface). Characteristic
for the whole mechanism is that it works on a need to know basis. The
Scrollpane component only needs to know a few things to be able to
scroll a JComponent. All this information is provided through the
Scrollable interface.

In [23] the notion of framelets is introduced. A framelet is a very
small framework (typically no more than 10 classes) with clearly defined
interfaces. The general idea behind framelets is to have many, highly
adaptable small entities that can be easily composed into applications.
Although the concept of a framelet is an important step beyond the tra-
ditional monolithic view of a framework, we think that the framelet
concept has one important deficiency. It does not take into account the
fact that there are components whose scope is larger than one framelet.
to set with Thesis Title - Variable to set with Thesis Sub Title 75

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

7

As Reenskaug showed in [24], one component may implement roles
from more than one role model. A framelet can be considered as an
implementation of only one role model. Rather than the Pree and Kosk-
imies view [23] of a framelet as a component we prefer a wider defini-
tion of a component that may involve more than one role model or
framelet as in [24].

Based on this analysis we created a conceptual model that prescribes
how frameworks should be structured. In this model all frameworks use
a common set of role models. Each framework uses a subset of these role
models and provides hotspots in the form of abstract classes and imple-
mentation in the form of components. In this model a framework is
nothing but a set of related classes and components. Inter operability
with classes and components from other frameworks is made easier
because of the shared role models.

Traditionally, abstract classes have been used where we choose to use
interfaces. Consequently the only reason why abstract classes should be
used is to reuse implementation in subclasses. As we will argue in our
guidelines section, there is no need to use abstract classes for anything
else than that.

This way of making frameworks requires some consensus between
the different parties that create the frameworks. Especially it should be
prevented that there are 'competing' role models and roles. Instead
competition should take place on the implementation level where inter-
changeability of components is achieved through the role models they
have in common. The enourmous amount of API specifications (which
are nothing but interfaces) for the Java platform that have appeared over
the past few years illustrate how productive this way of developing can
be.

As an example, (see figure 5), consider the case where there is a small
database role model, modeling tables and other database related data-
structures, and a GUI role model, modeling things like GUI compo-
nents, tables and other widgets. The simple components these two
framelets provide will typically be things like buttons, a table, a table-
view. A realistic scenario would be to combine those two frameworks to
create database aware GUI components. As a matter of fact database
aware GUI components are something Inprise (the former Borland) [7]
put in their JBuilder tool on top of the existing Swing [14] GUI frame-
work.
6 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

3. Framework organization

Variable
In our model doing such a thing is not that difficult since the already
existing interfaces in the role models won't need much change. Further-
more interoperability with the two existing frameworks also comes nat-
urally since the new framework for database aware GUI components
will implement the same roles as those implemented in the two other
frameworks.

The haemo dialysis framework is organized in more or less the same
fashion as described above. There are three role models:

� A role model that models the logical entities in the domain
(devices, alarm mechanisms, etc.)

� A scheduling policy role model

� A role model for connecting components

Each of these role models is small, highly specialized and indepen-
dent of the other role models. To create useful components. I.e. compo-
nents that implement interfaces from the logical entity framework and
that can be connected to other components in the system and that can
be scheduled. Framelet components are not enough since they are lim-
ited to only one of the role models. A typical component in the system
will implement roles from all three role models. This does not mean
that framelet components are useless. In fact the composed components
can delegate their behavior to framelet components. However we think
that limiting a component to only one role model is not very useful.

«interface»
DBQuery

«interface»
RecordSet

«interface»
GUIComponent

«interface»
Table

«interface»
DBQueryResult

«interface»
TableView

DBTableView

Figure 5. Example of two role models combined in a single component
to set with Thesis Title - Variable to set with Thesis Sub Title 77

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

7

3.3 Dealing with coupling

From our previous research in frameworks we have learned that a major
problem in using and maintaining frameworks are the many dependen-
cies between classes and components. More coupling between compo-
nents means higher maintenance cost (McCabe's cyclomatic complexity
[20], Law of Demeter [16]). So we argue that frameworks should be
designed in such a way that there is minimal coupling between the
classes and components.

There are several techniques to allow two classes to work together.
What they have in common is that for object X to use object Y, X will
need a reference to Y. The techniques differ in the way this reference is
obtained. The following techniques can be used to retrieve a reference:

1. Y is created by X and then discarded. This is the least flexible way
of obtaining a reference. The type of the reference (i.e. a specific
class) to Y is compiled into class specifying X and there's no way
that X can use a different type of Y without editing the source
code of X's class.

2. Y is a property of X. This is a more flexible approach because the
property holding a reference to Y can be changed at run-time.

3. Y is passed to X as a parameter of some method. This is even more
flexible because the responsibility of obtaining a reference no
longer lies in X' class.

4. Y is retrieved by requesting it from a third object. This third
object can for instance be a factory or a repository. This technique
delegates the responsibility of retrieving the reference to Y to a
third object.

A special way of technique 3 is the delegated event mechanism such as
that in Java [14]. Such event mechanisms are based on the Observer pat-
tern [10]. Essentially this mechanism is a combination of the second
and the third technique. First Y is registered as being interested in a cer-
tain event originating from X. This is done using technique 3. Y is
passed to X as a parameter of one of X's methods and X stores the refer-
ence to Y in one of its properties. Later, when an event occurs, X calls Y
by retrieving the previously stored reference. Components notify other
components of certain events and those components respond to this
8 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

3. Framework organization

Variable
notification by executing one of their methods. Consequently the event
is de-coupled from the response of the receiving components. We also
refer to this way of coupling as loose coupling.

Regardless of the way the reference is obtained there are two types of
dependencies between components:

� Implementation dependencies: The references used in the rela-
tions between components are typed using concrete classes or
abstract classes.

� Interface dependencies: The references used in the relations
between components are typed using only interfaces. This means
that in principle the component's implementation can be
changed (as long as the required interfaces are preserved. It also
means that any component using a component with interface X
can use any other component implementing X.

The disadvantage of implementation dependencies is that it is more
difficult to replace the objects the component delegates to. The new
object must be of the same class or a subclass of the original object.
When interface dependencies are used, the object can be replaced with
any other object implementing the same interface. So, interface depen-
dencies are more flexible and should always be preferred over implemen-
tation dependencies.

In the conceptual model we presented all components implement
interfaces from role models. Consequently it is not necessary to use
implementation dependencies in the implementation of these compo-
nents. Using this mechanism therefore is an important step towards
producing more flexible software.

3.4 Framework Instantiation

Building an application using a framework structured using the
approach we presented in this section, can require one or more of the
following activities:

� Writing glue code. In the ideal case, when the components in a
framework cover all the requirements, the components just have
to be configured and glued together to form an application. The
glue code can either be written manually or generated by a tool.
to set with Thesis Title - Variable to set with Thesis Sub Title 79

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

8

� Providing application specific components. If the compo-
nents do not cover the requirements completely, it may be neces-
sary to create application specific components. If this is done
right, the new components may become a part of the framework.
Once the components have been written, gluecode must be
added.

� Providing application specific classes. If the required func-
tionality lies outside the scope of the framework, it may be neces-
sary to create application specific classes. If this solution is chosen
often for certain functionality, it may be worthwhile to create a
new framework for it or incorporate the classes into the existing
framework. In our framework model, the typical approach would
be to create additional role models and use those to create new
components.

To make application specific classes/components, developers have to
extend the framework in the so-called hotspots [23]. In Parsons et al.
[22] frameworks are made up of hotspots and frozen spots (flexible,
extensible pieces of code and ready to use code). A hotspot may be:

� An interface in one of the role models. The mechanism to use
such hotspots is to provide classes that implement the interface.
Interface hotspots do not lead to any code reuse and only enforce
design reuse.

� An abstract class. The mechanism to use these hotspots is
inheritance. Classes inherit both interfaces and behavior of the
abstract class. Possibly also the first mechanism may be put to use
(by implementing additional interfaces). Some code is reused
through this mechanism (the code in the abstract class), but most
likely a lot of additional code has to be written.

� A component implementation of one or more roles in the
role model. There are two ways to putting components to use:
inheritance (i.e. treat the component as a hotspot) and aggrega-
tion (i.e. treat the component as a frozen spot). We will argue in
our guidelines that the latter approach is to be preferred over
inheritance. Reusing components is the ultimate goal for a frame-
work. Both design (components inherit this from the role models)
and behavior (the components) are reused.
0 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

4. Guidelines for Structural Improvement

Variable
4. Guidelines for Structural Improvement

In this section we present a number of guidelines that aim to help devel-
opers deliver frameworks that are compliant with the conceptual model
presented in the previous section.

4.1 The interface of a component should be separated
from its implementation

Problems. Often there are a lot of implementation dependencies (direct
references to implementation classes) between components. This makes
it hard to replace components with a different implementation since all
the places in the code where there is a reference to the component will
need maintenance.

In addition to that, implementation dependencies are also more dif-
ficult to understand for developers since it is often unclear what particu-
lar function an implementation class has in a system. Especially if the
classes are large or are located deep in the inheritance hierarchy this is
difficult.

Solution. Convert all implementation dependencies to interface depen-
dencies. To do so the component API will have to be separated from the
implementation. In Java this can be done by providing interfaces for a
component. In C++, abstract classes in combination with virtual meth-
ods can be used. Instead of referring to the component class directly, ref-
erences to the interface can be made instead.

Advantages. Components no longer rely on specific implementations
of API's but are able to use any implementation of an API. This means
that components are less likely to be affected by implementation
changes in other components. In addition interfaces are more abstract
than implementation classes. Using them allows programmers to pro-
gram in a more abstract way and stimulates generalizations (which is
good for both understandability and reusability).

Disadvantages. Often, there is only one implementation of an API
(that is unlikely to change). The creation of a separate interface may
appear to be somewhat redundant. Nevertheless the fact remains that
many future requirements are unpredictable so it is usually not every
wise to assume this.
to set with Thesis Title - Variable to set with Thesis Sub Title 81

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

8

If languages without support for interfaces are used (such as C++),
the mechanism to emulate the use of interfaces may involve a perfor-
mance penalty (in C++ calls to virtual methods take more time to exe-
cute than regular method calls).

Example. This approach was chosen in the Haemo Dialysyis frame-
work where there is a distinct separation between the API (in the form
of interfaces) and the implementation (in the form of application spe-
cific classes that implement the interfaces).

4.2 Interfaces should be role oriented

Problems. Often only a very specific part of the API of a component is
needed. We refer to these little groups of related functionality as roles.
Typically a component can act in more than one role (also see section
3.2). A GUI button, for instance, can act in the role of a graphical entity
on the screen. In that role it can draw itself and give information about
its dimensions. Another role of the same component might be that it
acts as the source of some sort of action event. Other roles that the com-
ponent might support are that of a text container (the text on the but-
ton). Often roles can be related to design patterns [10]. In the Observer
pattern, for instance, there are two types of objects: observers and
observables. Often the objects that fulfill these roles typically fulfill
other roles as well.

If the interface that is needed to use a component in a certain role
covers more than one role, unnecessary dependencies are created. If, for
instance, the button component has an interface describing both the
event source role and the graphical role, any component that needs to
use a component in its event source role also becomes dependent on the
graphical API. These dependencies will prevent that the interface will be
reused in components that have the event source role but lack the
graphical role.

Solution. To address this problem, interfaces should not cover more
than one role. As a result, most components will implement more than
one interface, thus making the notion that a object can act in more than
one role more explicit.

Advantages. Small interfaces cause API changes to be more localized.
Only components that interact with the component in the role in which
2 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

4. Guidelines for Structural Improvement

Variable
the change occurred are affected (as opposed to all components interact-
ing with that component in any role). Often the same role will appear in
multiple components. By having a single interface for that role, all those
components are interchangeable in each situation where only that role is
required.

Disadvantages. Often more than one role is required of a component
(i.e. a client is going to use a component in more than one role). We
address this issue in guideline 4.3. Having an interface for each role will
cause the number of interfaces to grow. This growth will, however, be
limited by the fact that the individual interfaces can be reused in more
places. The total amount of LOC (lines of code) spent in interfaces may
even decrease because there is less redundancy in the interface defini-
tions. At the same time it will be easier to document what each interface
does since each interface is small and has a clear goal.

Splitting a component's interface in multiple smaller interfaces
causes the total number of interfaces to increase considerably (which
can be confusing for developers). However, as Riehle et al. argue [26],
component collaborations are easier to understand when modeled using
roles.

Example. In the haemo dialysis framework the interfaces are small (see
figure 2 and 3). This indicates that each of them provides a API that is
specific to one role as we suggest in this guideline. The PeriodicObject
interface for instance provides only one method called tick(). Compo-
nents implementing this interface will typically implement other inter-
faces as well. When such components are used in their PeriodicObject
role, however, only the tick() method is relevant. So the only assump-
tion a Scheduler object has to make about the components it schedules
is that they provide this single tick() method (i.e. they implement the
PeriodicObject interface).

4.3 Role inheritance should be used to combine
different role interfaces

Problems. If the guideline presented in 4.2 is followed, the number of
interfaces each component implements generally grows considerably.
Often when a component is used, more than one of its roles may be
to set with Thesis Title - Variable to set with Thesis Sub Title 83

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

8

required by the client. This poses a problem in combination with the
guideline in 4.1 which prescribes that only references to interfaces
should be used in order to prevent implementation dependencies. This,
however, is not possible: when a reference to a particular interface (rep-
resenting a role) is used, all other interfaces are excluded. There are sev-
eral solutions to this problem:

� Use a reference to the component's main class (supports all inter-
faces). However, this way implementation dependencies are cre-
ated and it should therefore be avoided wherever possible.

� Use typecasting to change the role of the component when
needed. Unfortunately, typecasts are error prone because the com-
piler can't check whether run-time type casts will succeed in all
situations.

� Merge the interfaces into one interface. This way the advantages
of being able to refer to a component in a particular role are lost.

Neither of these solutions is very satisfying. They all violate our pre-
vious guidelines, resulting in a less flexible system.

Solution. What is needed is a mechanism where a component can still
have role specific interfaces but can also be referred to in a more general
way. An elegant way to achieve this is to use interface inheritance. By
using interface inheritance new interfaces are created that inherit from
other interfaces. By using interface inheritance, roles can be combined
into a single interface. By using interface inheritance, a role hierarchy
can be created. In this hierarchy, very specific role specific interfaces can
be found at the top of the hierarchy while the inheriting interfaces are
more general.

Advantages. All the previous guidelines are still respected. Yet it is pos-
sible to refer to multiple roles in a component by creating a new inter-
face that inherits from more than one other interface. Interface
inheritance gives developers the ability to use both fine-grained refer-
encing (only a very small API) and coarse-grained referencing (a large
API).

Disadvantages. The number of interfaces will increase some more,
potentially adding to the problem mentioned in our previous guideline.
4 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

4. Guidelines for Structural Improvement

Variable
Also the interface inheritance hierarchy may add some complexity. In
particular, multiple inheritance of interfaces may make the hierarchy
difficult to understand. Another problem may be that not all OO lan-
guages support interface inheritance (or even interfaces). C++, for
instance, does not have interfaces (and thus no interface inheritance). It
does, however, support abstract classes. Interfaces can be simulated by
creating abstract classes without any implementation. Since C++ sup-
ports multiple inheritance, interface inheritance can also be simulated.
Java, on the other hand, offers support for interfaces and interface
inheritance.

Example. In [1] an example of a haemo dialysis application architecture
based on the haemo dialysis framework is presented. Part of this archi-
tecture is an OverHeatAlarm component that responds to the output
from a Tempsensor. In figure 6, an example is give how these two com-
ponents could have been implemented. In this example, both the
TempSensor and the OverHeatAlarm have one parent interface that
inherits from other interfaces. The OverHeatAlarm implements the role
of an Observer (from the connector framework) and that of an Alarm-
Handler (from the core framework). The new Alarm interface makes it
possible to refer to the component in both roles at the same time. Note
that the scheduling framework is left out of this example. It is likely that

«interface»
Device

«interface»
AlarmDetectorDevice

«interface»
Target

«interface»
Sensor

«interface»
AlarmHandler

«interface»
Observer

«interface»
Alarm

TempSensor OverheatAlarm

Figure 6. Example of interface inheritance
to set with Thesis Title - Variable to set with Thesis Sub Title 85

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

8

both components also implement the PeriodicObject interface. It is
unlikely, however, that any component referring to the components in
that role would need to refer to those objects in another role.

4.4 Prefer loose coupling over delegation

Problems. In section 3.3 we discussed several forms of obtaining a ref-
erence to a component in order to delegate method calls. We mad a dis-
tinction between loose coupling (in the form of an event mechanism)
and delegation and we also showed that some forms of delegation are
more flexible than others. In order to be able to delegate methods to
another component, a reference to that component is needed. With
normal delegation (one of the four ways described in section 3.3) a
dependency is created between the delegating component and the com-
ponent receiving the method call. These dependencies make the frame-
work complex.

Solution. A solution to this increased complexity is to use loose cou-
pling. When using loose coupling, components exchange messages
through the events rather than calling methods on each other directly.
The nice thing about events is that the event source is unaware of the
target(s) of its events (hence the name loose coupling).

Advantages. By using loose coupling, developers can avoid creating
direct dependencies between components. It also enables components
to work together through a very small interface which further reduces
the amount of dependencies between components. Furthermore most
RAD (Rapid Application Development) tools support some form of
loose coupling thus making it easier to glue components together.

Disadvantages. Loose coupling can be slower than normal delegation.
This may be a problem in a fine-grained system with many compo-
nents. In these situations one of the other delegation forms, we dis-
cussed earlier, may be used.

Example. Through the connector mechanism in the Haemo dialysis
framework, the designers of that framework aimed to establish loose
coupling. By introducing a third component, the Target is made inde-
pendent of the Observer (see figure 3) while still allowing them to inter-
6 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

4. Guidelines for Structural Improvement

Variable
act (through a notification mechanism) Through this mechanism,
Observer-implementing components can be connected to Target-imple-
menting components at run-time. This eliminates the need for Observ-
ers to be aware of any other interface than the Target interface.

4.5 Prefer delegation over inheritance

Problems. Complex inheritance hierarchies are difficult to understand
for developers (empirical data that supports this claim can be found in
[6]). Inheritance is used in Object Orientation to share behavior
between classes. Subclasses can override methods in the super class and
can extend the superclass' API with additional methods and properties.
Another problem is that inheritance relations are fixed at compile time
and can only be changed by editing source code.

Solution. Szyperski [31] argued that there are three aspects to inherit-
ance: inheritance of interfaces, inheritance of implementation and sub-
stitutability (i.e. inheritance should denote an is-a relation between
classes). We have provided an alternative for the first and the last aspect.
Roles make it easy to inherit interfaces and since roles can be seen as
types they also take care of substitutability. Consequently the main rea-
son to use class inheritance is implementation inheritance.

When it comes to using inheritance for reuse of implementation
there are the problems, we indicated previously, of increased complexity
and less run-time flexibility. For this reason we believe it is better to use
a more flexible delegation based approach in most cases. The main
advantage of delegation is that delegation relations between objects can
be changed at runtime.

Advantages. Delegation relations can be changed at run-time. The flat-
ter structure of the inheritance hierarchy, when using delegation, is eas-
ier to understand than an inheritance hierarchy. Components are more
reusable than superclasses since they can be composed in arbitrary ways.
An additional advantage for frameworks is that it allows for more of the
inter component relations (both is-a and delegation relations) to be
defined in the role model part layer of the framework. This allows for a
better separation of structure and implementation.

Disadvantages. A straightforward migration from inheritance based
frameworks to a delegation based framework may introduce method
to set with Thesis Title - Variable to set with Thesis Sub Title 87

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

8

forwarding (calls to methods in super classes are converted to calls to
other components). Method forwarding introduces redundant method
calls, which affects maintenance negatively. Method forwarding is the
result of straightforward refactoring inheritance relations into delega-
tion relations. If delegation is used from the beginning this is not so
much a problem.

Another problem is that an important mechanism for reusing behav-
ior is lost. Traditionally, inheritance has been promoted for the ability to
inherit behavior. Our experience with existing frameworks [1][3][19]
has caused us to believe that inheritance may not be the most effective
way in establishing implementation reuse in frameworks. Most frame-
works we have encountered, require that a considerable amount of code
is written in order to use the framework. In those frameworks, inherit-
ance is used more as a means to inherit API's rather than behavior. Of
course, abstract classes in the whitebox framework can still be used to
generalize some behavior.

A third problem may be that delegation is more expensive than
inheritance in some languages (in terms of performance). Method inlin-
ing and other techniques that are applied during compilation or at run-
time address this problem.. Finally, this approach may lead to some
redundant code. This is especially true for large components (our next
guideline argues that those should be avoided as well).

Example. The haemo dialysis framework does not use class inheritance
very extensively. The whitebox framework, as discussed in [1], does not
contain any classes (only interfaces). The example application architec-
ture shown in the same architecture consists of several layers of compo-
nents that are linked together by loose coupling and other delegation
mechanisms.

4.6 Use small components

Problems. Large components can be used in a very limited number of
ways. Often, it is not feasible to reuse only a part of such a component.
Therefore, large components are only reusable in a very limited number
of situations. It is difficult to create similar components without recreat-
ing part of the code that makes up the original. The problem is that
large components behave like monolithic systems. It is difficult to
decompose a large component into smaller entities. For the same rea-
8 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

4. Guidelines for Structural Improvement

Variable
son, it is difficult to use the inheritance mechanism to refine component
behavior.

Solution. The solution for this problem is to use small components.
Small components only perform a limited set of functionality. This
means that they have to be plugged together to do something useful.
The small (atomic) components act as building bricks that can be used
to construct larger (composed) components and applications (also see
section 3.2). In effect, large monolithic components are replaced by
compositions of small, reusable components.

Advantages. Just like small whitebox frameworks, small components
are easier to comprehend. This means that components can be devel-
oped by small groups of developers. The blackbox characteristics of the
small components generally scale up without problems if they are used
to build larger components. Individual small components are likely to
offer more functionality than their counterparts in large components.

Disadvantages. Szyperski [31] argued that maximizing reuse minimizes
use. With this statement he tried to illustrate the delicate balance
between reusability (flexible, small components) and usability (large,
easy to use components). While this is true, we have to keep in mind
that the ultimate goal for a framework is increased flexibility and reus-
ability. Therefore it is worthwhile considering to shift the reusability-
usability balance towards reusability.

In addition, large components hide the complexity of how they work
internally. The equivalent implemented in a network of small compo-
nents is very complex, though. To make such a network of components
accessible, some extra effort is needed. Luckily, only a few (or even just
one) of the components in the network have to be visible from the out-
side in most cases.

Externally the composite components are represented by one compo-
nent while internally there may be a lot of components. In the example
below, a temperature device uses several other components to do its job.
Yet there is no need to access those components from the outside.

A real problem is the fact that the glue code tying together the small
components is not reusable. To create new, similar networks of compo-
nents, most of the gluecode will have to be written again. In large com-
ponents, the glue code is part of the component. This does not mean
that large components have an advantage here because large compo-
nents lack the flexibility to change things radically. Solutions to the ill
to set with Thesis Title - Variable to set with Thesis Sub Title 89

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

9

reusability of glue code can be found in automatic code generation.
Automatic code generation is already used by many RAD (Rapid Appli-
cation Development) tools like IBM's VisualAge [32] or Borland's Del-
phi [7] to glue together medium to large-grained components.
Alternatively scripting languages [21] can be used to create the networks
of components.

Example. The strategy of using small components was also used in the
haemo dialysis framework. In their paper [1], Bengtsson and Bosch
describe an example application consisting of multiple layers of small
components working together through the connector interfaces. In our
example there is a TemperatureDevice which monitors and regulates the
temperature of the dialysis fluids. To do so, it has two other components
available: a TempSensor and a FluidHeater. The policy for when to acti-
vate the heater is delegated to a third component: the TempCtrl. Each
of these components is very simple and reusable. The sensor is not con-
cerned with either the heater or the control algorithm. Likewise, the
control algorithm is not directly linked to either the sensor or the heater.
In principle, upgrading either of these software components is trivial.
This might for instance be necessary when a better temperature sensor
comes available or when the control algorithm is updated. If this com-
ponent would have been implemented as one large component, the
code for TempSensor and the FluidHeater would not have been reus-
able. Also the controlling algorithm would be hard to reuse.

5. Additional Recommendations

In addition to improving the structure of frameworks, we believe that
there are several other issues that need to be addressed. The guidelines
presented in this section should not be seen as the final solution for
these issues. However, we do believe they are worth some attention
when developing frameworks.

5.1 Use standard technology

Problems. The not invented here syndrome [29], that many companies
suffer from, often causes 'reinvention of the wheel' situations. Often
developers don't trust foreign technology or are simply unaware of the
0 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

5. Additional Recommendations

Variable
fact that there is a standard solution (standard in the sense that it is
commonly used to solve the problem) for some of the problems they are
trying to address. Instead, they develop a proprietary solution that is
incorporated in the company's framework(s). In a later stage, this pro-
prietary solution may become outdated, but by then it is difficult to
move to standard technology because the existing software has become
dependent of the proprietary solution.

Solution. When developing a framework, developers should be very
careful to avoid reinventing the wheel. We recommend that developers
use standard technology whenever possible unless there is a very good
reason not to do it (price too high, missing functionality, performance
too low or other quality attribute deficits). In such situations, the cho-
sen solution should be implemented in such a way that it can easily be
replaced later on.

An approach that is particularly successful at the moment is the use
of standardized API's this allows for both standard implementations and
custom implementations. Our approach to developing frameworks
complements this nicely. Developers could standardize (or use standard-
ized) versions of the interfaces in the role models of the framework.

Advantages. Standard technology has many advantages: It is widely
used so many developers are familiar with it. It is likely to be supported
in the future (because it is used by many people). Since it is widely used,
it is also widely tested. For the same reason, documentation is also
widely available.

Assuming that the framework under development is going to be used
for a long time, it is most likely counter productive to use non standard
technology. It is important to realize that in addition to the initial devel-
opment cost, there is also the maintenance cost of the propietary solu-
tion that has to be taken into account when using non standard
technology.

Disadvantages. Standard technology may not provide the best possible
solution. Another problem may be that generally no source code is
available for propietary standard solutions. A third problem may be that
the standard solution only partially fits the problem.

Also standard technology should not be used as a silver bullet to solve
complex problems. In their Lessons Learned paper [29], Schmidt and
Fayad note that .. the fear of failure often encourages companies to pin their
hopes on silver bullets intended to slay the demons of distributed software
to set with Thesis Title - Variable to set with Thesis Sub Title 91

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

9

complexity by using CASE tools or point and click wizards.. Despite this
the use of standard technology still offers the advantage of forward com-
patibility (i.e. it is less likely to become obsolete) which may outweigh
its current disadvantages.

Based on these disadvantages we identify the following legitimate
reasons not to use standard technology:

� There is an in house solution which is better and gives the com-
pany an competitive edge over companies using the standard solu-
tion.

� The company is aiming to set a standard rather then using an
existing standard solution.

� It is much cheaper to develop in house than to pay the license fees
for a standard solution.

Example. In the haemo dialysis framework, a proprietary solution is
introduced to link objects together (see the connector framework in fig-
ure 3).

This mechanism could get in the way if it were decided to move the
architecture to a component model like Corba or DCOM which typi-
cally use standard mechanisms to do this. Since the haemo dialysis
framework apparently does not use a standard component model right
now, a proprietary solution is necessary. In order to simplify the future
adoption of these component models, the proprietary solution should
make it easy to migrate to another solution later on. For instance, by
making implementations of the connector framework on top of, say
Corba, easy.

5.2 Automate configuration

Problems. If the guidelines presented so far are followed, the result will
be a highly modularized, flexible, highly configurable framework. The
process of configuring the framework will be a considerably more com-
plex job than configuring a monolithic, inflexible framework. The rea-
son for this is that part of the complexity of the whitebox framework has
been moved downwards to the component level and the implementa-
tion level. Flexibility comes at the price of increased complexity.
2 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

5. Additional Recommendations

Variable
Solution. Fortunately the gained flexibility allows for more sophisti-
cated tools. Such tools may be code generators that generate glue code
to stick components together. They may be scripting tools that replace
the gluecode by some scripting language (also see Roberts \& Johnson's
framework patterns [27].

Advantages. The use of configuration tools may reduce training cost
and application development cost (assuming that the tools are easier to
use than the framework). Also configuration tools can provide an extra
layer of abstraction. If the framework changes, the adapted tools may
still be able to handle the old tool input.

Disadvantages. While tools may make life easier for application devel-
opers, they require an extra effort from framework developers for devel-
opment and maintenance of these tools. Also a tool may not take
advantage of all the features provided by the framework. This is a com-
mon problem in, for instance, GUI frameworks where programmers
often have to manually code things that are not supported by the GUI
tools, thus often breaking compatibility with the tool.

Example. In the haemo dialysis framework, the connector framework
could be used to create a tool to connect different components together.
All the tool would need to do is create Link components (several differ-
ent types of these components may be implemented) and set the target
and observer objects.

5.3 Automate documentation

Problems. Documentation is very important in order to be able to
understand and use a framework. Unfortunately, software development
is often progressing faster than the documentation up leading to prob-
lems with both consistency and completeness of the documentation. In
some situations, the source code is the only documentation. Methods
for documenting frameworks are discussed in detail in Mattssons licen-
tiate thesis [18]. The problem with most documentation methods is
that they require additional effort from the developers who are usually
reluctant to invest much time in documentation.

Solution. This problem can be addressed by generating part of the doc-
umentation automatically. Though this is not a solution for all docu-
mentation problems, it at least addresses the fact that source code often
to set with Thesis Title - Variable to set with Thesis Sub Title 93

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

9

is the only documentation. Automatic documentation generation can
be integrated with the building process of the framework.

Automated documentation is also important because, as a conse-
quence of the guidelines in section 3, the structure of frameworks may
become more complex. Having a tool that helps making a framework
more accessible is therefore very important.

Advantages. If the tools are available, documentation can be created
effortlessly, possibly as a part of the build process for the software.
Another aadvantage of automating documentation is that it is much
easier to keep the documentation up to date.

Disadvantages. There are not so many tools available that automati-
cally document frameworks. If documentation is a problem it might be
worthwhile to consider building a proprietary tool. Higher level docu-
mentation such as diagrams and code examples still have to be created
and evolved manually. Additional documentation (e.g. design docu-
ments and user manuals) is needed and cannot be replaced by automat-
ically generated documentation. Most existing tools only help in
extracting API documentation and reverse engineering source code to
UML diagrams. Both type of tools usually do not work fully automati-
cally (i.e. some effort from developers is needed to create usefull docu-
mentation with them). In addition, the documentation process needs to
have the attention from the management as well.

Example. A popular tool for generating API documentation is JavaDoc
[12]. JavaDoc is a simple tool that comes with the JDK. It analyzes
source code and generates HTML documents. Developers can add
comments to their source code to give extra information, but even with-
out those comments the resulting HTML code is useful. The wide-
spread acceptation and use of this tool clearly shows that simple tools
such as JavaDoc can greatly improve documentation.

6. Related Work

Robert & Johnson's framework patterns [27], inspired several elements
of the framework model we presented in section 3. For instance, the
notion of whitebox and blackbox frameworks also appears in their
paper. Furthermore, they discuss the notion of fine-grained objects
where we use the term atomic components. Finally, they stress the virtue
4 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

6. Related Work

Variable
of language tools as a means to configure a framework (guideline 5.2).
The idea of language tools and other configuration aides is also pro-
moted in Schappert et al. [28].

Also related is the work of Johnson & Foote [15]. Their plea for stan-
dardized,shared protocols for objects can be seen as a motivation for the
central set of roles in our conceptual model. However, they do not make
explicit that one object can support more than one role (or protocol in
their terminology). In addition they argue in their guidelines for pro-
grammers that large classes should be viewed with suspicion and held to be
guilty of poor design until proven innocent which is in support of our
guideline 4.6. Interestingly, they also argue that inheritance hierarchies
should be deep and narrow, something which has been proved very bad
for complexity and understandability in empirical research [6]. How-
ever in combination with their ideas about standard protocols, it pro-
vides some arguments for our idea of role inheritance (guideline 4.3).

Our idea of role models somewhat matches the idea of framework
axes as presented in Demeyer et al. [8]. The three guidelines presented
in that paper aim to increase interoperability, distribution and extensi-
bility of frameworks. To achieve this, the authors separate the imple-
mentation of the individual axes as much as possible, similar to our
guidelines 4.1, 4.2, 4.4 and 4.6. Pree & Koskimies [23] introduce the
idea of a framelet: a small framework.(Small is beautiful). Again this
matches our idea of role models, but our notion of components extends
their model substantially.

In Parsons et al. [22], a different model of frameworks is introduced.
They introduce a model where basic components are hooked into a
backbone (resembles an ORB - Object Request Broker). In addition to
these basic components there are also additional components. The main
contribution of this model seems to be that it stresses the importance of
an ORB (i.e. loose coupling of components) in a framework architec-
ture. However, contrary to our view of a framework, it also centralizes
all the components around the backbone (giving it whitebox framework
characteristics), something we try to prevent by having multiple, inde-
pendent role models.

The significance of roles (guidelines 4.2 and 4.3) in framework
design was also argued in Riehle et al. [26]. In this article, the authors
introduce roles and role models as a means to model object collabora-
tions more effectively than is possible with normal class diagrams. In
their view frameworks can be defined in terms of classes, roles that can
to set with Thesis Title - Variable to set with Thesis Sub Title 95

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

9

be assigned to those classes and roles that need to be implemented by
framework clients. In Reenskaug's book [24] the OORam software
engineering method is introduced which uses the concept of roles. A
similar methodology, Catalysis, is discussed by D'Souza and Wills [9].
In Bosch's paper [4] roles are used as part of architectural fragments.

Guideline 4.4 and guideline 4.5 are inspired by Lieberherr's law of
Demeter [16] which aims at minimizing the number of dependencies of
a method on other objects. The two guidelines we present aim to make
the dependencies between components more flexible by converting
inheritance relations into delegation and delegation relations into loose
coupling.

7. Conclusion

7.1 What is gained by applying our guidelines

The aim of our guidelines is threefold:

� Increased flexibility

� Increased reusability

� Increased usability

We try to stimulate this by providing the reader with a conceptual
model of a framework (section 3). In this model small whitebox frame-
works and their atomic components are composed to build a layer of
composed components. In addition to this conceptual model we also
provide a set of guidelines and recommendations that help developers to
build better frameworks. The guidelines are mostly quite practical and
range from advice on how to modularize the framework to a method for
documenting a framework. Key elements in the development philoso-
phy reflected in our guidelines is that small is beautiful (applies to both
components and interfaces), hardwired relations are bad for flexibility
and ease of use is important for successful framework deployment. Of
course our guidelines are not universally applicable since there are some
disadvantages for each guideline that may cause it to break down in par-
ticular situations. However, we believe that they hold true in general.
6 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

8. Acknowledgements

Variable
7.2 Future work

Essentially our solution for achieving flexibility results in a large number
of small components that are glued together dynamically. By having
small framelets or role models, a lot of the static complexity of existing
frameworks is transformed in a more dynamic complexity of relations
between components. These complex relations bring about new mainte-
nance problems since this complexity no longer resides in frameworks
but in framework instances. Large components are not a solution
because they lack flexibility, i.e. they can only be used in a fixed way. So,
a different solution will have to be found. One solution may be found
in scripting languages like JavaScript or Perl as discussed in Ouster-
hout's article on scripting [21]. Scripting languages are mostly typeless
which makes them suitable to glue together components. That typing
can get in the way when gluing together components, was also observed
in Pree \& Koskimies' work [23] but there reflection is used as an alter-
native.

A second issue that we intend to address is how to deal with existing
architectures. Existing architectures most likely don't match our frame-
work model. It would be interesting to examine whether our guidelines
could be used to transform such architectures into a form that matches
our model. It would also be interesting to verify if such transformed
architectures do deliver on the promises of reuse and easy application
creation as mentioned in our introduction.

8. Acknowledgements

We would like to thank Michael Mattsson for proofreading this article
and for providing useful suggestions. Also we would like to thank the
reviewers of this journal for their valuable input.

9. References

[1] Bengtsson P, Bosch J. Haemo Dialysis Software Architecture Design
Experiences. In Proceedings of the 21st International Conference on
Software Engineering. May 1999.
[2] Bosch J, Molin P, Mattson M, Bengtsson P. Object Oriented
Frameworks - Problems & Experiences. In Building Application
to set with Thesis Title - Variable to set with Thesis Sub Title 97

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

9

Frameworks, Fayad ME, Schmidt DC, Johnson RE (ed.). Wiley &
Sons, 1999.
[3] Bosch J . Design of an Object-Oriented Framework for
Measurement Systems. In Object-Oriented Application Frameworks,
Fayad ME, Schmidt DC, Johnson RE (ed.). Wiley & Sons, 1999.
[4] Bosch J. Specifying Frameworks and Design Patterns as
Architectural Fragments. In Proceedings Technology of Object-Oriented
Languages and Systems ASIA'98. pp. 268- 277, July 1998.
[5] IBM. Building Object-Oriented Frameworks. http://www.ibm.com/
java/education/oobuilding/index.html.
[6] Daly J, Brooks A, Miller J, Roper M, Wood M. The effect of
inheritance on the maintainability of object oriented software: an
empirical study. Proceedings international conference on software
maintenance. IEEE Computer Soc. Press, Los Alamitos, CA, USA,
1995, pp. 20-29.
[7] Inprise (previously Borland). http://www.inprise.com/.
[8] Demeyer S, Meijler TD, Nierstrasz O, Steyaert P. Design Guidelines
For Tailorable Frameworks. In Communications of the ACM. October
'97; 40(10):60-64.
[9] D'Souza D, Wills AC. Composing Modelling Frameworks in
Catalysis. Chapter 19 in Building Application Frameworks - Object
Oriented Foundations of Framework Design, M. E. Fayad, D. C.
Schmidt, R. E. Johnson. John Wiley & Sons, 1999.
[10] Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns -
Elements of Reusable Object Oriented software. Addison-Wesley, 1995.
[11] JavaSoft. JavaBeans specification. http://www.javasoft.com/beans/
index.html.
[12] JavaSoft. JavaDoc homepage. http://www.javasoft.com/products/
jdk/javadoc/index.html.
[13] Sun Microsystems. Java Hotspot VM. http://java.sun.com/
products/hotspot/whitepaper.html.
[14] Javasoft. http://www.javasoft.com/.
[15] Johnson RE, Foote B. Designing Reusable Classes, Journal of
Object Oriented Programming. June/July 1988.
[16] Lieberherr KJ, Holland IM. Assuring Good style for Object
Oriented Programs. IEEE Software. September 1989; pp 38- 48.
[17] Mattsson M, Bosch J. Framework Composition Problems, Causes
and Solutions. In Proceedings Technology of Object-Oriented Languages
and Systems, USA, August 1997.
[18] Mattsson M. Object-Oriented Frameworks Survey of Methodological
Issues. Licentiate thesis, Department of computer science, Lund
University, 1996.
8 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

9. References

Variable
[19] Mattsson M, Bosch J. Evolution Observations of an Industrial
Object Oriented Framework, International Conference on Software
Maintenance (ICSM) '99, Oxford, England, 1999.
[20] McCabe TJ. A Complexity Measure. In IEEE Transactions of
Software Engineering 1976; vol 2: 308-320.
[21] Ousterhout JK. Scripting: Higher Level Programming for the 21st
Century, In IEEE Computer Magazine, March 1998.
[22] Parsons D, Rashid A, Speck A, Telea A. A Framework for Object
Oriented Frameworks Design. In Proceedings of TOOLS 99:141-151,
IEEE Computer Society, 1999.
[23] Pree W, Koskimies K. Rearchitecting Legacy systems - Concepts
and Case study, First Working IFIP Conference on Software Architecture
(WICSA '99):51-61. San Antonio, Texas, February 1999.
[24] Reenskaug T. Working With Objects. Manning Publications Co,
1996.
[25] Richner T. Describing Framework Architectures: more than
Design Patterns, Object-Oriented Software Architecture Workshop at
ECOOP '98. workshop reader, July 1998.
[26] Riehle D, Gross T. Role Model Based Framework Design and
Integration, Proceedings of OOPSLA '98:117-133, ACM Press, 1998.
[27] Roberts D, Johnson R. Patterns for Evolving Frameworks, Pattern
Languages of Program Design, vol 3:471-486, Addison-Wesley, 1998.
[28] Schappert A, Sommerlad P, Pree W. Automated Support for
Software Development with Frameworks, Proceedings of the 17th
International Conference on Software Engineering: 123-127, 1995.
[29] Schmidt DC, Fayad ME. Lessons Learned - Building Reusable
OO Frameworks for Distributed Software, Communications of the ACM
October 1997, vol 40(10): 85-87.
[30] Sparks S, Benner K, Faris C. Managing Object Oriented
Framework Reuse, IEEE Computer. September 1996: 53-61.
[31] Szyperski C. Component Software - Beyond Object Oriented
Programming. Addison- Wesley 1997.
[32] IBM. VisualAge, http://www.software.ibm.com/.
to set with Thesis Title - Variable to set with Thesis Sub Title 99

Design, implementation and evolution of object oriented frameworks: concepts & guidelines

1
00 Variable to set with Thesis Title - Variable to set with Thesis Sub Title

II
PAPER III

SAABNet: Managing Qualitative Knowledge in
Software Architecture Assessment

Jilles van Gurp, Jan Bosch

ECBS

I

Variabili
Abstract. Quantitative techniques have traditionally been used to assess
software architectures. We have found that early in the development process
there is often insufficient quantitative information to perform such
assessments. So far the only way to make qualitative assessments about an
architecture, is to use qualitative assessment techniques such as peer reviews.
The problem with this type of assessment techniques is that they depend on
the knowledge of the expert designers who use them. In this paper we
introduce a technique, SAABNet (Software Architecture Assessment Belief
Network), that provides support to make qualitative assessments of software
architectures.

1. Introduction

Traditionally the software development is organized into different
phases (requirements, design, implementation, testing, maintenance).
The phases usually occur in a linear fashion (the waterfall model). The
phases of this model are usually repeated in an iterative fashion. This is
especially true for the development of OO systems.

At any phase in the development process, the process can shift back
to an earlier phase. If, for instance, during testing a design flaw is dis-
covered, the design phase and consequently also the phases after that
need to be repeated. These types of setbacks in the software develop-
ty in Software Systems: the Key to Software Reuse - Licentiate thesis 101

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment

1

ment process can be costly, especially if radical changes in the earlier
phases (triggering even more radical changes in consequent phases) are
needed. We have found that non-functional requirements or quality
requirements often cause these type of setbacks. The reason for this is
that testing whether the product meets the quality requirements gener-
ally does not take place until the testing phase [1].

To assess whether a system meets certain quality requirements, sev-
eral assessment techniques can be used. Most of these techniques are
quantitative in nature. I.e. they measure properties of the system. Quan-
titative assessment techniques are not very well suited for use early in the
development process because incomplete products like design docu-
ments and requirement specifications do not provide enough quantifi-
able information to perform the assessments. Instead developers resort
to qualitative assessment techniques. A frequently used technique, for
instance, is the peer review where design and or requirement specifica-
tion documents are reviewed by a group of experts. Though these tech-
niques are very useful in finding the weak spots in a system, many flaws
go unnoticed until the system is fully implemented. Fixing the architec-
ture in a later stage can be very expensive because the system gets more
complex as the development process is progressing.

Qualitative assessment techniques, like the peer review, rely on quali-
tative knowledge. This knowledge resides mostly in the heads of devel-
opers and may consist of solutions for certain types of problems
(patterns [2][6]), statistical knowledge (60% of the total system cost is
spent on maintenance), likely causes for certain types of problems (“our
choice for the broker architecture explains weak performance“), aesthet-
ics (“this architecture may work but it just doesn’t feel right“), etc. A
problem is that this type of knowledge is inexplicit and very hard to
document. Consequently, qualitative knowledge is highly fragmented
and largely undocumented in most organizations. There are only a
handful known ways to handle qualitative knowledge:

� Assign experienced designers to a project. Experienced designers
have a lot of knowledge about how to engineer systems. Experi-
enced designers are scarce, though, and when an experienced
designer resigns from the organization he was working for, his
knowledge will be lost for the organization.
02 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

1. Introduction

Variabili
� Knowledge engineering. Here organizations try to capture the
knowledge they have in documents. This method is especially
popular in large organizations since they have to deal with the
problem of getting the right information in the right spot in the
organization. A major obstacle is that it is very hard to capture
qualitative knowledge as discussed above.

� Artificial Intelligence (AI). In this approach qualitative knowledge
is used to built intelligent tools that can assist personnel in doing
their jobs. Generally, such tools can’t replace experts but they may
help to do their work faster. Because of this less experts can work
more efficiently.

In this paper we present a way of representing and using qualitative
knowledge in the development process. The technique we use for repre-
senting qualitative knowledge, Bayesian Belief Networks (BBN), origi-
nates from the AI community. We have found that this technique is
very suitable for modeling and manipulating the type of knowledge
described above. Bayesian Belief Networks are currently used in many
organizations. Examples of such organizations are NASA, HP, Boeing,
Siemens [8]. BBNs are also applied in Microsoft’s Office suite where
they are used to power the infamous paperclip [13].

We created a Bayesian Belief Network, called SAABNet (Software
Architecture Assessment Belief Network), that enables us to feed infor-
mation about the characteristics of an architecture to SAABNet. Based
on this information, the system is able to give feedback about other sys-
tem characteristics. The SAABNet BBN consists of variables that repre-
sent abstract quality variables such as can be found in McCall’s quality
factor model [12] (i.e. maintainability, flexibility, etc.) but also less
abstract variables from the domain of software architectures like for
instance inheritance depth and programming language. The variables
are organized in such a way that abstract variables decompose into less
abstract variables.

A BBN is a directed acyclic graph. The nodes in the graph represent
probability variables and the arrows represent conditional dependencies
(not causal relations!). A conditional dependency of variable C on A and
B in the example in figure 1 means that if the probabilities for A and B
are known, the probability for C is known. If two nodes are not directly
connected by an arrow, this means they are independent given the nodes
in between (D is conditionally independent of A). Each node can con-
ty in Software Systems: the Key to Software Reuse - Licentiate thesis 103

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment

1

tain a number of states. A conditional probability is associated with each
of these states for each combination of states of their direct predecessors
(see figure 2 for an example).

A BBN consists of both a qualitative and a quantitative specification.
The qualitative specification is the graph of all the nodes. The quantita-
tive specification is the collection of all conditional chances associated
with the states in each node. In figure 1 a qualitive specification is given
and a quantitative specification is given in figure 2.

By using a sophisticated algorithm, the a priori probabilities for all of
the variables in the network can be calculated using the conditional
probabilities. This would take exponential amounts of processing power
using conventional mathematical solutions (it’s a NP complete prob-
lem). A BBN can be used by entering evidence (i.e. setting probabilities
of variables to a certain value). The a priori probabilities for the states of
the other variables are then recalculated. How this is done is beyond the
scope of this paper. For an introduction to BBNs we refer to [16].

The remainder of this paper is organized as follows. In section 2. we
discuss our methodology, in section 3. we will introduce SAABNet. Sec-
tion 4. discusses different ways of using SAABNet and in section 5. we
discuss a case study we did to validate SAABNet. Related work is pre-
sented in section 6. and we conclude our paper in section 7.

Figure 1. A BBN: qualitative spec.

A B

C

D

P(A=true) = 0.75
P(A=false) = 0.25

P(B=true) = 0.21
P(B=false) = 0.79

P(C=true|A=true,B=true) = 0.97
P(C=true|A=true,B=false) = 0.67
P(C=true|A=false,B=true) = 0. 71
P(C=true|A=false,B=false) = 0.43

P(D=true|C=true,B=true) = 0.31
P(D=true|C=true,B=false) = 0.48
P(D=true|C=false,B=true) = 0.65
P(D=true|C=false,B=false) 0.84

Figure 2. A BBN: quantitative spec.
04 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

2. Methodology

Variabili
2. Methodology

The nature of human knowledge is that it is unstructured, incomplete
and fragmented. These properties make that it is very hard to make a
structured, complete and unfragmented mathematical model of this
knowledge. The strength of BBNs is that they enable us to reason with
uncertain and incomplete knowledge. Knowledge (possibly uncertain)
can be fed into the network and the network uses this information to
calculate information that was not entered. The problem of fragmenta-
tion still exists for this way of modeling knowledge, though.

To build a BBN, knowledge from several sources has to be collected
and integrated. In our case the knowledge resides in the heads of devel-
opers but there may also be some knowledge in the form of books and
documentation. Examples of sources for knowledge are:

� Patterns. The pattern community provides us with a rich source of
solutions for certain problems. Part of a pattern is a context
description where the author of a pattern describes the context in
which a certain problem can occur and what solutions are appli-
cable. This part of a pattern is the most useful in modeling a BBN
because this matches the paradigm of dependencies between vari-
ables.

� Experiences. Experienced designers can indicate whether certain
aspects in a software architecture depend on each other or not,
based on their experience.

� Statistics. These can be used to reveal or confirm dependencies
between variables.

To put this knowledge into a BBN, a BBN developer generally goes
through the following steps: (1) Identify relevant variables in the
domain. (2) Define/identify the probabilistic dependencies and inde-
pendencies between the variables. (this should lead to a qualitative spec-
ification of the BBN). (3) Assess the conditional probabilities (this
should lead to a quantitative specification of the BBN). (4) Test the net-
work to verify that the output of the network is correct.

We have found that the last two steps need to be iterated many times
and sometimes enhancements in the qualitative specification are also
needed.
ty in Software Systems: the Key to Software Reuse - Licentiate thesis 105

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment

1

The only way to establish whether a BBN is reliable (i.e. is a good
representation of the probabilistic distribution of its variables) is to per-
form casestudies. Performing such case studies means feeding evidence
of a number of selected cases to the network and verifying whether the
output of the network corresponds with the data available from the case
studies. The network can be relied upon to deliver mathematical correct
probabilities given correct qualitative and quantitative specifications of
the BBN. If a BBN doesn’t give correct output, that may be an indica-
tion that the probabilistic information in the network is wrong or that
there is something wrong with the qualitative specification of the net-
work.

Problems with the qualitative specification may be missing variables
(over-simplification) or incorrect dependency relations between vari-
ables (missing arrows or too many arrows). Problems with the quantita-
tive specification are caused by incorrect conditional probabilities.
Estimating probabilities is something that human beings are not good at
[4] so it is not unlikely that the quantitative specification has errors in it.
Most of these errors only manifest them in very specific situations, how-
ever. Therefore a network has to be tested to make sure the output of it
is correct under all circumstances.

3. SAABNet

Based on a number of cases we have created a BBN for assessing soft-
ware architectures called SAABNet (Software Architecture Assessment
Belief Network) which is presented in figure 3. The aim of SAABNet is
to help developers perform qualitative assessments on architectures. Its
primary aim is to support the architecture design process (i.e. we assume
that requirements are already available). Consequently, it does not sup-
port later phases of the software development process.

3.1 Qualitative Specification

The variables in SAABNet can be divided into three categories:

� Architecture Attributes

� Quality Criteria
06 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

3. SAABNet

Variabili
Fi
gu

re
 3

.
Q

ua
lit

at
iv

e
sp

ec
ifi

ca
tio

n
of

 S
A

A
B

N
et

im
pl

em
en

ta
tio

n_
la

ng
au

ge
dy

na
m

ic
_b

in
di

ng
nr

_o
f_

th
re

ad
s

co
nt

ex
t_

sw
itc

he
s

ar
ch

_s
ty

le

m
ul

tip
le

_i
nh

er
ita

nc
e

cl
as

s_
in

he
rit

an
ce

co
m

p_
gr

an
ul

ar
ity

in
te

rf
ac

e_
gr

an
ul

ar
ity

co
m

p_
in

te
rd

ep
en

de
nc

ie
s

ex
ce

pt
io

n_
ha

nd
lin

g
re

sp
on

si
ve

ne
ss

th
ro

ug
hp

ut
sc

al
ab

ili
ty

ve
rt

ic
al

_c
om

pl
ex

ity

co
m

pl
ex

ity
do

cu
m

en
ta

tio
n

ho
riz

on
ta

l_
co

m
pl

ex
ity

re
us

ab
ili

ty
co

up
lin

g

fa
ul

t_
to

le
ra

nc
e

un
de

rs
ta

nd
ab

ili
ty

te
st

ab
ili

ty
co

nf
ig

ur
ab

ili
ty

m
od

ifi
ea

bi
lit

y

m
ai

nt
ai

na
bi

lit
y

fle
xi

bi
lit

y

co
rr

ec
tn

es
s

us
ab

ili
ty

sa
fe

ty
se

cu
rit

y

re
lia

bi
lit

y

m
em

or
y_

us
ag

e

pe
rf

or
m

an
ce
ty in Software Systems: the Key to Software Reuse - Licentiate thesis 107

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment

1

� Quality Factors

This categorization was inspired by McCall’s quality requirement
framework [12], though at several points we deviated from this model.
In this model, abstract quality factors, representing quality require-
ments, are decomposed in less abstract quality criteria. We have added
an additional decomposition layer (not found in McCall’s model),
called architecture attributes, that is even less abstract. Architecture
attributes represent concrete, observable artifacts of an architecture.

In figure 3, a qualitative representation of SAABNet is given (i.e. a
directed acyclic graph). Though at first sight our network may seem
rather complicated, it is really not that complex. While designing we
carefully avoided having to many incoming arrows for each variable. In
fact there are no variables with more than three incoming arrows. The
reason that we did this was to keep the quantitative specification simple.
The more incoming arrows, the higher the number of combinations of

arch_style (pipesfilters, broker, layers, black-
board): This variable defines the style of the archi-
tecture. The states correspond to architectual styles
from [2].

class_inheritance_depth (deep, not deep):
This variable detemines whether the depth of the
inheritance hierarchy is deep or not.

comp_granularity (fine-grained, coarse-
grained): This variable acts as an indicator for
component size. A component, in our view, can be
anything from a single class up to a large number
of classes [5]. In the first case we speak of fine-
grained component granularity and in the other
case we speak of coarse-grained granularity.

comp_interdependencies (many, few): This in-
dicates the amount of dependencies between the
components in the architecture.

context_switches (many, few): A context switch
can occur in multi threaded systems when data
currently owned by a particular thread is needed by
another thread.

coupling (static, loose): This indicates whether
the components are statically coupled (through
hard references in the source code) or loosely cou-
pled (for instance through an event mechanism).

documentation (good, bad): Indicates the quali-
ty of the documentation of the system (i.e. class di-
agrams and other design documents).

dynamic_binding (high, low): Modern OO lan-

guages allow for dynamic binding. This means that
the program pieces are linked together at run time
rather than at compile time. Programmers often re-
sort to static binding for performance reasons (i.e.
the program is linked together at compile time).

exception_handling (yes, no): Exception han-
dling is a mechanism for handling fault situations
in programs. This variable indicates whether this is
used in the architecture.

implementation_language (C++, Java): This
variable indicates what programming is used or is
going to be used to implement the architecture.

interface_granularity (coarse-grained, fine-
grained): In [5] we introduced a conceptual mod-
el of how to model a framework. One of the as-
pects of this model is to use small interfaces that
implement a role as opposed to the traditional
method of putting many things in a single inter-
face. We refer to these small interfaces as fine-
grained interfaces and to the larger ones as coarse-
grained interfaces. This variable is an indication of
whether fine-grained or coarse-grained interfaces
are used in the architecture.

multiple_inheritance (yes, no): This variable in-
dicates whether multiple inheritance is used in the
architecture design.

nr_of_threads (high, low): Indicates whether
threads are used in the application or not.

Figure 4. Architecture attributes variable definition
08 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

3. SAABNet

Variabili
states of the predecessors. The cleverness of a BBN is that it organizes
the variables in such a way that there are few dependencies (otherwise
the number of conditional probabilities becomes exponentially large).
Without a BBN, all combinations of all variable states would have to be
considered (nearly impossible to do in practice because the number rises
exponentially). In addition to limiting the number of incoming arrows
we also limited the number of states the variables can be in. Most of the
variables in our network only have two states (i.e. good and bad or high
and low etc.). We may add more states later on to provide greater accu-

fault_tolerance (tolerant, intolerant): The abili-
ty of implementations of the architecture to deal
with fault situations.

horizontal_complexity (high, low): We decom-
posed the quality factor comlexity (see figure 6)
into two less abstract forms of complexity (horizon-
tal and vertical complexity). With horizontal com-
plexity the complexity of the aggregation and
association relations between classes is denoted.

memory_usage (high, low): Indicates whether
implementations of the architecture are likely to
use much memory.

responsiveness (good/bad): Gives an indication
of the responsetime of implementations of the ar-
chitecture.

security (secure, unsecure): This variable indi-

cates whether the architecture takes security as-
pects into account.

testability (good, bad): Indicates whether it is
easy to test the system

throughput (good, bad): This variable is an indi-
cation of the ability of implementations of the ar-
chitecture to process data.

understandability (good, bad): This variable in-
dicates whether it is easy for developers to under-
stand the architecture.

vertical_complexity (high, low): Earlier we dis-
cussed horizontal complexity (the complexity of ag-
gregation and association relations between classes).
Vertical complexity measures the complexity of the
inheritance relations between classes.

Figure 5. Quality criteria variable definitions
complexity (high, low): This variable indicates
whether an architecture is perceived as complex.

configuration (good, bad): This indicates the
ability to configure the architecture at runtime (for
compile time configurability see the variable modi-
fiability).

correctness (good, bad): This variable indicates
whether implementations of the architecture are
likely to behave correctly. I.e. whether they will al-
ways give correct output.

flexibility (good, bad): Flexibility is the ability to
adapt to new situations. A flexible architecture can
easily be tuned to new requirements and to chang-
es in its environment.

maintainability (good, bad): the ability to
change the system either by configuring it or by
modifying parts of the code in order to meet new
requirements.

modifyability (good, bad): The ability to modi-
fy an implementation of an architecture on the
source code level.

performance (good, bad): This variable indicates
whether implementations of the architecture per-
form well.

reliability (good, bad): Good relieability in
SAABNet means that the architeture is both safe
and secure.

reusability (good, bad): The ability to reuse parts
of the implementation of an architecture.

safety (safe, not safe): An architecture’s imple-
mentation is safe if it does not affect its environ-
ment in a negative way.

scalability (good, bad): With scalability we refer
to performance scalability. I.e. the system is scal-
able if performance goes up if better hardware is
used.

usability (good, bad): Usability in SAABNet is
defined in terms of performance, configurability
and relieability. I.e. usable architectures are those
architectures that score well on these quality at-
tributes.

Figure 6. Quality factor variable definitions.
ty in Software Systems: the Key to Software Reuse - Licentiate thesis 109

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment

1

racy. A short description of all the variables is given in figure 4, figure 5
and figure 6. For complexity reasons, we omitted a full description of all
the relations between the variables.

3.2 Quantitative Specification

Since quantitative information about the attributes we are modeling
here is scarce, our main method for finding the right probabilities was
mostly through experimentation. Since our assessment did not provide
us with detailed information, we provided the network with estimates of
the conditional probabilities. Since the goal of this network is to provide
qualitative rather than quantitative information, this is not necessarily a
problem.

A complete quantitative specification of our network is beyond the
scope of this paper. A reason for this is that there are simply too many
relations to list here. Our network contains 30+ variables that are linked
together in all sorts of ways. A complete quantitative specification
would have to list close to 200 probabilities. As an illustration we will
show the conditional probabilities of the configurability variable in
SAABNet.

Configurability depends on understandability and coupling. In table
1 the conditional probabilities for the the two states of this variable
(good and bad) are listed. Since there are 2 predecessors with each two
states, there are 4 combinations of predecessor states for each state in
configurability. Since we have two states that is 8 probabilities for this
variable alone. Note that the sum of each column is 1.

The precision for the output of our model is one decimal. Instead of
using the exact probabilities we prefer to interpret the figures as trends
which can be either strong if the differences between the probabilities
are high or weak if the probabilities do not differ much in value

Table 1. Conditional probabilities configurability
understandability good bad
coupling loose static loose static
good 0.9 0.2 0.7 0.1
bad 0.1 0.8 0.3 0.9
10 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

4. SAABNet usage

Variabili
4. SAABNet usage

It is important to realize that any model is a simplification of reality.
Therefore, the output of a BBN is also a simplification of reality. When
we designed our SAABNet network, we aimed to get useful output. I.e.
output that stresses good points and bad points of the architecture.

The output of a BBN consists of a priori probabilities for each state
in each variable. The idea is that a user enters probabilities for some of
the variables (for instance P(implementation_language=Java)=1.0). This
information is then used together with the quantitative specification of
the network to re-calculate all the other probabilities. Since also proba-
bilities other than 1.0 can be entered, the user is able to enter informa-
tion that is uncertain.

Though the output of the network in itself is quantitative, the user
can use this output to make qualitative statements about the architec-
ture (“if we choose the broker architecture there is a risk that the system
will have poor performance and higher complexity“) based on the quan-
titative output.

Sometimes the output of a BBN contradicts with what is expected
from the given input. Contradicting output always can be traced back
to either errors in the BBN, lack of input for the BBN, unrealistic input,
confusion about terminology in the network or a mistake of the user. In
other cases the BBN will give neutral output. I.e. the probabilities for
each state in a certain variable are more or less equal. Likely causes for
this may be that there is not enough information in the network to
favour any of the states or that the variable has no incoming arrows.

If the output is correct, the structure of the BBN can be used to find
proper argumentation for the probabilities of the variables. If for
instance SAABNet gives a high probability for high complexity, the vari-
ables horizontal and vertical complexity (both are predecessors of com-
plexity in SAABNet) and their predecessors can be examined to find out
why the complexity is high. This analysis may also suggest solutions for
problems. If for instance maintainability problems can be traced back to
high horizontal complexity, solutions for bad maintainability will have
to address the high horizontal complexity.

Though the ways in which a BBN can be used is unlimited, we have
identified four types of usage strategies for SAABNet:
ty in Software Systems: the Key to Software Reuse - Licentiate thesis 111

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment

1

� Diagnostic use. One of the uses of SAABNet is that as a diagnostic
tool. When using SAABNet in this way, the user is trying to find
possible causes for problems in an architecture. Usually some
architectual attributes are known and possibly also some quality
criteria are known. In addition there are one or more Quality Fac-
tors which represent the actual problem. If, for instance, the
implementation of an architecture has bad performance, the per-
formance variable should be set to “bad“.

� Impact analysis. Another way to use SAABNet is to evaluate the
consequences of a future change in the architecture on the quality
factors. To do so, the architecture attributes of the future architec-
ture have to be entered as evidence. The network then calculates
the quality criteria and the quality factors that are likely for such
architecture attributes.

� Quality attribute prediction. In this type of use, as much informa-
tion as possible is collected and put in the SAABNet. From this
information, the SAABNet can calculate all the variables that have
not been entered. This is ideal for discovering potential problem
areas in the architecture early on but can also be used to get an
impression of the quality attributes of a future architecture

� Quality attribute fulfillment. The first three approaches all
required an architecture design. Early in the design process when
the design is still incomplete, these approaches may not be an
option. In this stage SAABNet can be used to help choose the
architecture attributes. This can be done by entering information
about the quality factors into SAABNet. The probabilities for all
the architecture attributes are then calculated. This information
can be used to make decisions during the design process. If, for
instance, the architecture has to be highly maintainable, SAAB-
Net will probably give a high probability on single inheritance
since multiple inheritance affects maintenance negatively. Based
on this probability, the design team may decide against the use of
multiple inheritance or use it only when there’s no other possibil-
ity.

The four mentioned usage profiles can be used in combination with
each other. A quality attribute prediction usage of SAABNet can for
instance reveal problems (making it a diagnostic usage). This may be the
12 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

5. Validation

Variabili
starting point to do an impact analysis for solutions for the detected
problems. Alternatively, if there are a lot of problems, the quality
attribute fulfillment strategy may be used to see how much the ideal
architecture deviates from the actual architecture.

5. Validation

As a proof of concept, we implemented SAABNet using Hugin Lite [7]
and applied it to some cases. The tool makes it possible to draw the net-
work and enter the conditional probabilities. It can also run in the so
called compiled mode where evidence can be entered to a network and
the conditional probabilities for each variable’s states are recalculated
(for a complete specification of SAABNet in the form of a Hugin file,
please contact the first author).

All tests were conducted with the same version of the network.

5.1 Case1: An embedded Architecture

For our first case we evaluated the architecture of a Swedish company
that specializes in producing embedded software for hardware devices.
The software runs on proprietary hardware. We were allowed to exam-
ine this company’s internal documents for our cases.

The software, originally written in C, has been rewritten in C++ over
the past years. Most of the architecture is implemented in C++ nowa-
days. The current version of the architecture has recently been evaluated
in what could be interpreted as a peer review. The main goal of this eval-
uation was to identify weak spots in the architecture and come up with
solutions for the found problems. The findings of this evaluation are
very suitable to serve as a testcase for our BBN.

5.1.1 Diagnostic use

The current architecture has a number of problems (which were identi-
fied in the evaluation project). In this case we test whether our network
comes to the same conclusions and whether it will find additional prob-
lems.
ty in Software Systems: the Key to Software Reuse - Licentiate thesis 113

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment

1

Facts/evidence. We know several things about the architecture that can
be fed to our network:

� C++ is used as an implementation language

� The documentation is incomplete and usually is not up to date

� Because of the use of object-oriented frameworks, the class inher-
itance depth is deep.

� Components in the architecture are coarse-grained

� There are many dependencies between the modules and the com-
ponents

� The whole architecture is large and complicated. It consists of
hundreds of modules adding up to hundreds of thousands lines of
code.

� Interfaces are only present in the form of header files and abstract
classes form the frameworks

Table 2. Diagnostic use

Entered evidence
documentation bad
class_inheritance_depth deep
comp_granularity coarse_grained
comp_interdependencies many
complexity high
context_switches few
implementation_language C++
interface_granularity coarse_grained

Output of the network
arch_style layers (0.47)
configurability bad (0.76)
coupling static (0.76)
horizontal_complexity high (0.66)
maintainability bad (0.71)
multiple_inheritance yes (0.77)
vertical_complexity high (0.87)
modifiability bad (0.90)
reusability bad (0.68)
understandability bad (1.0)
14 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

5. Validation

Variabili
� There are very few context switches (this has been a design goal to
increase performance)

Based on these architectual attributes we can enter the evidence listed
in table 2.

Output of the network. In table 2 some of the output variables for this
case are shown. The results clearly show that there is a maintainability
problem. There is a dependency between configurability and maintain-
ability and a dependency between modifiability and maintainability in
figure 3. So, not surprisingly, modifiability and configurability are also
bad in the results. Reusability (depends on understandability,
comp_granularity and coupling) is also bad since all the predecessors in
the network also score negatively. The latter, however, conflicts with the
company’s claims of having a high level of reuse.

In SAABNet, reusability depends on understandability, component
granularity and coupling. Clearly the architecture scores bad on all of
these prerequisites (poor understandability, coarse-grained components
and static coupling) so the conclusion of the network can be explained.
The network only considers binary component reuse. This is not how
this company reuses their code. Instead, when reusing, they take the
source code of existing modules, which are then tailored to the new sit-
uation. In most cases the changes to the source code are limited though.
Another reason why their claim of having reuse in their organization is
legitimate despite the output of SAABNet is that they have a lot of
expert programmers who know a great deal about the system. This
makes the process of adapting old code to new situations a bit easier
than would normally be the case.

The network also gives the layers architectural style the highest prob-
ability (out of four different styles). This is indeed the architectual style
that is used for the device software. As can be deduced from the many
outgoing arrows of this variable in our network, this is an important
variable. Choosing an architectural style influences many other vari-
ables. It is therefore not surprising that it picks the right style based on
the evidence we entered.

5.1.2 Impact analysis

To address the problems mentioned, the company plans to modify their
architecture in a number of ways. The most important architectural
ty in Software Systems: the Key to Software Reuse - Licentiate thesis 115

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment

1

change is to move from a layers based architecture to an architecture
that still has a layers structure but also incorporates elements of the bro-
ker architecture. A broker architecture will, presumably, make it easier
to plug in components to the architecture. In addition, it will improve
the runtime configurability.

Apart from architectural changes, also changes to the development
process have been suggested. These changes should lead to more accu-
rate documentation and better test procedures. Also modularization is
to be actively promoted during the development process. In this test we
used the impact analysis strategy to verify whether the predicted quality
attributes match the expected result of the changes.

Facts/evidence.

� C++ is still used as a primary programming language.

� Documentation will be better than it used to be because of the
process changes.

� The inheritance depth will probably not change since the frame-
works will continue to be used.

� The component granularity will still be coarse-grained.

Table 3. Impact analysis

Entered evidence
arch_style broker
class_inhertance_depth deep
comp_granularity coarse_grained
interface_granularity coarse_grained
context_switches few
documentation good
implementation_language C++

Output of the network
configurability good (0.52)
maintainability good (0.64)
modifiability good (0.66)
reusability bad (0.65)
understandability good (0.64)
coupling loose (0.54)
correctness good (0.75)
comp_interdependencies few (0.79)
16 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

5. Validation

Variabili
� The component interfaces will remain coarse-grained since the
frameworks are not affected by the changes.

� There are still very few context switches.

� The architecture is now a broker architecture.

Output of the network. One of the reasons the broker architecture has
been suggested was that it would reduce the number of interdependen-
cies. SAABNet confirms this with a high probability for few component
interdependencies. However, the network does not give such a high
probability for loose coupling (as could be expected from applying a
broker architecture). The reason for this is that the involved compo-
nents are coarse-grained. While the relations between those components
are probably loose, the relations between the classes inside the compo-
nents are still static.

A second reason for using the broker architecture was to increase
configurability. In particular, it should be possible to link together com-
ponents at runtime instead of statically linking them at compiletime.
The low score for good configurability is a bit at odds with this. It is an
improvement of the higher probability for bad configurability in the
previous case, though. The reason that it doesn’t score very high yet is
that the influencing variables, understandability and coupling, don’t
score high probabilities for good and loose. The improved documenta-
tion did of course have a positive effect on understandability but it was
not enough to compensate for the probability on high complexity. So,
according to SAABNet, configurability will only improve slightly
because other things such as complexity are not addressed sufficiently by
the changes.

5.2 Case2: Epoc32

Epoc32 is an operating system for PDAs (personal digital assistants) and
mobile phones. It is developed by Symbian. The Epoc32 architecture is
designed to make it easy for developers to create applications for these
devices and too make it easy to port these applications to the different
hardware platforms EPOC 32 runs on. Its framework provides GUI
constructs, support for embedded objects, access to communication
abilities of the devices, etc.
ty in Software Systems: the Key to Software Reuse - Licentiate thesis 117

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment

1

To learn about the EPOC 32 architecture we examined Symbian’s
online documentation [17]. This documentation consisted of program-
ming guidelines, detailed information on how C++ is used in the archi-
tecture and an overview of the important components in the system.

5.2.1 Quality attribute prediction

In this case we followed the quality attribute strategy to examine
whether the design goals of the EPOC 32 architecture are predicted by
our model given the properties we know about it. The design goals of
the EPOC 32 architecture can be summarized as follows:

� It has to perform well on limited hardware

� It has to be small to be able to fit in the generally small memory of
the target hardware

� It must be able to recover from errors since applications running
on top of EPOC are expected to run for months or even years

� The software has to be modular so that the system can be tailored
for different hardware platforms

� The software must be reliable, crashes are not acceptable.

Table 4. Quality attribute prediction

Entered evidence
class_inheritance_depth deep
comp_granularity coarse-grained
comp_interdendencies few
exception_handling yes
implementation_language c++
interface_granularity coarse-grained
memory_usage low
multiple_inheritance no

Output of the network
complexity low (0.62)
configurability high (0.55)
correctness good (0.73)
fault_tolerance tolerant (0.70)
flexibility good (0.55)
maintainability good (0.65)
modifiability good (0.66)
reliability reliable (0.74)
18 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

5. Validation

Variabili
Facts/evidence. We assessed the EPOC architecture using the online
documentation [17]. From this documentation we learned that:

� A special mechanism to allocate and deallocate objects is used

� Multiple inheritance is not allowed except for abstract classes with
no implementation (the functional equivalent of the interface
construct in Java).

� The depth of the inheritance tree can be quite deep. There is a
convention of putting very little behavior in virtual methods,
though. This causes the majority of the code to be located in the
leafs of the tree. The superclasses can be seen as the functional
equivalent of Java interfaces.

� A special exception handling mechanism is used. C++ default
exception handling mechanism uses too much memory so the
EPOC 32 OS comes with its own macro based exception han-
dling mechanism.

� Since the system has to operate in devices with limited memory
capacity, the system uses very little memory. In several places
memory usage was a motivation to choose an otherwise less than
optimal solution (exception handling, the way DLLs are linked)

� Components are medium sized.

� There are few dependencies between components. In particular
circular dependencies are not allowed.

� Generally components can be replaced with binary compatible
replacements which indicates that the components are loosely
coupled.

Output of the network. The output of the network confirms that the
right choices have been made in the design of the EPOC 32 operating
system. Our network predicts that low complexity is probable, high reli-
ability is also probable. Furthermore the system is fault tolerant (which
partially explains reliability.). The system also scores well on maintain-

reusability bad (0.64)
usability good (0.65)
understandability good (0.52)

Table 4. Quality attribute prediction
ty in Software Systems: the Key to Software Reuse - Licentiate thesis 119

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment

1

ability and flexibility. A surprise is the low score on reusability. Unlike
the previous case, the EPOC 32 features so called binary components.
What obstructs their reuse is the fact that the components are rather
large and the fact that the interfaces are also coarse-grained.

Also of influence is the fifty fifty score on understandability (good
understandability is essential for reuse). The latter is probably the cause
of a lack of evidence, not because of an error in the network. The avail-
able evidence is insufficient to make meaningful assumptions about
understandability. The reason for the bad score on reusability lies in the
fact that even though EPOC components are reusable within the
EPOC system, they are not reusable in other systems (such as the Pal-
mOS or Windows CE).

5.2.2 Quality attribute fulfillment

Though its certainly interesting to see that the architectural properties
predict the design goals, it is also interesting to verify whether the design
goals predict the architectual properties. To do so, we applied the qual-
ity attribute fulfillment strategy.

Facts/evidence. In this case we entered properties that were presumably
wanted quality attributes for the EPOC architecture:

Table 5. Quality attribute fulfillment

Entered evidence
configurability good
fault_tolerance tolerant
memory_usage low
modifiability good
performance good
reliability reliable

Output of the network
class_inheritance_depth not deep (0.52)
comp_granularity coarse-grained (0.83)
comp_interdendencies few (0.75)
exception_handling yes (0.80)
implementation_language java (0.66)
interface_granularity fine-grained (0.58)
multiple_inheritance no (0.77)
20 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

6. Related Work

Variabili
� Fault tolerance and reliability are both important for EPOC since
EPOC systems are expected to run for long periods of time. Sys-
tem crashes are not acceptable and the system is expected to
recover from application errors.

� Since the system has to operate on relatively small hardware, per-
formance and low memory usage are important

� Since the system has to run on a wide variety of hardware (varying
in processor, memory size, display size), the system must be tailor-
able (i.e. configurability and modifiability should be easy)

Output of the network. It is unreasonable to expect our network to
come up with all the properties of the EPOC 32 OS based on this
input. The output however once again confirms that design choices for
EPOC 32 make sense. One of the interesting things is that our network
suggests a high probability on Java as a programming language. While
EPOC 32 was programmed in C++, its designers tried to mimic many
of Java’s features (also see [17]). In particular they mimicked the way
Java uses interfaces to expose API’s (using abstract classes with virtual
methods), they used an exception handling mechanism, they created a
mechanism for allocating and deallocating memory which is safer than
the regular C++ way of doing so. Considering this, it is understandable
that our network picked the wrong language.

SAABNet also predicts coarse-grained components which is correct.
In addition to that it gives a high probability for the presence of excep-
tion handling which is also correct. The network is also correct in pre-
dicting no multiple inheritance and few component interdependencies.
It is wrong, however, in predicting an low inheritance depth and pre-
dicting fine-grained interfaces. The latter two errors can easily be
explained since, as we pointed out in the previous case, virtual classes in
EPOC can be compared to Java interfaces. This makes the inheritance
hierarchy much easier to understand.

6. Related Work

Important work in the field of BBNs is that of Judea Perl [16]. In this
book the concept of belief networks is introduced and algorithms to
perform calculations on BBNs are presented. Other important work in
ty in Software Systems: the Key to Software Reuse - Licentiate thesis 121

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment

1

this area includes that of Drudzel & Van der Gaag [4] where methodol-
ogy for quantification of a BBN is discussed.

We were not the first to apply belief networks to software engineer-
ing. In [14] and [15], BBNs are used to assess system dependability and
other quality attributes. Contrary to our work, their work focuses on
dependability and safety aspects of software systems.

The qualitative network we created could be perceived as a complex
quality requirement framework as the one presented by McCall [12].
Apart from our model being more complex, there are some structural
differences with McCall. In our model abstract attributes like flexibility
and understandability are decomposed into less abstract attributes (fol-
low the arrows in reverse direction). McCall’s decomposition is far more
simple than ours is: it only has three layers and there are no connections
within one layer. We think that his decomposition is too simplistic for
our goal which is to make useful qualitative assessments about software
architecture using a BBN. Mc Call’s decomposition does not model
independencies very well (which essential for a BBN). Many criteria like
“modularity“ show up in the decomposition of nearly every quality fac-
tor. In a BBN that would lead to many incoming arrows. We feel that
our model may be a better decomposition because it tries to find mini-
mal decompositions and groups simple quality criteria into more
abstract ones. An example of this is our decomposition of complexity
into vertical and horizontal complexity. However, continued validation
is required to prove our position.

Lundberg et al. provide another decomposition of a limited number
of quality attributes [9]. Like McCall’s decomposition, their decomposi-
tion is a hierarchical decomposition. We adopted and enhanced their
decomposition of performance into throughput and responsiveness.
However, we did not use their decomposition of modifiability into
maintainability and configurability as we needed a more detailed
decomposition. Rather we adopted Swanson’s decomposition of mainte-
nance into perfective, adaptive and corrective maintenance [18]. We
mapped the notion of perfective and corrective maintenance onto mod-
ifiability while adaptive maintenance is mapped onto configurability. A
reason for this difference in decomposition is that we prefer to think of
modifiability as code modifications and of configurability as run time
modifications.

The SAABNet technique, we created, would fit in nicely with exist-
ing development methods such as the method presented in [1] which
22 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

7. Conclusion

Variabili
was developed in our research group. In this design method, an architec-
ture is developed in iterations. After each iteration, the architecture is
evaluated and weaknesses are identified. In the next iteration the weak-
nesses are addressed by applying transformations to the architecture.
Our technique could be used to detect weak spots earlier so that they
can be addressed while it is still cheap to transform the architecture.

SAABNet could also be used in spiral development methods, like
ATAM (Architecture Tradeoff Analysis Method) [10], that also rely on
assessments. It is however not intended to replace methods like SAAM
[11] which generally require an architecture description since SAABNet
does not require such a description. Rather SAABNet could be used in
an earlier phase of software development.

7. Conclusion

In this paper we have presented SAABNet, a technique for assessing
software architectures early in the development process. Contrary to
existing techniques this technique works with qualitative knowledge
rather than quantitative knowledge. Because of this, our technique can
be used to evaluate architectures before metrics can be done and can
even assist in designing the architecture.

We have evaluated SAABNet by doing four small case studies, each
using one of the four usage strategies we presented in section 4.. In each
of the cases we were able to explain the output of SAABNet. There were
some deviations with our cases. The most notable one was the low score
on reusability in both evaluated systems. We explained this by pointing
out that in both cases the companies idea of reuse is different from what
SAABNet uses. In general the output of SAABNet is quite accurate,
given the limited input we provided in our cases. This suggests that
extending SAABNet may allow for even more accurate output.

The sometimes rather obvious nature of the conclusions of SAABNet
are a result of the fact that the current version of our belief network is
somewhat simple. We intend to extend SAABNet in the future to allow
for more detailed conclusions. We also intend to develop a tool around
SAABNet that makes it more easier to interact with it. A starting point
for building such a tool are the usage strategies we identified. Although
our small case study shows that this is a promising technique, a larger,
preferably industrial, case study is needed to validate SAABNet.
ty in Software Systems: the Key to Software Reuse - Licentiate thesis 123

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment

1

8. References

[1] J. Bosch, P. Molin, “Software Architecture Design: Evaluation and
Transformation“, in Proceedings of the 1999 IEEE Conference on
Engineering of Computer Based Systems. March 1999.
[2] F. Buschmann, C. Jäkel, R. Meunier, H. Rohnert, M. Stahl,
“Pattern-Oriented Software Architecture - A System of Patterns“, John
Wiley & Sons, 1996.
[3] J. Daly, A. Brooks, J. Miller, M. Roper, M. Wood, “The effect of
inheritance on the maintainability of object oriented software: an
empirical study“, Proceedings of the international conference on
software maintenance, pp. 20-29, IEEE computer Society Press, Los
Alamitos, CA, USA, 1995.
[4] M. J. Drudzel, L. C. van der Gaag, “Elicitation for Belief Networks:
Combining Qualitative and Quantitative Information“, Proceedings of
the 11th Annual Conference on Uncertainty in Artificial Intelligence
(UAI-95), pp. 141-148, Montreal August 1995.
[5] J. van Gurp, J. Bosch, “Design, Implementation and Evolution of
Object Oriented Frameworks: Concepts & Guidelines“, submitted July
1999.
[6] J. Gosling, B. Joy, G. Steele, “The Java Language Specification“,
Addison Wesley, 1996. Gamma, R. Helm, R. Johnson, J. Vlissides,
“Design Patterns - Elements of Reusable Object Oriented software”,
Addison-Wesley, 1995.
[7] Hugin “Hugin Expert A/S - Homepage”, http://www.hugin.dk.
[8] Hugin, “General Information”, http://www.hugin.dk/gen-inf.html.
[9] L. Lundberg, J. Bosch, D. Häggander, P. O. Bengtsson, “Quality
Attributes in Software Architecture Design“, Proceedings of the
IASTED 3rd International Conference on Software Engineering and
Applications, pp. 353-362, October 1999.
[10] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J.
Carriere, “The architecture Tradeoff Analysis Method“, Proceedings of
ICECCS, August 1998, Monterey, CA.
[11] R. Kazman, L. Bass, G. Abowd, M. Webb, “SAAM: A Method for
Analyzing the Properties Software Architectures”, pp. 81-90,
Proceedings of ICSE 16, May 1994.
[12] J. A. McCall, “Quality Factors“, encyclopedia of Software
Engineering, vol 2 O-Z pp. 958-969, John Wiley & Sons New York
1994.
[13] Microsoft Research, “Machine Learning and Applied Statistics“,
http://research.microsoft.com/research/mlas.
24 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

8. References

Variabili
[14] M. Neil, B. Littlewood, N. Fenton, “Applying Bayesian Belief
Networks to Systems Dependability Assessment“, Proceedings of Safety
Critical Systems Club Symposium, Leeds, Springer-Verlag February
1996.
[15] M. Neil, N. Fenton, “Predicting Software Quality using Bayesian
Belief Networks“, Proceedings of 21st Annual Software Engineering
Workshop, 1996.
[16] J. Pearl, “Probabilistic Reasoning in Intelligent Systems“, Morgan
Kaufmann Publishers, Inc. San Mateo 1988.
[1 7] Symb i a n , “ E POC Wor l d L ib r a r y” , h t tp : / /
developer.epocworld.com/EPOClibrary/EPOClibrary.html.
[18] E. B. Swanson, “The dimensions of maintenance“, proceedings of
the 2nd international conference on software engineering, pp. 492-497,
IEEE Computer Society Press, Los Alamitos 1976.
ty in Software Systems: the Key to Software Reuse - Licentiate thesis 125

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment

1
26 Variability in Software Systems: the Key to Software Reuse - Licentiate thesis

PAPER IV

On the Notion of Variability in
Software Product Lines

Mikael Svahnberg, Jilles van Gurp, Jan Bosch

Submitted to Information & Software Technology
Variabili

IV

Abstract. Software product lines are used in companies to provide a set of
reusable assets for related groups of software products. Generally a software
product line provides a common architecture and reusable code for software
product developers. In this article we focus on mechanisms that help
developers vary the architecture and behavior of a software product line to
create individual products. We provide the reader with a framework of
terminology and concepts that help understand the concept of variability
better. In addition, we present a number of variability mechanisms in the
context of this framework. Finally, we provide a method for incorporating
variability into software product lines.

1. Introduction

Over the decades, variability in software assets has become increasingly
important in software engineering. Whereas software systems originally
were relatively static and it was accepted that any required change would
demand, potentially extensive, editing of the existing source code, this is
no longer acceptable for contemporary software systems. Instead,
although covering a wide variety in suggested solutions, newer
approaches to software design share as a common denominator that the
point at which design decisions concerning the supported functionality
and quality are made is delayed to later stages.
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 127

On the Notion of Variability in Software Product Lines

1

A typical example of delayed design decisions is provided by software
product lines. Rather than deciding on what product to build on fore-
hand, in software product lines, a software architecture and set of com-
ponents is defined and implemented that can be configured to match
the requirements of a family of software products. A second example is
the emergence of software systems that dynamically can adopt their
behaviour at run-time, either by selecting alternatives embedded in the
software system or by accepting new code modules during operation,
e.g. plug-and-play functionality. These systems are required to contain
so-called ‘dynamic software architectures’ [Oreizy et al. 1999].

The consequence of the developments described above is that
whereas earlier decisions concerning the actual functionality provided
by the software system were made during requirement specification and
had no effect on the software system itself, new software systems are
required to employ various variability mechanisms that allow the soft-
ware architects and engineers to delay the decisions concerning the vari-
ants to choose to the point in the development cycle that is optimizes
overall business goals. For example, in some cases, this leads to the situ-
ation where the decision concerning some variation points is delayed
until run-time, resulting in customer- or user-performed configuration
of the software system.

Figure 1 illustrates how the variability of a software system is con-
strained during development. When the development starts, there are
no constraints on the system (i.e. any system can be built). During
development the number of potential systems decreases until finally at
run-time there is exactly one system (i.e. the running and configured
system). At each step in the development, design decisions are made.
Each decision constrains the number of possible systems. When soft-
ware product lines are considered, it is beneficial to delay some decisions
so that products implemented using the shared product line assets can
be varied. We refer to these delayed design decisions as variability
points.

1.1 Software Product Lines

The goal of a software product line is to minimize the cost of developing
and evolving software products that are part of a product family. A soft-
ware product line captures commonalities between software products
for the product family. By using a software product line, product devel-
28 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

1. Introduction

Variabili
opers are able to focus on product specific issues rather than issues that
are common to all products.

The process of creating a specific software product using a software
product line is called product instantiation. Typically there are multiple
relatively independent development cycles in companies that use soft-
ware product lines: one for the software product line itself (often
referred to as domain engineering). Software product lines are never fin-
ished, rather they evolve during use. And one for each product instanti-
ation.

Instantiating a software product line typically means taking a snap-
shot of the current software product line and using that as a starting
point for developing a product. Basically, there are two steps in the
instantiation:

� Selection. In this phase the software product line is stripped from
all unneeded functionality. Where possible pre-implemented vari-
ants are selected for the variability points in the software product
line.

� Extension. In this phase additional variants are created for the
remaining variability points.

From this we can see that there are two conflicting goals for a prod-
uct line. On one hand a product line has to be flexible in order to allow
for diverse product line instantiations. On the other hand a product line
has to provide functionality that can be used out of the box in instances.

1.2 Goal of this article

The increased use of variability mechanisms is a trend that has been
present in software engineering for a long time, but typically ad-hoc
solutions have been proposed and used. To the best of our knowledge,
few attempts have been made to organize the existing approaches and
mechanisms in a framework or taxonomy, nor suggested design princi-
ples for selecting appropriate techniques for achieving variability. The
aim and contribution of this paper is to address this problem. In the
remainder of this paper, we present a terminology for variability con-
cepts, dimensions and aspects of variability, fundamental mechanisms
for achieving variability and instantiations of these mechanisms at dif-
ferent levels, i.e. variability techniques. We present examples from a
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 129

On the Notion of Variability in Software Product Lines

1

number of industrial cases in which we have been involved to illustrate
the variability techniques that are presented.

The remainder of this article is organized as follows. We introduce
features and variability in Section 2 and 3.. In Section 4 we introduce
our cases. We discuss a number of general patterns that we have found
applicable in the development of software product lines in Section 5. In
Section 6 we discuss a number of mechanisms based on these patterns.
Section 7 discusses guidelines for choosing the right mechanism. We
present related work in Section 8 and conclude our paper in Section 9.

2. Features

Products in a product family tend to vary. The differences between the
products can be described in terms of features. To better understand
variability we need to be able to describe these differences on a high
level. We believe that the feature construct is helpful for making such
descriptions. In this section we introduce the concept of a feature and
provide a convenient notation for describing systems in terms of fea-
tures.

Figure 1. The Variability Funnel with early and delayed variability

Possible systems

Running code

Linked code

Compiled code

Source code

Design Documentation

Architecture Description

Requirement Specification

User expectations, technologies

1

Possible systems

1

30 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

2. Features

Variabili
2.1 Definition of feature

The Webster dictionary provides us with the following definition of a
feature: “3 a : a prominent part or characteristic b : any of the properties (as
voice or gender) that are characteristic of a grammatical element (as a pho-
neme or morpheme); especially: one that is distinctive”. In the book on
software product lines, written by co-author of this paper Jan Bosch
[Bosch 2000], this definition is specialized for software systems: “a logi-
cal unit of behavior that is specified by a set of functional and quality
requirements“. The point of view taken in the book is that a feature is a
construct used to group related requirements (“there should at least be an
order of magnitude difference between the number of features and the num-
ber of requirements for a product line member“).

In other words, features are a way to abstract from requirements. It is
important to realize there is a n-to-n relation between features and
requirements. This means that a particular requirement (e.g. a perfor-
mance requirement) may apply to several features in the feature set and
that a particular feature may meet more than one requirement.
To make reasoning about features a little easier, we provide the follow-
ing categorization:

� External Features. These are features offered by the target plat-
form of the system. While not directly part of the system, they are
important because the system uses them and depends on them.
E.g. in an email client, the ability to make TCP connections to
another computer is essential but not part of the client. Instead
the functionality for TCP connections is typically part of the OS
on which the client runs. Our choice of introducing external fea-
tures is further motivated by [Zave & Jackson 1997]. In this work
it is argued that requirements should not reflect on implementa-
tion details (such as platform specific features). Since features are
abstractions from platform agnostic requirements we need exter-
nal features to link requirements to features.

� Mandatory Features. These are the features that identify a
product. E.g. the ability type in a message and send it to the smtp
server is essential for an email client application.
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 131

On the Notion of Variability in Software Product Lines

1

� Optional Features. These are features that, when enabled, add
some value to the core features of a product. A good example of
an optional feature for an email client is the ability to add a signa-
ture to each message. It is in no way an essential feature and not
all users will use it but it is nice to have it in the product.

� Variant Features. A variant feature is an abstraction for a set of
related features (optional or mandatory). An example of a variant
feature for the email client might be the editor used for typing in
messages. Some email clients offer the feature of having a user
configurable editor.

The last three categories of features are also listed in [Griss et al.
1998]. The reason we added the category of external features is that we
need to be able to reason about the context in which a system operates.

2.2 Feature Interaction

Features are not independent entities [Bosch 2000]. If they were, there
would be no good reason to bundle them into a product. When bun-
dling features, the sum of the parts is larger than the individual parts.
E.g. the highly controversial browser integration in the windows 98
operating system is more valuable than the individual products (win-
dows 95 and internet explorer 4.0).

Feature interaction is a well-known problem in specifying systems. It
is virtually impossible to give a complete specification of a system using
features because the features cannot be considered independently. Add-
ing or removing a feature to a system has an impact on other features. In
[Gibson 1997], feature interaction is defined as a characteristic of “a sys-
tem whose complete behavior does not satisfy the separate specifications of all
its features”. Gibson defines features as “requirements modules and the
units of incrementation as systems evolve“. During each incremental evolu-
tion step of the system, features are added. Because of feature interac-
tion, other, already implemented features may be affected by the
changes. As a consequence, some features cannot be considered inde-
pendently of the system.

In [Griss 2000], the feature interaction problem is characterized as
follows: “The problem is that individual features do not typically trace
directly to an individual component or cluster of components - this means, as
a product is defined by selecting a group of features, a carefully coordinated
32 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

3. Variability in Software Product Lines

Variabili
and complicated mixture of parts of different components are involved.“.
This applies in particular to so-called crosscutting features (i.e. features
that are applicable to classes and components throughout the entire sys-
tem).

2.3 Notation

The way features interact, can be modelled by specifying the rela-
tions between them. In [Griss et al. 1998] a UML based notation is
introduced for creating feature graphs. We use an extended notation
(see example in Figure 2) that supports the following constructs:

� Composition. This construct is used to group related features.

� Optional feature. This construct is used to indicate that a particu-
lar feature is optional.

� Feature specialization (OR and XOR).

� External feature (not in the notation of [Griss et al. 1998]).

Apart from the novel external feature construct, we have added an
indication of the moment of binding the variability point to a specific
variant (also see Section 3.1). E.g. the mail client supports two run-time
platforms (an external feature). The decision as to which platform is
going to be used has to be made at compile-time. In the case of the sig-
nature file option, the indication is very relevant. Here the developer has
the option of either compiling this feature into the product or use a
runtime plugin mechanism. The indication runtime on this feature
indicates that the latter mechanism should be used.

In Figure 2 we have provided an example of how this notation can be
used to model a fictive mail client. Even in this high level description it
is clear where variability is needed. We believe a notation like this is use-
ful for recognizing and modelling variability in a system.

3. Variability in Software Product Lines

In this section we introduce the concepts of software product lines and
variability in more detail. Related work (e.g. [Griss 2000]) suggests that
modelling variability in software product lines is essential for building a
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 133

On the Notion of Variability in Software Product Lines

1

Figure 2.
Exam

ple feature graph

M
ailC

lient

T
ype

M
essage

S
end

M
essage

R
eceive

M
essage

P
op3

IM
A

P

InternalE
ditor

E
dit

S
ignature

file

runtim
e

runtim
e

V
I

E
m

acs

T
C

P
C

onnection

anE
xternalF

eature

aF
eature

or
specialization

xor
specialization

com
position

optionalfeature

runtim
e

R
untim

e
platform

Linux
w

in32 com
piletim

e

34 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

3. Variability in Software Product Lines

Variabili
flexible architecture. Yet, the concept of variability is generally not
defined in great detail. We aim to address this by providing a conceptual
framework for reasoning about variability.

3.1 Variability

Variability is the ability to change or customize a system. Improving
variability in a system implies making it easier to do certain kinds of
changes. It is possible to anticipate some types of variability and con-
struct a system in such a way that it facilitates this type of variability.
Unfortunately there always is a certain amount of variability that cannot
be anticipated.

Reusability and flexibility have been the driving forces behind the
development of such techniques as object orientation, object oriented
frameworks and software product lines. Consequently these techniques
allow us to delay certain design decisions to a later point in the develop-
ment. With software product lines, the architecture of a system is fixed
early but the details of an actual product implementation are delayed
until product implementation. We refer to these delayed design deci-
sions as variability points.

Variability points can be introduced at various levels of abstraction:

� Architecture Description. Typically the system is described
using a combination of high-level design documents, architecture
description languages and textual documentation.

� Design Documentation. At this level the system can be
described using the various UML notations. In addition textual
documentation is also important.

� Source Code. At this level, a complete description in the form of
source code is created.

� Compiled Code. Source code is converted to compiled code
using a compiler. The results of this compilation can be influ-
enced by using pre-processor directives. The result of compilation
is a set of machine dependent object files (in the case of C++).

� Linked Code. During the linking phase the results of the compi-
lation phase are combined. This can be done statically (at compile
time) or dynamically (at run-time).
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 135

On the Notion of Variability in Software Product Lines

1

� Running Code. During execution, the linked system is started
and configured. Unlike the previous representations, the running
system is dynamic and changes all the time.

The various abstraction levels are also linked to different points in
the development. However these points in time tend to be technology
specific. If for instance an interpreted language is used, run-time applies
to compiled, linked and running code whereas in a traditional language
like C run-time is associated with running code and linking code
(assuming dynamic linking is used). Compilation happens before deliv-
ery, in that case. Typically a system is developed using the phases from
the waterfall model. When considering variability, some phases of this
model are not so relevant (testing, maintenance) while others need to be
considered in more detail. In Figure 3 we have outlined the different
transformations a system goes through during development. During
each of these transformations, variability can be applied on the represen-
tation subject to the transformation. Also note that we have two addi-
tional levels of representation compared with the ones listed above.

Figure 3. Representation & transformation processes

User input, technology, expectations

Requirement Specification

Architecture Description

Design Documentation

Source Code

Compiled Code

Linked Code

Running Code

Requirement Collection

Architecture Design

Detailed Design

Implementation

Compilation

Linking

Execution

Transformation ProcessSystem Representation

User Actions
36 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

3. Variability in Software Product Lines

Variabili
However we don’t consider these representations concrete enough to
consider them when discussing variability points and techniques.

Rather than an iterative process this is a continuing, concurrent pro-
cess in the case of software product lines (i.e. each of the representations
is subject to evolution which triggers new transformations). A software
product line does not stop developing until it is obsolete (and is not
used for new products anymore). Until that time, new requirements are
put on and consequently designed and implemented into the software
product line. In a case we observed in a Swedish company, each product
was developed with the version of the software product line that was
available at that time meaning that it was rare that two products were
developed with the same version of the product line. Typically, at the
end of a product development cycle, the product line would have
changed also (due to new requirements that were applied to both the
product and the product line).

If we recall Figure 1, we see that early in the development all possible
systems can be built. Each step in the development constrains the set of
possible products until finally at run-time there is exactly one system.
Variability points help delay this constraint, thus making it possible to
have greater variability in the later stages of development. Variability can
be introduced at various levels of abstraction. We distinguish the follow-
ing three states for a variability point in a system:

� Implicit. If variability is introduced at a particular level of
abstraction that means that at higher levels of abstraction this var-
iability is also present. We call this implicit variability.

� Designed. As soon as the variability point is made explicit it is
denoted as designed. Variability points can be designed as early as
the architecture design.

� Bound. The purpose of designing a variability point is to be able
to later bind this variability point to a particular variant. When
this happens the variability point is bound.

In addition we use the terms open and closed in relation to the
abstraction levels. An open variability point means that it is still possible
to add new variants to the system. A closed variability point on the
other side means that it is no longer possible to add variants. E.g. if we
consider a system where modules conforming to a certain interface can
be compiled into the system, the variability is designed into the system
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 137

On the Notion of Variability in Software Product Lines

1

during detailed design (where the interface is specified). The variability
point is bound at link time when a compiled module is linked to the
variability point. Up to the linking phase the variability point is consid-
ered to be open (before the detailed design it is implicit however). After
the linking phase it is no longer possible to introduce new modules into
the system, so the variability point is closed after linking (i.e. in order to
introduce new variants the system will have to be linked again).

It is also possible to have a variability point that is closed before it is
bound. This means that, for instance, at link time the number of vari-
ants is fixed but the variant that is going to be used is not bound until
run-time. In the extreme case the variability point is bound when it is
designed into the system. I.e. the variants are already known when the
variability point is introduced.

3.2 Features and Variability

As we have seen earlier there are different abstraction levels in a software
product line: Architecture Description, Design Documents, Source
code, Compiled code, Linked code, Running system. These abstraction
levels are also applicable for the organization of features. Variability at
each abstraction level can be thought of as a change in the correspond-
ing feature set.

In Figure 4 (we left out the top two representations from Figure 3
since they are not very explicit) the relations between features at differ-
ent abstraction levels is illustrated. At each level there are groups of fea-
tures (e.g. a feature graph such as in Figure 2).

The general principle is that a single feature at a particular level of
abstraction is specialized into a group of less abstract features in the
lower level. In the worst case this leads to a feature explosion as in Figure
4. Strictly spoken, the decomposition as presented in Figure 4 is incor-
rect, since there will always be some overlap in features. The reason for
this is feature interaction (also see Section 2.2).

Apart from an abstraction dimension, there also is a time dimension.
Over time the feature tree changes and evolves. Features are added,
changed or even removed at different abstraction levels. Changes at
higher abstraction levels are conceptually easier to understand but are
also harder because they generally cause a lot of changes at lower
abstraction levels. Changes at lower levels of abstraction require more
38 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

3. Variability in Software Product Lines

Variabili
A
rc

hi
te

ct
ur

e
D

es
cr

ip
ti

on

D
es

ig
n

D
oc

um
en

ta
ti

on

So
ur

ce
C

od
e

C
om

pi
le

d
C

od
e

L
in

ke
d

C
od

e

R
un

ni
ng

Sy
st

em

G
ro

up
of

F
ea

tu
re

s

S
pe

ci
al

iz
at

io
n

in
di

vi
du

al
re

qu
ir

em
en

ts

Fi
gu

re
 4

.
T

he
 F

ea
tu

re
 T

re
e:

 fe
at

ur
es

 o
n

on
e

le
ve

l d
ec

om
po

se
 in

to
 m

ul
ti

pl
e

fe
at

ur
es

 in
 lo

w
er

 le
ve

ls
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 139

On the Notion of Variability in Software Product Lines

1

knowledge of the system but are also cheaper because there are less side
effects.

Another thing that changes over time is the representation of the sys-
tem. During the development process different representations are used
for the system. During architecture design, both ADLs and written text
are used to describe the system. During this phase, developers don’t
worry too much about less abstract things such as algorithms and low-
level implementation details. Probably the lower half of the feature tree
has not even been established. Later in the development phase, the
attention shifts to lower abstraction levels. Since high-level changes are
expensive, few things are changed in the more abstract parts of the sys-
tem.

A software product line can be seen as a partial implementation of a
feature tree such as presented in Figure 4. The open spots in the tree can
be thought of as variability points where product specific variants can be
added. The conceptual model in Figure 4 allows us to reason about a
few common problems:

Representation mismatch. During development attention focus shifts
from abstract to more concrete things. The representations used to
model the abstract part are different from those used later on and conse-
quently there are synchronization problems between the different repre-
sentations when there are changes. In many organizations the code is
the most accurate documentation of the system. All more abstract repre-
sentations are either out dated or even non-existent. Variability on a
more abstract level is still possible (if it was designed into the system)
but now requires that the abstract parts of the system are reverse engi-
neered from the code base.

Feature interaction. Feature interaction means that feature changes can
have unexpected results on other features in the system. Feature interac-
tion in the model in Figure 4 would mean that two independent fea-
tures on one abstraction level are specialized into two overlapping sets of
features on the abstraction level below. Since it is a very natural thing to
do, because of reuse opportunities, this leads to feature interaction for
nearly every feature. Therefore features that appear to be conceptually
independent on a high level of abstraction are not necessarily indepen-
dent on lower levels of abstraction.

A related problem to feature interaction is code tangling. Because
features interact and therefore depend on each other, it is often difficult
40 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

3. Variability in Software Product Lines

Variabili
to consider feature implementations separately (also see Section 2.2).
This is a problem when features need to be changed, removed or added
to a system. In the cases we observed it was very common that over time
all sorts of dependencies were created between the different modules in
the system. We believe that these dependencies are a reflection of the
feature interaction problem.

Separation of concern. During the development process, the system is
organized into packages, classes and components. This organization
helps to separate concerns and thus makes it easier to understand the
system. Unfortunately, there is no optimal separation of concerns,
which means that some concerns are badly separated in the system.
Some features, for instance, involve more than one class (crosscutting
feature). Consequently maintenance on such a feature will affect more
than one class. Another problem is that the organization is static. This
means that it is hard to change the structure of the system in unplanned
ways.

The main reason software product lines are used is that they some-
how reduce the cost of developing new products in a certain domain.
For this to be possible a software product line has to be able to do three
things:

� It has to be flexible enough to easily support the diverse products
in the software product line domain.

� It has to provide reusable implementation for parts that are the
same in each product.

� It has to be able to absorb new features and functionality from
individual product implementations if they are found useful for
other products.

The before mentioned problems (representation mismatch, feature
interaction and separation of concern) need to be addressed to fully
ensure that these goals are fulfilled. Existing literature on feature model-
ling [Griss et al. 1998], suggests that it is not worthwhile to attempt to
create complete full feature graphs of a system. Rather they suggest that
the modellers focus on modelling the features that are subject to change.
This also seems like a good approach for software product lines. By
modelling the points in the system where change is needed, the system
can be structured in such a way that change is facilitated. This leads to a
better separation of concern and helps to avoid feature interaction. The
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 141

On the Notion of Variability in Software Product Lines

1

identified spots where changeability is needed, translate to variability
points in the system.

4. Cases/Examples

In Section 5 and 6. we present patterns in how variability is solved and
the actual mechanisms available for introducing variability. These obser-
vations are based on a number of industry cases, and the mechanisms
are also exemplified with descriptions from these industry cases. In this
section, we briefly present the cases used in this paper. The cases used
are:

� The EPOC Operating System

� Axis Communications and their Product Line

� Ericsson Software Technology, and their Billing Gateway product

� The Mozilla Web browser

Of these cases, we have hands-on experience with the first three, and
reasonable knowledge of the fourth. The EPOC and Mozilla cases are
two relatively new product lines, so there have, as yet, no evolution his-
tory. Axis and Ericsson Software Technology, on the other hand, have
used a product line approach for nearly a decade.

4.1 EPOC

EPOC is an operating system, an application framework, and an appli-
cation suite specially designed for wireless devices such as hand-held,
battery powered, computers and cellular phones. It is developed by
Symbian, a company that is owned by major companies within the
domain, such as Ericsson, Nokia, Psion, Motorola and Matsushita, in
order to be used in these companies’ wireless devices. Variation issues
here concern how to allow third party applications to seamlessly and
transparently integrate with a multitude of different operating environ-
ments, which may even affect the amount of functionality that the
applications provide. For instance, with screen sizes varying from a full
VGA screen to a two-line cellular phone, the functionality, and how this
42 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

4. Cases/Examples

Variabili
functionality is presented to the user, will differ vastly between the dif-
ferent platforms.

More information can be obtained from Symbian’s website [Sym-
bian] and in [Bosch 2000].

4.2 Axis Communications

Axis Communications is a medium sized hardware and software com-
pany in the south of Sweden. They develop mass-market networked
equipment, such print servers, various storage servers (CD-ROM serv-
ers, JAZ servers and Hard disk servers), camera servers and scan servers.
Since the beginning of the 1990s, Axis Communications has employed
a product line approach. This Software Product Line consists of 13 reus-
able assets. These Assets are in themselves object-oriented frameworks,
of differing size. Many of these assets are reused over the complete set of
products, which in some cases have quite differing requirements on the
assets. Moreover, because the systems are embedded systems, there are
very stringent memory requirements; the application, and hence the
assets, must not be larger than what is already fitted onto the mother-
board. What this implies is that only the functionality used in a partic-
ular product may be compiled into the product software, and this calls
for a somewhat different strategy when it comes to variation handling.

Further information can be found in two papers by Svahnberg &
Bosch [Svahnberg & Bosch 1999a][Svahnberg & Bosch 1999b] and in
our co-author’s book on software product lines [Bosch 2000].

4.3 Billing Gateway

Ericsson Software Technology is a leading software company within the
telecommunications industry. At their site in Ronneby, in the same
building as our university, they develop their Billing Gateway product.
The Billing Gateway is a mediating device between telephone switching
stations and post-processing systems such as billing systems, fraud con-
trol systems, etc. The Billing Gateway has also been developed since the
early 1990’s, and is currently installed at more than 30 locations world-
wide. The system is configured for every customer’s needs with regards
to, for instance, what switching station languages to support, and each
customer builds a set of processing points that the telephony data
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 143

On the Notion of Variability in Software Product Lines

1

should go through. Examples of processing points are formatters, filters,
splitters, encoders, decoders and routers. These are connected into a
dynamically configurable network through which the data is passed.

For further reading, see [Mattsson & Bosch 1999a][Mattsson &
Bosch 1999b] and [Svahnberg & Bosch 1999a].

4.4 Mozilla

The Mozilla web browser is Netscape’s Open Source project to create
their next generation of web browsers. One of the design goals of
Mozilla is to be a platform for web applications. Mozilla is constructed
using a highly flexible architecture, which makes massive use of compo-
nents. The entire system is organized around an infrastructure of XUL,
a language for defining user interfaces, JavaScript, to bind functionality
to the interfaces, and XPCOM, a COM-like model with components
written in languages such as C++. The use of C++ for lower level com-
ponents ensures high performance, whereas XUL and JavaScript ensure
high flexibility concerning appearance (i.e. how and what to display),
structure (i.e. the elements and relations) and interactions (i.e. the how
elements work across the relations). This model enables Mozilla to use
the same infrastructure for all functionality sets, which ranges from e-
mail and news handling to web browsing and text editing. Moreover,
any functionality defined in this way is platform independent, and only
require the underlying C++ components to be reconstructed and/or
recompiled for new platforms. Variability issues here concern the addi-
tion of new functionality sets, i.e. applications in their own right, and
incorporation of new standards, for instance regarding data formats
such as HTML, PDF and XML.

For further information regarding Mozilla, see [Mozilla] and
[Oeschger 2000].

5. Variability Patterns

There exist a number of mechanisms to introduce variability into a sys-
tem. In Section 6, we describe these in further detail. What can be seen
is that these mechanisms work on different levels, and strive to achieve
variability, i.e. bind the system to one out of many variations, at differ-
ent times in a system’s lifecycle from requirements to runtime. Another,
44 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

5. Variability Patterns

Variabili
perhaps more important property of these mechanisms is that a few
recurring patterns can be seen throughout most of them with respect to
how variability is introduced, managed and bound.

Levels. Basically, any entity used in a system can be made to vary.
Therefore, we have variation on all phases in a system’s lifecycle, from
architectural design, to detailed design, implementation, compilation
and linking and even at post-delivery. Depending on what entities are in
focus on each of these levels, the variation mechanisms work with these
different entities. However, many times the actual mechanisms used are
very similar.

Binding Times. The main purpose of introducing a variation point is
to delay a decision, but at some time there must be a choice between the
variants and a single variation will be selected and executed. We call this
that the system is bound to a particular variation. However, it is not rel-
evant to bind variants at all levels. The places where one can expect vari-
ations to be bound are illustrated in Figure 5, and are further described
below. The additional information in the figure is explained in subse-
quent sections.

Pre-Delivery:

� Product Architecture Derivation. The product line architec-
ture contains many open variation points. The binding of these
variation points is what generates a particular product architec-
ture. Typically, configuration management tools are involved in
this process, and most of the mechanisms are on the level of archi-
tectural design.

� Compilation. The finalization of the source code is done during
the compilation. This includes pruning the code according to
compiler directives in the source code, but also extending the
code to superimpose additional behaviour (e.g. macros and
aspects).

� Linking. When the link phase begins and when it ends is very
much depending on what programming and runtime environ-
ment is used. In some cases, linking is performed irrevocably just
after compilation, and in some cases it is done when the system is
started. In other systems again, the running system can link and
re-link at will. How long linking is available determines mainly
how late new variants can be added to the system.
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 145

On the Notion of Variability in Software Product Lines

1

Figure 5.
T

im
e scale of B

inding tim
es

Tim
e

P
roduct

A
rchitecture

D
erivation

C
om

pilation
L

inking
Start-up

R
untim

e

V
ariantand

O
ptionalE

ntity
M

ultiple
C

om
ponent

Im
plem

entations

D
ecision

for
entire

system
D

ecision
per

call
46 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

5. Variability Patterns

Variabili
Post-Delivery:

� Start-up-time and Runtime (Customisation). Some decisions
must be taken at the customer’s site, but can be seen as a delayed
step of generating a release binary. These decisions (variations) are
thus decided using start-up parameters, often in the form of con-
figuration files that can, for instance, load particular dynamic
libraries. These decisions can also be rebound during runtime.
How late new variants can be added depends on how advanced
the runtime environment is. This binding time is just a special
case of linking, with the exception that functionality provided
enables linking to be done after delivery.

� Runtime, Per Call (Adaptation to Runtime Environment).
This is the variability that renders an application interactive. Typ-
ically this variability is dealt with using any standard object-ori-
ented language. The set of variations can be closed at runtime, i.e.
it is not possible to add new variations, but it can also be open, in
which case it is possible to extend the system with new variations
at runtime. Typically, these are referred to as Plug-ins, and these
can normally be developed by third party vendors.

5.1 Recurring Patterns

The mechanisms presented in Section 6, which, to the best of our
knowledge, comprise a complete set, tend to fall into one of the catego-
ries below. The entities dealt with by the mechanisms differ (Compo-
nents, Classes, Code), but the patterns with respect to how and when
they are bound are similar.

� Variant Entity. Variant entities maps to the XOR-relation in a
feature graph, in that there exist many entities, but one, and only
one, is active in the system at any given moment.

� Optional Entity. An optional entity is in many ways similar to a
variant entity, with the exception that there is only one variant
available, and the decision is instead whether to include it or not
into the system. This maps to optional features in a feature graph.
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 147

On the Notion of Variability in Software Product Lines

1

� Multiple Coexisting Entities. The last category consists of the
mechanisms where the running system contains several alternate
entities, and the decision of which to use is decided at runtime,
before each call, or at least for each job, to the entity. This maps to
the OR-relation in a feature graph.

How these categories are implemented is also similar on all levels of
design and implementation, namely by use of abstraction and concreti-
sation. At one level, an abstract interface is included, and this abstract
interface is made concrete in a number of variations at the subsequent
level or, as the case often is during detailed design, at the same level. The
difference between variant and optional entities as opposed to multiple
coexisting entities is then how the rest of the system manages the varia-
tion point. Figure 6 illustrates the principle of abstraction and concreti-
sation.

The difference between the patterns lies mainly between variant and
optional entities on one side, and multiple coexisting entities on the
other. In the variant and optional entity patterns, the management of
the variation point is done separate from any calls to the entity, whereas
with multiple coexisting entities, the management is done within the
frame of one call. Moreover, the decision taken is, in the case of the vari-
ant and optional entity patterns, on a per system basis, i.e. the variant
chosen is valid for all calls, be they concurrent or not, in the system.
With the multiple coexisting entities pattern, the decision is taken on a
per call basis, i.e. the decision of which variant to use is taken for each
call. Note that we use a very wide definition of “call”. By “call” we mean
any form of interaction with an entity to complete a task, which can be
anything between a single call, a series of calls or a dialogue.

It should also be noted that even a variation point adhering to the
multiple coexisting entities pattern, which is, in many cases, mapped to

Figure 6. Abstraction and Concretization

System

Interface Specification

Interface
Implementation

Interface
Implementation

Interface
Implementation
48 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

5. Variability Patterns

Variabili
an OR-branch in a feature graph, will be transformed to an XOR-
branch at some time, since the system will at one point bind itself to
one, and only one entity. Where this transformation is done is more a
matter of philosophical interest; it can be said to happen as the mecha-
nism is implemented, but it can also be said to happen during runtime,
as the system gets ready to accept calls.

5.2 Management of Variability

The management of variability consists of two main tasks: (a) collect the
variants, and (b) bind the system to one variant. There are a number of
sub-tasks involved as well, such as loading the variant chosen into mem-
ory, but these tasks are typically programming language or operating
system specific.

The collection of variants can either be implicit or explicit. If the col-
lection is implicit, there is no first class representation of the collection,
which means that the system relies on the knowledge of the developers
or users to provide a suitable variant when so prompted. An explicit col-
lection, on the other hand, implies that the system can, by itself, decide
which variant to use. The collection can be closed, which means that no
new variants can be added, or it can remain open. Note that even if the
collection is closed, it can also be implicit, which is the case with, for
instance, a switch-case statement.

Likewise, binding can be done internally, or externally, from the sys-
tems perspective. An internal binding implies that the system contains
the functionality to bind to a particular variant, whereas if the binding is
performed externally, the system has to rely on other tools, such as con-
figuration management tools to perform the binding. Relating this to
the collection, we see that the variability management can either be
implicit and external, implicit and internal, or explicit and internal.

Selection of what variant to use involves picking one variant out of
the collection of variants. In optional and variant entity, the selection is
done by a person, either a programmer or a user that makes a conscious
decision about which variant to use. In the case of multiple coexisting
entities, the system must possess enough information to select between
the variations. The interaction the user in this case provides is, at best,
by supplying the system with a particular event for processing.
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 149

On the Notion of Variability in Software Product Lines

1

5.3 Adding new Variants

The time when a mechanism is open or closed for adding new variants
is mainly decided by the development and runtime environments, and
the type of entity that is represented by the variation point. Typically,
mechanisms open for adding variations during detailed design and
implementation are closed at compile-time. Mechanisms working with
components and component implementations are of a magnitude that
makes them interesting to keep open during runtime as well.

An important factor to consider is when linking is performed. If
linking can only be done during compilation, before delivery, then this
closes all mechanisms at this phase. If the system supports dynamically
linked libraries, mechanisms can remain open even during runtime.
Then it becomes a question whether the management of the variation
point is explicit or not, which decides whether the mechanism will be
open during actual runtime, or just at start-up time.

Table 1 presents a comparison between the three patterns with
respect to what is discussed in the previous sections.

6. Variability Mechanisms

In Section 5, we present the underlying patterns that are used on all lev-
els of development when variability is to be introduced. In this section,
we present the actual mechanisms that can be used during each level of
development. We base the layout of this section on how we perceive the
development and decision process that leads a developer to choose a
particular variability mechanism. In our view, this process starts with
the requirements, and the feature graph, where the pattern (variant,
optional or multiple coexisting entity) of the variability is identified.
The next step is to identify the desired binding time, and lastly, the size
of the entity to vary is identified.

It should also be noted that the binding time is a relative time, with
respect to the different development phases. If the binding time is, for
instance, during Product Architecture Derivation, then the time is fairly
straightforward, but if the binding time is at Link-time, this is depend-
ing on when linking is performed in the development and runtime envi-
ronment. In some environments, linking may only be performed before
delivery, whereas in other environments, linking can be performed at
any time, even in the executing system.
50 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

6. Variability Mechanisms

Variabili
TA
B

L
E

 1
. C

om
pa

ri
so

n
be

tw
ee

n
pa

tt
er

ns

C
ha

ra
ct

er
is

ti
c

V
ar

ia
nt

 E
nt

it
y

O
pt

io
na

l E
nt

it
y

M
ul

ti
pl

e
C

oe
xi

st
in

g
E

nt
it

y

M
an

ag
em

en
t

Se
pa

ra
te

 f
ro

m
 C

al
l

Se
pa

ra
te

 f
ro

m
 C

al
l

Pe
rf

or
m

ed
 in

 C
al

l

Sc
op

e
of

 B
in

di
ng

V
al

id
 f

or
 E

nt
ir

e
Sy

s-
te

m
V

al
id

 f
or

 E
nt

ir
e

Sy
s-

te
m

V
al

id
 f

or
 o

ne
 C

al
l

C
ol

le
ct

io
n

Im
pl

ic
it

 o
r

E
xp

lic
it

N
ot

 A
pp

li
ca

bl
e

E
xp

lic
it

B
in

di
ng

E
xt

er
na

l o
r

In
te

rn
al

E
xt

er
na

l o
r

In
te

rn
al

In
te

rn
al

O
pe

n
an

d
C

lo
se

d
D

ep
en

ds
 o

n
R

un
tim

e
E

nv
ir

on
m

en
t

Im
m

ed
ia

te
ly

 C
lo

se
d

D
ep

en
ds

 o
n

R
un

tim
e

E
nv

ir
on

m
en

t

ty in Software Systens: the Key to Software Reuse - Licentiate thesis 151

On the Notion of Variability in Software Product Lines

1

6.1 Variant Entity

The variant and optional entity pattern is not depending on explicit col-
lection and binding, which means that it can be applied to more levels
than the multiple coexisting entities pattern. However, because the pat-
tern can make use of explicit representations as well, it also extends into
runtime, which results in a very powerful tool for introducing variabil-
ity. The following are the different mechanisms that can be used to
achieve the variant entity pattern, sorted by where the binding takes
place. Within parenthesises we present the phases during which the
mechanisms are introduced.

Product Architecture Derivation:

� Architecture Reorganization (Architectural Design)

� Variant Architecture Component (Architectural Design)

� Variant Component Specialization (Detailed Design)

Compilation:

� Condition on Constant (Implementation)

� Code Fragment Superimposition (Compilation)

Linking:

� Binary Replacement - Linker Directives (Linking)

� Binary Replacement - Physical (Linking)

Runtime:

� Infrastructure-Centered Architecture (Architectural Design)

� Condition on Variable (Implementation)

Below, we present these mechanisms in further detail, sorted by
design phase.

6.1.1 Architectural Design

During architectural design, there are three mechanisms available, of
which two are bound during product architecture derivation, and one is
bound during runtime. This last mechanism is thus useful to, for
instance, implement dynamic architectures. The entities in focus during
52 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

6. Variability Mechanisms

Variabili
architectural design are the architecture as such, and the components in
the architecture.

6.1.1.1 Architecture Reorganization

Intent. Support several product specific architectures by reorganizing
the overall product line architecture.

Motivation. Although products in a product line share many concepts,
the control flow and data flow between these concepts need not be the
same. Therefore, the product line architecture is reorganized to form the
concrete product architectures. This involves mainly changes in the
control flow, i.e. the order in which components are connected to each
other, but may also consist of changes in how particular components are
connected to each other, i.e. the provided and required interface of the
components may differ from product to product.

Solution. This mechanism is an implicit and external mechanism,
where there is no first-class representation of the architecture in the sys-
tem. For an explicit mechanism, see the Infrastructure-Centered Archi-
tecture mechanism. In the Architecture Reorganization mechanism, the
components are represented as subsystems controlled by configuration
management tools or, at best, Architecture Description Languages. The
variability lies in the configuration requested by the configuration man-
agement tools. The actual architecture is then depending on variability
mechanisms on lower levels, for instance the Variant Component Spe-
cialization mechanism.

Lifecycle. This mechanism is open for the adding of new variations
during architectural design, where the product line architecture is used
as a template to create a product specific architecture. As detailed design
commences, the architecture is no longer a first class entity, and can
hence not be further reorganized. Binding time, i.e. when a particular
architecture is selected, is when a particular product architecture is
derived from the product line architecture. This also implies that this is
not a mechanism for achieving dynamic architectures. If this is what is
required, see the Infrastructure-Centered Architecture mechanism.

Consequences. The major disadvantage of Architecture Reorganization
is that, although there is no first class representation of the architecture
on lower levels, they (the lower levels) still need to be aware of the
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 153

On the Notion of Variability in Software Product Lines

1

potential reorganizations. Code is thus added to cope with this reorgani-
zation, be it used in a particular product or not.

Examples. At Axis Communications, a hierarchical view of the Product
Line Architecture is employed, where different products are grouped in
sub-trees of the main Product Line. To control the derivation of one
product out of this tree, a rudimentary, in-house developed, ADL is
used. Another example is Symbian that reorganizes the architecture of
the EPOC operating system for different hardware system families.

6.1.1.2 Variant Architecture Component

Intent. Support several, differing, architectural components represent-
ing the same conceptual entity.

Motivation. In some cases, an architectural component in one particu-
lar place in the architecture can be replaced with another that may have
a differing interface, and sometimes also representing a different
domain. This need not affect the rest of the architecture. For instance,
some products may work with hard disks, whereas others (in the same
product line) may work with scanners. In this case, the scanner compo-
nent replaces the hard disk component without further affecting the rest
of the architecture.

Solution. The solution to this is to, as the title implies, support these
architectural components in parallel. The selection of which to use any
given moment is then delegated to the configuration management tools
that select what component to include in the system. Parts of the solu-
tion is also delegated to lower layers, where the Variant Component
Specialization will be used to call and operate with the different compo-
nents in the correct way. To summarize, this mechanism has an implicit
collection, and the binding functionality is external.

Lifecycle. It is possible to add new variations, i.e. parallel components,
during architectural design, when new components can be added, and
also during detailed design, where these components are concretely
designed as separate architectural components. The architecture is
bound to a particular component during the transition from a product
line architecture to a product architecture, when the configuration man-
agement tool selects what architectural component to use.
54 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

6. Variability Mechanisms

Variabili
Consequences. A consequence of using this pattern is that the decision
of what component interface to use, and how to use it, is placed in the
calling components rather than where the actual variation is situated.
Moreover, the handling of the differing interfaces cannot be coped with
on the same level as the actual variation, but has to be deferred until
later development stages.

Examples. At Axis Communications, there existed during a long period
of time two versions of a file system component; one supporting both
read and write functionality, and one supporting only read functional-
ity. Different products used either the read-write or the read-only com-
ponent. Since they differed in the interface and implementation, they
were, in effect, two different architectural components.

6.1.1.3 Infrastructure-Centered Architecture

Intent. Make the connections between components a first class entity.

Motivation. Part of the problem when connecting components, and in
particular components that may vary, is that the knowledge of this vari-
ation, and the actual connections, is hard coded in the required inter-
faces of the components, and is thus implicitly embedded into the
system. A reorganization of the architecture, or indeed a replacement of
a component in the architecture, would be vastly facilitated if the archi-
tecture is an explicit entity in the system, where such modifications
could be performed.

Solution. Make the connectors into first class entities, so the compo-
nents are no longer connected to each other, but are rather connected to
the infrastructure, i.e. the connectors. This infrastructure is then
responsible for matching the required interface of one component with
the provided interface of one or more other components. The infra-
structure can either be an existing standard, such as COM or CORBA,
or it can be an in-house developed standard. The infrastructure may also
be a scripting language, in which the connectors are represented as snip-
lets of code that are responsible for binding the components together in
an architecture. These code sniplets can either be done in the same pro-
gramming language as the rest of the system, or it can be done using a
scripting language. Such scripting languages are, according to [Ouster-
hout 1998], highly suitable for “gluing” components together. The col-
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 155

On the Notion of Variability in Software Product Lines

1

lection in, in this mechanism, implicit, and the binding functionality is
internal, provided by the infrastructure.

Lifecycle. Depending on what infrastructure is selected, the mechanism
is open for adding new variants during a shorter or longer period. In
some cases, the infrastructure is open for the addition of new compo-
nents as late as during runtime, and in other cases, the infrastructure is
concretisised during compile and linking, and is thus open for new
additions until then. However, since the additions are in the magnitude
of architectural components or component implementations, it
becomes unpractical to talk about adding new variations during, for
instance, the implementation phase, as components are not in focus
during this phase. This mechanism can be seen as open for adding new
variants during architectural design, and during runtime. If this per-
spective is taken, it is closed during all other phases, because it is not rel-
evant to model this type of variation in any of the intermediate layers.
Another view is that the mechanism is only open during linking, which
may be performed at runtime. The latter perspective assumes a mini-
malistic view of the system, where anything added to the infrastructure
is not really added until at link-time. The mechanism binds the system
to a particular variant either during compilation time, when the infa-
structure is tied to the concrete range of components, or at runtime, if
the infrastructure supports dynamical adding of new components.

Consequences. Used correctly, this mechanism yields perhaps the most
dynamic of all architectures. Performance is impeded slightly because
the components need to abstract their connections to fit the format of
the infastructure, which then performs more processing on a connec-
tion, before it is concretisised as a traditional interface call again. In
many ways, this mechanism is similar to the Adapter Design Pattern
[Gamma et al. 1995].

The infrastructure does not remove the need for well-defined inter-
faces, or the troubles with adjusting components to work in different
operating environments (i.e. different architectures), but it removes part
of the complexity in managing these connections.

Examples. Programming languages and tools such as Visual Basic, Del-
phi and JavaBeans support a component based development process,
where the components are supported by some underlying infrastructure.
Another example is the Mozilla web browser, which makes extensive use
of a scripting language, in that everything that can be varied is imple-
56 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

6. Variability Mechanisms

Variabili
mented in a scripting language, and only the atomic functionality is rep-
resented as compiled components.

6.1.2 Detailed Design

During detailed design, there is only one mechanism available, due to
the fact that there is only one element in focus, namely classes.

6.1.2.1 Variant Component Specializations

Intent. Adjust a component implementation to the product architec-
ture.

Motivation. Some variation techniques on the architectural design level
require support in later stages. In particular, those techniques where the
provided interfaces vary need support from the required interface side as
well. In these cases, what is required is that parts of a component imple-
mentation, namely those parts that are concerned with interfacing a
varying component, needs to be replaceable as well. This mechanism
can also be used to tweak a component to fit a particular product’s
needs.

Solution. Separate the interfacing parts into separate classes that can
decide the best way to interact with the other component. Let the con-
figuration management tool decide what classes to include at the same
time as it is decided what variant of the interfaced component to
include in the product architecture. Accordingly, this mechanism has an
implicit collection, and external binding functionality.

Lifecycle. The available variations are introduced during detailed
design, when the interface classes are designed. The mechanism is closed
during architectural design, which is unfortunate since it is here that it
is decided that the mechanism is needed. This mechanism is bound
when the product architecture is instantiated from the source code
repository.

Consequences. Consequences of using classes are that it introduces
another layer of indirection, which may consume processing power. Nor
may it always be a simple task to separate the interface. Suppose that the
different variants require different feedback from the common parts,
then the common part will be full with method calls to the varying
parts, of which only a subset is used in a particular configuration. Natu-
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 157

On the Notion of Variability in Software Product Lines

1

rally this hinders readability of the source code. However, the use of
classes like this has the advantage that the variation point is localized to
one place, which facilitates adding more variants and maintaining the
existing variants.

Examples. The Storage Servers at Axis Communications can be deliv-
ered with a traditional cache or a hard disk cache. The file system com-
ponent must be aware of which is present, since the calls needed for the
two are slightly differing. Thus, the file system component is adjusted
using this variation mechanism to work with the cache type present in
the system.

6.1.3 Implementation

During implementation, the entity available is the source code, and
there are two mechanisms by which the source code can be made to
vary. The mechanisms are very similar, and differ mostly on the binding
time. Typically, they are used by other, higher level variation mecha-
nisms to implement the connections in the system.

6.1.3.1 Condition on Constant

Intent. Support several ways to perform an operation, of which only
one will be used in any given system.

Motivation. Basically, this is a more fine-grained version of a Variant
Component Specialization, where the variation point is not large
enough to be a class in its own right. The reason for using the condition
on constant mechanism can be for performance reasons, and to help the
compiler remove unused code. In the case where the variation concerns
connections to other, possibly variant, components, it is also a means to
actually get the code through the compiler, since a method call to a non-
existent class would cause the compilation process to abort.

Solution. We can, in this mechanism, use two different types of condi-
tional statements. One form of conditional statements is the pre-proces-
sor directives such as C++ ifdefs, and the other is the traditional if-
statements in a programming language. If the former is used, it can
actually be used to alter the structure of the system, for instance by opt-
ing to include one file over another, whereas the latter can only work
within the frame of one system structure. In both cases, the collection is
58 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

6. Variability Mechanisms

Variabili
implicit, but, depending on whether traditional constants or pre-proces-
sor directives are used, the binding mechanism is either internal or
external, respectively.

Lifecycle. This mechanism is introduced while implementing the com-
ponents, and is activated during compilation of the system, where it is
decided using compile-time parameters which variation to include in
the compiled binary. If a constant is used instead of a compile-time
parameter, this is also bound at this point. After compilation, the mech-
anism is closed for adding new variations.

Consequences. Using ifdefs, or other pre-processor directives, is always
a risky business, since the number of potential execution paths tends to
explode when using ifdefs, making maintenance and bug-fixing diffi-
cult. Variation points often tend to be scattered throughout the system,
because of which it gets difficult to keep track of what parts of a system
is actually affected by one variation.

Examples. The different cache types in Axis Communications different
Storage Servers, that can either be a Hard Disk cache or a traditional
cache, where the file system component must call the one present in the
system in the correct way. Working with the cache is spread throughout
the file system component, because of which many variability mecha-
nisms on different levels are used.

6.1.3.2 Condition on Variable

Intent. Support several ways to perform an operation, of which only
one will be used at any given moment, but allow the choice to be
rebound during execution.

Motivation. Sometimes, the variability provided by the Condition on
Constant mechanism needs to be extended into runtime as well. Since
constants are evaluated at compilation, this cannot be done, because of
which a variable must be used instead.

Solution. Replace the constant used in Condition on Constant with a
variable, and provide functionality for changing this variable, i.e. varia-
tion management. This mechanism cannot use any compiler directives,
but is rather a purely programming language construct. Unlike the
Condition on Constant mechanism, the management of the variation
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 159

On the Notion of Variability in Software Product Lines

1

point needs to be internal for this mechanism to work. However, the
collection need not be explicit, it is sufficient if the binding is internal.

Lifecycle. This mechanism is open during implementation, where new
variations can be added, and is closed during compilation. It is bound at
runtime, where the variable is given a value that is evaluated by the con-
ditional statements.

Consequences. This is a very flexible mechanism, and can also be used
to achieve variability of the multiple coexisting entity pattern. It is a rel-
atively harmless mechanism, but, as with Condition on Constant, if the
variation is spread throughout the code, it becomes difficult to get an
overview.

Examples. This mechanism is used in all software programs to control
the execution flow.

6.1.4 Compilation

During compilation the source code is transformed into an executable
binary. This is normally not an interactive process, which limits the
number of mechanisms available. One new mechanism is, however,
introduced.

6.1.4.1 Code Fragment Superimposition

Intent. Introduce new considerations into a system without directly
affecting the source code.

Motivation. Because a component can be used in several products, it is
not desired to introduce product-specific considerations into the com-
ponent. However, it may be required to do so in order to be able to use
the component at all. Product specific behaviour can be introduced
using practically any mechanism, but these all tend to obscure the view
of the component’s core functionality, i.e. what the component is really
supposed to do. It is also possible to use this mechanism to introduce
variations of other forms that need not have to do with customizing
source code to a particular product.

Solution. The solution to this is to develop the software in a generic
way, and then superimpose the product-specific concerns at stage where
the work with the source code is completed anyway. There exists a num-
60 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

6. Variability Mechanisms

Variabili
ber of tools for this, e.g. Aspect Oriented Programming [Kiczalez et
al.1997], where different concerns are weaved into the source code just
before the software is passed to the compiler, and superimposition as
proposed by [Bosch 1999b], where additional behaviour is wrapped
around existing behaviour. The collection is, in this case, also implicit,
and the binding is performed external of the system.

Lifecycle. This mechanism is open during the compilation phase,
where the system is also bound to a particular variation. However, the
superimposition can also provide support for simulate the adding of
new concerns, or aspects, at runtime. These are in fact added at compi-
lation but the binding is deferred to runtime, by internally using other
variability mechanisms, such as Condition on Variable.

Consequences. Consequences of superimposing an algorithm are that
different concerns are separated from the main functionality. However,
this also means that it becomes harder to understand how the final code
will work, since the execution path is no longer obvious. When develop-
ing, one must be aware that there will be a superimposition of addi-
tional code at a later stage. In the case where binding is deferred to
runtime, one must even program the system to add a concern to an
object.

Examples. To the best of our knowledge, none of the case companies
use this mechanism. This is not surprising, considering that most tech-
niques for this mechanism are at a research and prototyping stage.

6.1.5 Linking

During linking, what can be made varying, is the files that are included
in the system. As mentioned earlier, the duration of the linking phase is
very much depending on the runtime environment. It can end directly
after compilation, and it can also extend until start-up-time, or even
until runtime. There are two mechanisms that concern linking, and
these differ mainly in whether the management is internal or external.

6.1.5.1 Binary Replacement - Linker Directives

Intent. Provide the system with alternative implementations of underly-
ing system libraries.
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 161

On the Notion of Variability in Software Product Lines

1

Motivation. In some cases, all that is required to support a new plat-
form is that an underlying system library is replaced. For instance, when
compiling a system for different UNIX-dialects, this is often the case. It
need not even be a system library, it can also be a library distributed
together with the system to achieve some variability. For instance, a
game can be released with different libraries to work with the window
system (Such as X-windows), an OpenGL graphics device or to use a
standard SVGA graphics device.

Solution. Represent the variants as stand-alone library files, and
instruct the linker which file to link with the system. If this linking is
done at runtime, the binding functionality must be internal to the sys-
tem, whereas it can if the linking is done during the compile and linking
phase prior to delivery be external and managed by a traditional linker.
An external binding also implies, in this case, an implicit collection.

Lifecycle. This mechanism is open for new variations as the system is
linked. It is also bound during this phase. As the linking phase ends, this
mechanism becomes unavailable. However, it should be noted that the
linking phase need not end. In modern systems, linking is available dur-
ing execution.

Consequences. This is a fairly well developed variation mechanism,
and the consequences of using it are relatively harmless.

Examples. The web browsing component of Internet Explorer can be
replaced with the web browsing component of Mozilla in this fashion.

6.1.5.2 Binary Replacement - Physical

Intent. Facilitate the modification of software after delivery.

Motivation. Unfortunately, very few software systems are released in a
perfect and optimal state, which creates a need to upgrade the system
after delivery. In some cases, these upgrades can be done using the vari-
ability mechanisms at variation points already existing in the system,
but in others, the system does not currently support variation at the
place needed.

Solution. In order to introduce a new variation point after delivery, the
software binary must be altered. The easiest way of doing this is to
replace an entire file with a new copy. To facilitate this replacement, the
system should thus be organized as a number of relatively small binary
62 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

6. Variability Mechanisms

Variabili
files, to localize the impact of replacing a file. Furthermore, the system
can be altered in two ways: Either the new binary completely covers the
functionality of the old one, or the new binary provides additional func-
tionality in the form of, for instance, a new variation point using a pre-
delivery variability mechanism. Also in this mechanism, is the collection
implicit, and the binding external to the system.

Lifecycle. This mechanism is bound after delivery, normally before
start-up of the system. In this mechanism the method for binding to a
variation is also the one used to add new variations. After delivery, the
mechanism is always open for adding new variants.

Consequences. If the new binary does not introduce a “traditional”,
first class, variation point the same mechanism will have to be used
again the next time a variation at this point is detected. However, if a
traditional variation point is introduced, this facilitates future changes at
this particular point in the system. Replacing binary files is normally a
volatile way of upgrading a system, since the rest of the system may in
some cases even be depending on software bugs in the replaced binary
in order to function correctly. Moreover, it is not trivial to maintain the
release history needed to keep consistency in the system.

Examples. Axis Communications provide a possibility to upgrade the
software in their devices by re-flashing the ROM. This basically replaces
the entire software binary with a new one.

6.2 Optional Entity

The mechanisms concerning optional entities are very similar to those
concerning variant entities. One reason for this is that an optional entity
is in many cases just a special case of variant entity, where one of the
variants is empty. A characteristic of mechanisms of the optional entity
pattern is that they are closed as soon as they are introduced, since there
can be only one variation to choose. The similarities between optional
and variant mechanisms make it possible to combine them while imple-
menting the solutions. However, a huge difference lies in the fact that
whereas a call to a variant entity is always direct, a call to an optional
entity needs to make sure that there actually is something to call. This
makes it possible to implement an optional entity mechanism in two
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 163

On the Notion of Variability in Software Product Lines

1

ways: Either on the calling side, to simply remove the call, or on the
called side, by ignoring the call.

The mechanisms available, adhering to the optional entity pattern,
are (sorted by binding time):

Product Architecture Derivation:

� Optional Architecture Component (Architectural Design)

� Optional Component Specialization (Detailed Design)

Compilation:

� Condition on Constant (Implementation)

Runtime:

� Condition on Variable (Implementation)

Below, we present these in further detail. The mechanisms Condi-
tion on Constant and Condition on Variable are exactly the same as for
the variable entity pattern, because of which we do not present them
again. See Section 6.1.3.1 and Section 6.1.3.2 for further information
about these patterns.

6.2.1 Architectural Design

During architectural design, one mechanism is available for introducing
an optional entity into the system.

6.2.1.1 Optional Architecture Component

Intent. Provide support for a component that may, or may not be
present in the system.

Motivation. Some architectural components may be present in some
products, but absent in other. For instance, a Storage Server at Axis
Communications can optionally be equipped with a so-called hard disk
cache. This means that in one product configuration, other components
need to interact with the hard disk cache, whereas in other configura-
tions, the same components do not interact with this architectural com-
ponent.

Solution. There are two ways of solving this problem, depending on
whether it should be fixed on the calling side or the called side. If we
64 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

6. Variability Mechanisms

Variabili
desire to implement the solution on the calling side, the solution is sim-
ply delegated downwards to other optional entity mechanisms. To
implement the solution on the called side, which may be nicer, but is
less efficient, create a “null” component, i.e. a component that has the
correct interface, but replies with dummy values. This latter approach
assumes, of course, that there are predefined dummy values that the
other components know to ignore. The collection is in an optional
entity pattern not relevant, which, in general, results in it being implicit.
The binding for this mechanism is done external to the system.

Lifecycle. This mechanism is open when a particular product architec-
ture is designed based on the product line architecture, but, for the lack
of architecture representation in later stages, is closed at all other times.
The architecture is bound to the existence or non-existence of a compo-
nent when a product architecture is selected from the product line
architecture.

Consequences. Consequences of using this mechanism is that the com-
ponents depending on the optional component must either have mech-
anisms to support its not being there, or have mechanisms to cope with
dummy values. The latter technique also implies that the “plug”, or the
null component will occupy space in the system, and the dummy values
will consume processing power. An advantage is that should this varia-
tion point later be extended to a variant architecture component point,
the functionality is already in place, and all that needs to be done is to
open the collection of variations in order to add more variants.

Examples. The Hard Disk Cache at Axis Communications, as
described above. Also, in the EPOC Operating System, the presence or
absence of a network connection decides whether network drivers
should be loaded or not.

6.2.2 Detailed Design

Detailed design introduces an additional mechanism for adding an
optional entity variation point, as described below.

6.2.2.1 Optional Component Specializations

Intent. Include or exclude parts of the behaviour of a component
implementation.
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 165

On the Notion of Variability in Software Product Lines

1

Motivation. A particular component implementation may be custom-
ized in various ways by adding or removing parts of its behaviour. For
instance, depending on the screen size an application for a handheld
device can opt not to include some features, and in the case when these
features interact with others, this interaction also needs to be excluded
from the executing code.

Solution. Separate the optional behaviour into a separate class, and cre-
ate a “null” class that can act as a placeholder when the behaviour is to
be excluded. Let the configuration management tools decide which of
these two classes to include in the system. Alternatively, surround the
optional behaviour with compile-time flags to exclude it from the com-
piled binary. Binding is in this mechanism done externally.

Lifecycle. This mechanism is introduced during detailed design, and is
immediately closed to adding new variants, unless the variation point is
transformed into a Variant Component Specialization. The system is
bound to the inclusion or exclusion during the product architecture
derivation.

Consequences. It may not be easy to separate the optional behaviour
into a separate class. The behaviour may be such that it cannot be cap-
tured by a “null” class.

Examples. At one point, when Axis Communications added support
for Novel Netware, some functionality required by the filesystem com-
ponent was specific for Netware. This functionality was fixed external of
the file system component, in the Netware component. As the function-
ality was later implemented in the file system component, it was
removed from the Netware component. The way to implement this was
in the form of an Optional Component Specialization.

6.3 Multiple Coexisting Entities

Mechanisms adhering to the multiple coexisting entities pattern occur
slightly later during the lifecycle of the system, since these mechanisms
are concerned with how to respond to a particular call, which means
that the system naturally must be executing as the call occurs. It also
implies that these mechanisms require a first class representation in the
system, even if they need not be explicit per se.

The mechanisms available are:
66 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

6. Variability Mechanisms

Variabili
Runtime:

� Multiple Coexisting Component Implementations (Detailed
Design)

� Multiple Coexisting Component Specializations (Detailed
Design)

� Condition on Variable (Implementation)

Below, these mechanisms are presented in further detail.

6.3.1 Detailed Design

During detailed design, two mechanisms are introduced. These do, in
fact, address two different levels, one is focused on the interface of the
component implementations, and how to vary entire component imple-
mentations, whereas the second is focussed on variation inside one com-
ponent implementation.

6.3.1.1 Multiple Coexisting Component Implementations

Intent. Support several concurrent and coexisting implementations of
one architectural component.

Motivation. An architectural component typically represents some
domain, or sub-domain. These domains can be implemented using any
of a number of standards, and typically a system must support more
than one simultaneously. For instance, a hard disk server typically sup-
ports several network file system standards, such as SMB, NFS and Net-
ware, and is able to choose between these at runtime. Forces in this
problem is that the architecture must support these different compo-
nent implementations, and other components in the system must be
able to dynamically determine to what component implementation data
and messages should be sent.

Solution. Implement several component implementations adhering to
the same interface, and make these component implementations tangi-
ble entities in the system architecture. There exists a number of Design
Patterns [Gamma et al. 1995] that facilitates in this process. For
instance, the Strategy pattern is, on a lower level, a solution to the issue
of having several implementations present simultaneously. Using the
Broker pattern is one way of assuring that the correct implementation
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 167

On the Notion of Variability in Software Product Lines

1

gets the data, as is patterns like Abstract Factory and Builder. Part of the
flexibility of this pattern stems from the fact that the collection is explic-
itly represented in the system, and the binding is done internally.

The decision on exactly what component implementations to
include in a particular product (i.e. setting up the collection of imple-
mentations) is delegated to configuration management tools.

Lifecycle. This mechanism is introduced during architectural design,
but is not open for addition of new variant until detailed design. It is
not available during any other phases. Binding time of this mechanism
is at runtime. Either at start-up, where a start-up parameter decides
which component implementation to use, or at runtime, when an event
decides which implementation to use. If the system supports dynamic
linking, the linking can be delayed until binding time, but the mecha-
nism work equally well when all variants are already compiled into the
system. However, if the system does support dynamic linking, the
mechanism is in fact open for adding new variations even during runt-
ime, provided that the collection of variants is made explicit.

Consequences. Consequences of using this mechanism are that the sys-
tem will support several implementations of a domain simultaneously,
and it must be possible to choose between them either at start-up or
during execution of the system. Similarities in the different domains
may lead to inclusion of several similar code sections into the system,
code that could have been reused, had the system been designed differ-
ently.

Examples. Axis Communications use this mechanism to, for instance,
select between different network communication standards. Ericsson
Software Technology use this mechanism to select between different fil-
tering techniques to perform on call data in their Billing Gateway prod-
uct. The web browsing component of Mozilla, called Gecko, supports
an interface that enables Internet Explorer to be embedded in applica-
tions, thus enabling Gecko to be used in embedded applications as an
alternative to Internet Explorer.

6.3.2 Multiple Coexisting Component Specializations

Intent. Support the existence and selection between several specializa-
tions inside a component implementation.
68 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

6. Variability Mechanisms

Variabili
Motivation. It is required of a component implementation that it
adapts to the environment in which it is executing, i.e. that for any
given moment during the execution of the system, the component
implementation is able to satisfy the requirements from the user and the
rest of the system. This implies that the component implementation is
equipped with a number of alternative executions, and is able to, at
runtime, select between these.

Solution. Basically, there are two Design Patterns that are applicable
here: Strategy and Template Method. Alternating behaviour is collected
into separate classes, and mechanisms are introduced to, at runtime,
select between these classes. Using Design Patterns makes the collection
implicit, but the binding is still internal to the system.

Lifecycle. This mechanism is open for new variations during detailed
design, since classes and object oriented concepts are in focus during
this phase. Because these are not in focus in any other phase, this mech-
anism is not available anywhere else. The system is bound to a particular
specialization at runtime, when an event occurs.

Consequences. Depending upon the ease by which the problem divides
into a generic and variant parts, more or less of the behaviour can be
kept in common. However, the case is often that even common code is
duplicated in the different strategies. A hypothesis is that this could
stem from quirks in the programming language, such as the self prob-
lem.

Examples. A handheld device can be attached to communication con-
nections with differing bandwidths, such as a mobile phone or a LAN,
and this implies different strategies for how the EPOC operating system
retrieves data. Not only do the algorithms for, for instance, compression
differ, but on a lower bandwidth, the system can also decide to retrieve
less data, thus reducing the network traffic. This variation need not be
in the magnitude of an entire component, but can often be represented
as strategies within the concerned components.

6.3.3 Implementation

During the implementation phase, there is one mechanism available,
which is also available if the variant or optional entity patterns are used.
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 169

On the Notion of Variability in Software Product Lines

1

6.3.3.1 Condition on Variable
This mechanism is, in all essentiality the same as for the variant entity
pattern, and is presented in detail in Section 6.1.3.2. The only differ-
ence is that imposed of the pattern itself, in that if the mechanism is
used to achieve a variant entity, the current selection is valid for the
entire system, whereas for the multiple coexisting entities pattern, the
selection is only valid for one call, which also implies that there may be
several instances of the same code executing in parallel. If the mecha-
nism is used for the variant entity pattern, the decision of which variant
to use is also a more conscious choice of the user than if it is used for a
multiple coexisting entities situation.

7. Planning Variability

When developing a software product line, the ultimate goal is to make it
flexible enough to meet new requirements the forthcoming years. In our
experience, the important variability points need to be anticipated in
advance in order to achieve this. It turns out that it is often very hard to
adapt an existing architecture to support a certain variability point. In
this section we propose a method for identifying and planning variabil-
ity points.

7.1 Identification of Variability

Object Oriented software development tends to iterate over the well-
known phases of the waterfall model:

� Requirement Specification

� Architecture Design

� Detailed Design

� Implementation

� Testing

� Maintenance

It can be argued that developing a software product line follows the
same development cycle. It should be noted though that a software
70 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

7. Planning Variability

Variabili
product line is never really finished. Rather, stable versions of it are used
for product instantiation. Since the software product line itself is con-
tinuously under development, it is unlikely that the same version of the
software product line will be used twice. Laying out the product line
architecture in the right way is important since after the initial develop-
ment phase it becomes increasingly hard to drastically change the prod-
uct line.

In the initial phase of software product line development, developers
are confronted with requirements for a number of products and require-
ments that are likely to be incorporated into future products. Their job
is to somehow unite these requirements into requirement specification
for the software product line. The aim of this process is not to come up
with a complete specification of the software product line but rather to
identify where the products differ (i.e. what things tend to vary) and
what is shared by all products.

The feature graph notation we discussed in Section 2 may help
developers to abstract from the requirements. By uniting the feature
graphs of the different products a feature graph for the software product
line can be constructed. In this merged model all the important features
and variability points are present. We have found that features and fea-
ture graphs are an excellent way of modelling variability since features
are a basic increment of development (i.e. a change in the system can be
expressed in terms of features added/removed/enhanced).

7.2 Planning Variability

Once the variability points have been identified, they need to be
planned. This means that developers need to consider how to manage
the variability points. To do so, we can use the patterns and mechanisms
discussed in Section 5 and 6.. Planning a variability point involves:

� Choosing closing and binding time and a variability pattern.

� Picking a mechanism for implementing the variability point.

� Selecting a technology

It is important that developers find a balance between flexibility and
cost. If too much flexibility is incorporated into the architecture, the
cost may rise. The desire to create the ultimate, flexible architecture has
caused numerous OO projects to fail. If on the other hand too little
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 171

On the Notion of Variability in Software Product Lines

1

flexibility is incorporated, developers may find themselves in a situation
where their software product line is no longer able to deal with new
requirements in a cost effective way.

In Figure 7, a method of selecting a suitable variability mechanism is
illustrated. Based on the feature graph, a time for binding the variants is
chosen, one of the three variability patterns is selected and a level of
abstraction at which the variability is introduced is chosen. These three
choices can be used to find a suitable mechanism in Section 6.

8. Related Work

Software Product Lines. Our work was largely inspired by earlier work
in our research group. Our co-author Jan Bosch published a book about
designing and using software product lines [Bosch 2000]. This book
was largely based on case studies and experience reports such as [Bosch
1998][Bosch 1999a][Svahnberg & Bosch 1999a][Svahnberg & Bosch
1999b]. From these reports we learned that evolution in software prod-
uct lines is a little more complicated than in standalone products
because of dependencies between the various products and because of
the fact that there may be conflicting requirements between the differ-
ent products.

Empirical research such as [Rine & Sonnemann 1996], suggests that
a software product line approach stimulate reuse in organizations. In
addition, a follow up paper by [Rine & Nada 2000] provides empirical
evidence for the hypothesis that organizations get the greatest reuse ben-
efits during the early phases of development. Because of this we believe
it is worthwhile for software product line developing companies to
invest time and money in performing methods such as in Section 7.

Feature
model

Choose
binding time

Choose
pattern

Level of
abstraction

Variability
mechanism

Figure 7. The variability mechanism selection method
72 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

8. Related Work

Variabili
Variability Patterns. The mechanisms we present in Section 6 are pre-
sented in similar fashion as the patterns in [Gamma et al. 1995] and
[Buschman et al. 1996]. Pree elaborated on this work by extracting a set
of meta-patterns [Pree 1995]. In a similar way we tried to abstract from
the variability mechanisms we found. In Section 5 we list three recur-
ring patterns of variability, which appear to be applicable throughout
the development process. They can also be related to the feature graph
constructs discussed in Section 2. The three patterns we have found can
even be abstracted further to one meta-pattern: specialization.

We were not the first to look for variability patterns. In [Keepence &
Mannion 1999], patterns are used to model variability in product fami-
lies. Unlike us, they limit themselves to the detailed design phase.
Instead we try to cover the whole development process, thus gaining the
advantage of discovering variability points earlier (as pointed out
above). Also by limiting themselves to detailed design they miss many
important variability mechanisms such as identified in Section 6.

In [Van Gurp & Bosch 2000], a number of guidelines are presented
for building flexible object oriented frameworks. These guidelines bear
some resemblance to the variability mechanisms presented in Section 6.
Related to this is the work presented in [Van Gurp & Bosch 1999]
where a framework for creating finite state machine implementations is
discussed. Several mechanisms are used in this framework to achieve
variability.

Requirements. Our argument for introducing the external feature in
Section 2 is based on [Zave & Jackson 1997]. They argue that a require-
ment specification should contain nothing but information about the
environment. The rationale behind this is that a requirement specifica-
tion should not be biased by implementation. Since features are an
interpretation of the requirements, there is a need to map implementa-
tion independent requirements to implementation aware features.

Feature Modelling. Our extended feature graph is based on the work
presented in [Griss et al. 1998]. The main difference, aside from graph-
ical differences, between our notation and theirs is the external feature
and the addition of binding time. In [Griss 2000] the feature graph
notation is used as an important asset in a method for implementing
software product lines. Unlike their work we link feature graphs to a set
of concrete mechanisms (see Section 6).
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 173

On the Notion of Variability in Software Product Lines

1

Also related is the FODA method discussed in [Kang et al. 1990]. In
this domain analysis method, feature graphs play an important role.
The FORM method presented in [Kang 1998] can be seen as an elabo-
ration of this method. In this work feature graphs are recognized as a
tool for identifying commonality between products. We take the point
of view that it is more important to identify the things that vary
between architectures than to identify the things that are the same since
the goal of developing a software product line is to be able to change the
resulting system. The FORM method uses four layers to classify features
(capability, operating environment, domain technology and implemen-
tation technique). We use a more fine-grained layering by using the dif-
ferent representations (architectural design, detailed design, source
code, compiled code, linked code and running system) as abstractions.
The advantage of this is that we can the relate variability points to dif-
ferent moments in the development. We consider this to be one of the
contributions of our paper.

Our hierarchical feature graph bears some resemblance to the inte-
gral hierarchical and diversity model presented in [Van de Hamer et al.
1998]. Unlike their model, we use variation points to model variability.
The notion of variation points was first introduced in [Jacobson et al.
1997]. The model uses a similar layering as can be found in [Batory &
O’Malley]. In this paper, three distinct granularities of reuse are identi-
fied (component, class and algorithm) that correspond to our architec-
ture design, detailed design and implementation levels.

Feature interaction. Feature interaction can be modelled in a feature
graph as dependencies between different features [Griss 2000]. Since
features can be seen as incremental units of development [Gibson
1997], dependencies make it impossible to link individual features to a
single component or class. As a consequence, source code of large sys-
tems such as software product lines tends to be tangled. Features that are
associated with a lot of other features are called crosscutting features.
Variability in such features is very hard to implement and often requires
that a system is designed using for example design patterns [Griss
2000].

Methodology. Our method, outlined in Section 7, was inspired by the
method outlined in the software product lines book written by our co-
author [Bosch 2000]. Rather than replacing it, our aim is to refine the
initial steps of this method. Our method also bears some resemblance to
74 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

9. Conclusions

Variabili
the architecture development method outlined in [Kruchten 1995].
The first steps in this method are to select a few cases to find major
abstractions. Our method of creating a feature graph based on a number
of cases in order to find variability points, can be seen as a refinement of
these steps.

Another method that is related to ours is the FAST (Family-Oriented
Abstraction, Specification and Translation) method that is discussed in
[Coplien et al. 1999]. This empirically tested method uses the SCV
(Scope, Commonality and variability) analysis method to identify and
document commonality and variability in a system. The result of this
analysis is a textual document. A notation modelling variability in terms
of features, such as provided in this paper, is not used in their work. An
important lesson learned in this paper is that variability points should
be bound early in order to save on development cost.

9. Conclusions

In this paper we study the phenomenon of variability in software prod-
uct lines. We do this by establishing where variability enters the produc-
tion of a software system, what forms variability can take, and what
mechanisms are available to implement variability into a software sys-
tem, and a software product line in particular.

As is presented, variability is introduced early in the development
process, in the form of features. Knowing that the term “feature” has
lately become an overly loaded term, we give our definition of features,
to alleviate further reading. We also give our definition of software
product lines, variability, and how features and feature graphs are used
to model variability and interaction between different software entities.

Based on four cases, presented in Section 4, we discern three major
patterns regarding how variability is implemented. Conveniently, these
three patterns map fully to the variability forms modelled in feature
graphs. Besides these three patterns we present other important charac-
teristics, namely where the management of the variation point is done,
when the variation point is bound to a unique variant, and how long the
variation point is open for adding new variants. We then present the
actual mechanisms available for introducing the variability recognized
in feature graphs, presenting for each mechanism how it adheres to the
three overall patterns, and giving examples of usage from the four cases.
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 175

On the Notion of Variability in Software Product Lines

1

We summarize by presenting a process by which to plan and intro-
duce variability into a software product line, and some guidelines
regarding variability in general.

9.1 Contributions

There are a number of contributions in this paper. We provide an exten-
sive definition of the terms feature and variability in relation to software
product lines. In addition, we introduced the notion of variability bind-
ing time. To the best of our knowledge this has not been introduced
before. The work presented in Section 2, 3. and 5. allowed us to create a
taxonomy of variability mechanisms. The mechanisms are organized
into three dimensions:

� Abstraction Level.

� Variability Pattern.

� Binding time.

This provides us with an intuitive way to find the appropriate way of
translating variability requirements into implementation. And finally we
provide guidelines for finding the right variability mechanism.

9.2 Future Work

Future work involves investigating further how to design new systems,
possibly into an existing software product line, to support the currently
required and future planned variability. We also intend to investigate
means by which to introduce new variation points into an already exist-
ing software product line, to support evolving requirements. Another
viable path, which we intend to investigate, is to move from the mecha-
nisms presented in Section 6 to new programming paradigms, similar to
what, for instance, Aspect Oriented Programming and Subject Oriented
Programming has already done.

10. Acknowledgements

We would like to thank Axis Communications in Lund, and Ericsson
Software and Symbian in Ronneby for their involvement in our research
76 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

11. References

Variabili
and for providing access to their software products. In addition we
would like to thank the developers of the Mozilla project for providing
an up to date vision on how to implement variability in software prod-
uct lines.

11. References

[Batory & O’Malley] D. Batory, S. O’Malley, “The Design and
implementation of Hierarchical Software Systems with Reusable
Components“, in ACM Transactions on Software Engineering and
Methodology, Vol. 1, No. 4, October 1992, pp. 355-398.

[Bosch 1998] J. Bosch, “Product-Line Architectures in Industry: A
Case Study”, in Proceedings of the 21st International Conference on
Software Engineering, November 1998.

[Bosch 1999a] J. Bosch, “Evolution and Composition of Reusable
Assets in Product-Line Architectures: A Case Study”, in Proceedings
of the First Working IFIP Conference on Software Architecture,
February 1999.

[Bosch 1999b] J. Bosch, “Superimposition: A Component Adaption
Technique”, in Information and Software Technology, (41)5, pp.
257-273, 1999.

[Bosch 2000] Jan Bosch, “Design & Use of Software Architectures -
Adopting and Evolving a Product Line Approach“, Addison-Wesley,
ISBN 020167494-7, 2000.

[Buschman et al. 1996] F. Buschmann, C. Jäkel, R. Meunier, H.
Rohnert, M. Stahl, “Pattern-Oriented Software Architecture - A
System of Patterns“, John Wiley & Sons, 1996.

[Coplien et al. 1999] J . Cop l i en , D . Ho f f man , D . We i s s ,
“Commonality and variability in software engineering“, IEEE
Software, November/December 1999, pp. 37-45.

[Gamma et al. 1995] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
“Design Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley Publishing Co., Reading MA, 1995.

[Gibson 1997] J . P. Gibson,”Feature Requi rement s Model s :
Understanding Interactions”, in Feature Interactions In
Telecommunications IV, Montreal, Canada, June 1997, IOS Press.

[Griss et al. 1998] M. L. Gr i s s , J . Favaro , M. d 'Ale s sandro,
“Integrating feature modeling with the RSEB”, Proceedings. Fifth
International Conference on Software Reuse (Cat. No.98TB100203).
IEEE Comput. Soc, Los Alamitos, CA, USA, 1998, xiii+388 pp.
p.76-85.
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 177

On the Notion of Variability in Software Product Lines

1

[Griss 2000] M. L. Griss, “Implementing Product line Features with
Component Reuse“, to appear in Proceedings of 6th International
Conference on Software Reuse, Vienna, Austria, June 2000

[Van Gurp & Bosch 2000] J . v a n Gu rp , J . Bo sc h , “De s i gn ,
implementation and evolution of object oriented frameworks:
concepts & guidelines“, technical paper, accepted with minor
revisions in the journal Software-Parctice and Experience, April
2000.

[Van Gurp & Bosch 1999] J . v a n Gu r p, J . B o sc h , “ O n t h e
Implementation of Finite State Machines“, in Proceedings of the 3rd
Annual IASTED International Conference Software Engineering and
Applications, IASTED/Acta Press, Anaheim, CA, pp. 172-178,
1999.

[Van de Hamer et al. 1998] P. van de Hamer, F.J. van der Linden, A.
saunders, H. te Sligte, “N Integral Hierarchy and Diversity Model
for Describing Product Family architecture“, in Proceedings of the
2nd ARES Workshop: Development and evolution of Software
Architectures for Product Families, Springer Verlag, Berlin Germany,
1998.

[Jacobson et al. 1997] I. Jacobson, M. Griss, P. Johnson, “Software
Reuse: Architecture, Process and Organization for Business success“,
Addison-Wesley, 1997.

[Kang et al. 1990] K. C. Kang, S. G. Cohen, J. A. Hess, W.E. Novak,
A.S. Peterson, “Feature Oriented Domain Analysis (FODA)
Feasibility Study“, Technical report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegy Mellon University, Pittsburgh, PA.

[Kang 1998] K.C. Kang, “FORM: a feature-oriented reuse method
withdomain-specific architectures“, in Annals of Software
Engineering, V5, pp. 354-355.

[Keepence & Mannion 1999] B. Keepence, M. Mannion, “Using
Patterns to Model Variability in Product Families“,in IEEE
Software, July/August 1999, pp 102-108.

[Kiczalez et al.1997] G. Kiczalez, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J-M. Loingtier, J. Irwin, “Aspect Oriented
Programming”, in Proceedings of 11th European Conference on
Object-Oriented Programming, pp. 220-242, Springer Verlag,
Berlin Germany, 1997.

[Kruchten 1995] P.B . K r uc h t en , “ The 4+1 Vi ew Mod e l o f
Architecture“, in IEEE Software, November 1995, pp. 42-50.

[Mattsson & Bosch 1999a] M. Mattsson, J . Bosch, “Evolution
Observations of an Industry Object-Oriented Framework”, in
Proceedings International Conference on Software Maintenance,
78 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

11. References

Variabili
IEEE Computer Society Press: Los Alamitos CA, pp. 139-145,
1999.

[Mattsson & Bosch 1999b] M. Mattsson, J. Bosch, “Characterizing
Stability in Evolving Frameworks”, in Proceedings TOOLS Europe
1999, IEEE Computer Society Press: Los Alamitos CA, pp. 118-
130, 1999.

[Mozilla] Mozilla website, http://www.mozilla.org/.
[Oeschger 2000] I. Oeschger, “XULNotes: A XUL Bestiality”, web

page: http://www.mozilla.org/docs/xul/xulnotes/xulnote_beasts.html,
Last Checked: May 2000.

[Oreizy et al. 1999] P. Oreizy, M.M. Gorlick, R.N. Taylor, D.
Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D.S.
Rosenblum, A.L. Wolf, “Self-Adaptive Software: An Architecture-
based Approach”, in IEEE Intelligent Systems, 1999.

[Ousterhout 1998] J.K. Ousterhout, “Script ing: Higher Level
Programming for the 21st Century”, in IEEE Computer, May
1998.

[Pree 1995] W. Pree, “Design Patterns for Object-Oriented Software
Development“, Addisson-Wesley, 1995, ISBN 0-201-42294-8.

[Rine & Sonnemann 1996] D . C . R i n e , R . M. Son n e m a nn ,
“Investments in reusable software. A study of software reuse
investment success factors“, in The journal of systems and software,
nr. 41, pp 17-32, Elsevier, 1998.

[Rine & Nada 2000] D. C. Rine, N. Nada, “An empirical study of a
software reuse reference model“, in Information and Software
Technology, nr 42, pp. 47-65, Elsevier, 2000.

[Svahnberg & Bosch 1999a] M. Svahnberg, J. Bosch, “Evolution in
Software Product Lines: Two Cases”, in Journal of Software
Maintenance - Research and Practice, 11(6), pp. 391-422, 1999.

[Svahnberg & Bosch 1999b] M. Svahnberg, J. Bosch, “Characterizing
Evolution in Product Line Architectures”, in Proceedings of the 3rd
annual IASTED International Conference on Software Engineering
and Applications, IASTED/Acta Press, Anaheim, CA, pp. 92-97,
1999.

[Symbian] Symbian Website, http://www.symbian.com/.
[Zave & Jackson 1997] P. Zave, M. Jackson, “Four Dark Corners of

Requirements Engineering“, ACM Transactions on Software
Engineering and Methodology, Vol. 6. No. 1, Januari 1997, p. 1-30.
ty in Software Systens: the Key to Software Reuse - Licentiate thesis 179

On the Notion of Variability in Software Product Lines

1
80 Variability in Software Systens: the Key to Software Reuse - Licentiate thesis

	Contents
	Overview of the papers 1
	Introduction 3
	1. OO Frameworks 6
	1.1 Definitions 6
	1.2 Whitebox & Blackbox Use of a Framework 8
	1.3 Role Oriented Programming 9
	1.3.1 Roles in OO Design 11
	1.3.2 Inheritance vs Delegation 12
	1.3.3 Objective motivation for using Roles 13

	1.4 Frameworks and Roles 16

	2. Software Product Lines 18
	2.1 Examples of SPLs 20
	2.1.1 Axis Communications AB 20
	2.1.2 Symbian 21
	2.1.3 Mozilla 21

	2.2 Characteristics of a SPL 22

	3. Variability 23
	4. Late Variability Techniques 27
	4.1 Run-time variability techniques 28
	4.1.1 Component Configuration 28
	4.1.2 Dynamic Binding 29
	4.1.3 Interpretation 30

	4.2 Late variability in a framework for finite state machines 30
	4.3 Open Issues 32
	4.3.1 Subjective Views 33
	4.3.2 Cross cutting functionality 33

	5. The Development Process 35
	5.1 SPL Development 35
	5.2 Variability Identification & Planning in SPLs 36
	5.3 SPL Instantiation Process 38

	6. Contributions of the papers 39
	7. Future Research 40
	8. Conclusion 41
	9. References 42

	Paper I: On the Implementation of Finite State Machines 45
	1. Introduction 45
	2. The state pattern 47
	2.1 FSM Evolution 48
	2.2 FSM Instantiation 50
	2.3 Managing Data in a FSM 51

	3. An Alternative 52
	3.1 Conceptual Design 52
	3.2 An Implementation 54

	4. A Configuration Tool 56
	4.1 FSMs in XML 56
	4.2 Configuring and Instantiating 57

	5. Assessment 57
	6. Related Work 60
	7. Conclusion 61
	8. References 63

	Paper II: Design, implementation and evolution of object oriented frameworks: concepts & guidelin...
	1. Introduction 65
	2. The Haemo Dialysis Framework 68
	3. Framework organization 71
	3.1 Blackbox and Whitebox Frameworks 72
	3.2 A conceptual model for OO frameworks 74
	3.3 Dealing with coupling 78
	3.4 Framework Instantiation 79

	4. Guidelines for Structural Improvement 81
	4.1 The interface of a component should be separated from its implementation 81
	4.2 Interfaces should be role oriented 82
	4.3 Role inheritance should be used to combine different role interfaces 83
	4.4 Prefer loose coupling over delegation 86
	4.5 Prefer delegation over inheritance 87
	4.6 Use small components 88

	5. Additional Recommendations 90
	5.1 Use standard technology 90
	5.2 Automate configuration 92
	5.3 Automate documentation 93

	6. Related Work 94
	7. Conclusion 96
	7.1 What is gained by applying our guidelines 96
	7.2 Future work 97

	8. Acknowledgements 97
	9. References 97

	Paper III: SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment 101
	1. Introduction 101
	2. Methodology 105
	3. SAABNet 106
	3.1 Qualitative Specification 106
	3.2 Quantitative Specification 110

	4. SAABNet usage 111
	5. Validation 113
	5.1 Case1: An embedded Architecture 113
	5.1.1 Diagnostic use 113
	5.1.2 Impact analysis 115

	5.2 Case2: Epoc32 117
	5.2.1 Quality attribute prediction 118
	5.2.2 Quality attribute fulfillment 120

	6. Related Work 121
	7. Conclusion 123
	8. References 124

	Paper IV: On the Notion of Variability in Software Product Lines 127
	1. Introduction 127
	1.1 Software Product Lines 128
	1.2 Goal of this article 129

	2. Features 130
	2.1 Definition of feature 131
	2.2 Feature Interaction 132
	2.3 Notation 133

	3. Variability in Software Product Lines 133
	3.1 Variability 135
	3.2 Features and Variability 138

	4. Cases/Examples 142
	4.1 EPOC 142
	4.2 Axis Communications 143
	4.3 Billing Gateway 143
	4.4 Mozilla 144

	5. Variability Patterns 144
	5.1 Recurring Patterns 147
	5.2 Management of Variability 149
	5.3 Adding new Variants 150

	6. Variability Mechanisms 150
	6.1 Variant Entity 152
	6.1.1 Architectural Design 152
	6.1.2 Detailed Design 157
	6.1.3 Implementation 158
	6.1.4 Compilation 160
	6.1.5 Linking 161

	6.2 Optional Entity 163
	6.2.1 Architectural Design 164
	6.2.2 Detailed Design 165

	6.3 Multiple Coexisting Entities 166
	6.3.1 Detailed Design 167
	6.3.2 Multiple Coexisting Component Specializations 168
	6.3.3 Implementation 169

	7. Planning Variability 170
	7.1 Identification of Variability 170
	7.2 Planning Variability 171

	8. Related Work 172
	9. Conclusions 175
	9.1 Contributions 176
	9.2 Future Work 176

	10. Acknowledgements 176
	11. References 177

	Overview of the papers
	Introduction
	Figure 1.� Spectrum of flexibility and cost efficiency
	1. OO Frameworks
	1.1 Definitions
	1.2 Whitebox & Blackbox Use of a Framework
	1.3 Role Oriented Programming
	1.3.1 Roles in OO Design
	1.3.2 Inheritance vs Delegation
	1.3.3 Objective motivation for using Roles

	1.4 Frameworks and Roles

	2. Software Product Lines
	2.1 Examples of SPLs
	2.1.1 Axis Communications AB
	2.1.2 Symbian
	2.1.3 Mozilla

	2.2 Characteristics of a SPL

	3. Variability
	Figure 2.� Representations & transformation processes
	Figure 3.� The Variability Funnel with early and delayed variability

	4. Late Variability Techniques
	4.1 Run-time variability techniques
	4.1.1 Component Configuration
	4.1.2 Dynamic Binding
	4.1.3 Interpretation

	4.2 Late variability in a framework for finite state machines
	Figure 4.� The FSM Framework’s components.

	4.3 Open Issues
	4.3.1 Subjective Views
	4.3.2 Cross cutting functionality

	5. The Development Process
	5.1 SPL Development
	5.2 Variability Identification & Planning in SPLs
	5.3 SPL Instantiation Process

	6. Contributions of the papers
	7. Future Research
	8. Conclusion
	9. References
	Paper I
	On the Implementation of Finite State Machines
	1. Introduction
	Figure 1.� WrapAText

	2. The state pattern
	2.1 FSM Evolution
	Figure 2.� The changed WrapAText FSM
	Figure 3.� The state-pattern.

	2.2 FSM Instantiation
	2.3 Managing Data in a FSM

	3. An Alternative
	3.1 Conceptual Design
	Figure 4.� The FSM Framework’s components.

	3.2 An Implementation

	4. A Configuration Tool
	4.1 FSMs in XML
	Figure 5.� WrapAText specified in XML

	4.2 Configuring and Instantiating

	5. Assessment
	Figure 6.� Performance measurements

	6. Related Work
	7. Conclusion
	8. References
	Figure 1.� Class diagram for the FSM Framework

	Paper II
	Design, implementation and evolution of object oriented frameworks: concepts & guidelines
	1. Introduction
	2. The Haemo Dialysis Framework
	Figure 1.� The haemo dialysis machine
	Figure 2.� The haemo dialysis core framework
	Figure 3.� The scheduling and connector frameworks

	3. Framework organization
	3.1 Blackbox and Whitebox Frameworks
	Figure 4.� Relations between the different elements in a framework

	3.2 A conceptual model for OO frameworks
	Figure 5.� Example of two role models combined in a single component

	3.3 Dealing with coupling
	3.4 Framework Instantiation

	4. Guidelines for Structural Improvement
	4.1 The interface of a component should be separated from its implementation
	4.2 Interfaces should be role oriented
	4.3 Role inheritance should be used to combine different role interfaces
	Figure 6.� Example of interface inheritance

	4.4 Prefer loose coupling over delegation
	4.5 Prefer delegation over inheritance
	4.6 Use small components

	5. Additional Recommendations
	5.1 Use standard technology
	5.2 Automate configuration
	5.3 Automate documentation

	6. Related Work
	7. Conclusion
	7.1 What is gained by applying our guidelines
	7.2 Future work

	8. Acknowledgements
	9. References

	Paper III
	SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment
	1. Introduction
	Figure 1.� A BBN: qualitative spec.
	Figure 2.� A BBN: quantitative spec.

	2. Methodology
	3. SAABNet
	Figure 3.� Qualitative specification of SAABNet
	3.1 Qualitative Specification
	Figure 4.� Architecture attributes variable definition
	Figure 5.� Quality criteria variable definitions
	Figure 6.� Quality factor variable definitions.

	3.2 Quantitative Specification
	Table 1. Conditional probabilities configurability

	4. SAABNet usage
	5. Validation
	5.1 Case1: An embedded Architecture
	5.1.1 Diagnostic use
	Table 2. Diagnostic use

	5.1.2 Impact analysis
	Table 3. Impact analysis

	5.2 Case2: Epoc32
	5.2.1 Quality attribute prediction
	Table 4. Quality attribute prediction

	5.2.2 Quality attribute fulfillment
	Table 5. Quality attribute fulfillment

	6. Related Work
	7. Conclusion
	8. References

	Paper IV
	On the Notion of Variability in Software Product Lines
	1. Introduction
	1.1 Software Product Lines
	1.2 Goal of this article
	Figure 1.� The Variability Funnel with early and delayed variability

	2. Features
	2.1 Definition of feature
	2.2 Feature Interaction
	2.3 Notation
	Figure 2.� Example feature graph

	3. Variability in Software Product Lines
	3.1 Variability
	Figure 3.� Representation & transformation processes

	3.2 Features and Variability
	Figure 4.� The Feature Tree: features on one level decompose into multiple features in lower levels

	4. Cases/Examples
	4.1 EPOC
	4.2 Axis Communications
	4.3 Billing Gateway
	4.4 Mozilla

	5. Variability Patterns
	Figure 5.� Time scale of Binding times
	5.1 Recurring Patterns
	Figure 6.� Abstraction and Concretization

	5.2 Management of Variability
	5.3 Adding new Variants
	TABLE 1. Comparison between patterns

	6. Variability Mechanisms
	6.1 Variant Entity
	6.1.1 Architectural Design
	6.1.1.1 Architecture Reorganization
	6.1.1.2 Variant Architecture Component
	6.1.1.3 Infrastructure-Centered Architecture
	6.1.2 Detailed Design

	6.1.2.1 Variant Component Specializations
	6.1.3 Implementation

	6.1.3.1 Condition on Constant
	6.1.3.2 Condition on Variable
	6.1.4 Compilation

	6.1.4.1 Code Fragment Superimposition
	6.1.5 Linking

	6.1.5.1 Binary Replacement - Linker Directives
	6.1.5.2 Binary Replacement - Physical

	6.2 Optional Entity
	6.2.1 Architectural Design
	6.2.1.1 Optional Architecture Component
	6.2.2 Detailed Design

	6.2.2.1 Optional Component Specializations

	6.3 Multiple Coexisting Entities
	6.3.1 Detailed Design
	6.3.1.1 Multiple Coexisting Component Implementations
	6.3.2 Multiple Coexisting Component Specializations
	6.3.3 Implementation

	6.3.3.1 Condition on Variable

	7. Planning Variability
	7.1 Identification of Variability
	7.2 Planning Variability
	Figure 7.� The variability mechanism selection method

	8. Related Work
	9. Conclusions
	9.1 Contributions
	9.2 Future Work

	10. Acknowledgements
	11. References

