Variability Management and Compositional SPL
Development

Jilles van Gurp

Nokia Research Center, Helsinki, Finland
jilles.vangurp AT nokia.com

This position paper reflects on the implications f@riability management
related practices in SPL development when adomimgmpositional style of
development. We observe that large scale softwewveldpment is increasingly
conducted in a decentralized fashion and on a glstale with little or no

central coordination. However, much of the curr@RL and variability

practices seem to have strong focus on centrallytaiaed artifacts such as
feature and architecture models. We conclude thatrinciple it should be
possible to decentralize these practices and fgemti number of related
research challenges that we intend to follow undature research.

Introduction

Over the past ten years software product line (SPapferences and related
workshops have established SPL research as a rseipldtie in the broader field of
software engineering. We, and others, have beefrilsotors to this field with
publications on software variability management 21,and involvement in earlier
workshops [3]. In more recent work, we have puldéhabout compositional
development of software products [4]. Compositiodalvelopment decentralizes
much of the traditionally centralized activities an integration oriented SPL,
including requirements management, architecture desglgn. These activities are
pushed down to the component level.

So far, Moore's law has accurately predictedetk@onential growth of transistor
density on chips and software developers seem e haatched this growth with a
similar growth in software size (generally measuréd lines of code).
Decentralization of development activities alloveyelopment to scale better to such
levels. This scalability is required to create mpreducts that integrate a wider
diversity of components and functionality. Makingftavare products that support an
ever wide range of functionality is necessary igeorto differentiate in the market.

Unfortunately, decentralization has far reachingnsemuences for SPL
methodology and tooling. A common characteristienainy of the currently popular
SPL methodologies is the use of centrally main@ifeature models that describe the
variability in the SPL. For example, much of theLSépecific tooling depends on
such models. This includes build configuration $potequirements management
tooling and product derivation support tools. Adiuially, processes and

2 Jilles van Gurp

organizations are generally organized around tteede and models.

In a compositional approach where development ienkealized and different
components are developed by different people, lkgsinnits and organizations using
different methodologies and tools, these approadineak down. Products are not
created by deriving from a central architecture &gature model but by combining
different components and writing glue code.

The intention of this position article is to reflean this topic and identify new
research issues. It seems that much of the cueseéarch is conducted under a closed
world assumption where one central organizatiomditye is in charge of overall
design, management and governance of the SPL seftWe believe this assumption
to be flawed. The reality on the ground is quitéfedent. Increasingly software
companies are collaborating either directly or tigio open source projects on
software assets that they have a shared interdstsgems that it is almost impossible
to develop software these days without at leastesalependencies on external
software. Additionally, in large companies softwadevelopment is distributed
throughout the organization. Consuming softwarenfie business unit on a different
continent poses very similar challenges to pammgewith a different company.

In the remainder of this article we first briefiytioduce the topic of compositional
development before reflecting on what that meamsvésiability management and
finally reflecting on some future research topiekied to that.

Compositional development

Compositional development might be interpreted am@ve back to the COTS
approaches popular in the past decade. In those dayas suggested that companies
would either buy components developed by other amapts or use in house
developed components from a reusable component. bdkese approaches
fragmented in roughly four directions over the miestade:

* Integrated Platforms. In this approach, one vendor offers a fully
integrated software platform complete with toolscumentation, vast
amounts of reusable software and consulting. Exasnpl companies that
provide such vertical stacks of software are IBMa&e and Microsoft.
While successful, this approach is mostly limited the domain of
enterprise systems. Characteristic of this donsthat most systems built
are one of a kind.

* SPLs For other domains than enterprise systems (engbedded
software), SPLs have emerged as a successful wagvielop a platform
in house and use that to build software productslikel enterprise
software, most embedded software products aremeobtba kind. Product
lines for embedded software also tend to be higiplgcialized for the
domain (e.g. mobile phones; audio visual equipmmetlical equipment).
Within those domains, the product line aims to supp wide range of
products.

e 'True' COTS. The vision in the nineties was not SPLs or hugdical
stacks of technology but a market of component gexavhose products

Variability Management and Compositional SPL Development 3

could be combined by product developers. Exceptdofew limited
domains (e.g. GUI components), this market nevesrged [5]. However,
this market is comparatively small. Problems wihpect to ownership of
source code; interoperability; documentation argpsut are usually cited
as the causes for this.

* Open source From the mid nineties a vast amount of softwae Ibeen
released in the form of open source. Currentlygtee tens of thousands
of active projects releasing high quality softwaMost commercial
software development, including embedded softwareelbpment, now
depends on substantial amounts of this softwarey ¥ew commercial
software companies are 100% open source thouglseéms many
companies have a small layer of differentiatingsafe & services that
are not open source.

Of course, these approaches overlap. For examglera SPL case studies have been
published for enterprise systems. Additionally gsBOTS in combination with either
SPLs or enterprise platforms is quite common. bi,fmost of the COTS companies
seem to make components that are specializedgartular platform. Finally, open
source is important for COTS, integrated platforausd SPLs. Compositional
development of products involves combining elemdram all of these approaches
and is certainly not about just COTS.

In compositional development, development teamsoofiponents or subsystems
operate with a higher degree of autonomy then theyld in a SPL organization.
Identification of key requirements and design dohs is largely the responsibility of
these teams. They interact with developers of otbenponents they depend on and
with developers of components (or products) thgiede on them. However, the
central coordination of this communication is alisen

The rationale here is to bring the decision proegsss close to where it has an
impact; and also to where the domain and techmigpérts operate. This is a quite
different working model from the traditional one evb a group of seniors decides
together with the major stakeholders on desigryirements and other issues.

The problem with integrated SPL model is thatdesl not scale to the current
industrial practice where software systems spanminfjiple millions of lines of code
are now the rule, not the exception. Managing tesigh and architecture of such
software centrally is extremely difficult. The anmbwf people with a detailed enough
knowledge of the software is very low in such compa. Additionally these people
tend to be very busy and are generally very hardptace.

In practice, this means that as software size groesision makers at the top are
increasingly detached from the design details @f software. In other words, it
disqualifies these individuals for making the teichh decisions they should be
making. The logical, and in our view inevitable pegach is to stop trying to take
most of these decisions centrally.

A useful analogy here might be that of the commtuaia planned economies vs.
the capitalist free market system. Making goverriniemel decisions about when,
where, and how to move a few tons of tomatoes igioolly nonsensical to
proponents of the latter. Yet this is exactly whappened in the strictly hierarchical
organized planned economies leading to obviousesssuch as one half of the
country having a shortage of tomatoes and anotiléhhving tons of tomatoes rot in

4 Jilles van Gurp

some central deposit. Similarly, detailed decisiahsut design and features are best
left to the experts working on the actual softwamnd any depending stakeholders.

Variability Management

Software variability is the ability of software ats to be extended, customized,
configured or otherwise adapted. In SPLs, the tigans to have a set of reusable
assets and architecture as well as a means te @eftivare products from those. In
other words, the reusable assets and architectatare a degree of variability that is
put to use during product creation.

In line with research from others at the time, @arlier work on variability
management identified feature models as a meangletify so-called variant
features in the requirements; and also as a meardah the use of variability
realization techniques to translate the variantufes into variation points (i.e.
concrete points in a software system where theas ispportunity to bind variants to
the variation points during product creation).

More recent research, has focused on (partiallypraating and supporting this
process; formalizing the underlying models (e.dngishe UML meta model); tool
support; etc. Some of these approaches are nowsusedssfully in industry. A small
commercial tool and support community is emerging.g., Big Lever
(www.biglever.com) can support companies with suppad tooling when adopting
a SPL approach. MetaCase (www.metacase.com) provisieilar services.
Additionally, various research tools integrate teatmodeling support into popular
IDEs. Clearly, these tools are useful and vari@asecstudies seem to confirm that.

However, all of them more or less depend on thegmee of a centrally governed
architecture and feature model. Introducing contfmel development implies less
central control on these two assets. Consequemdguirements analysis and
architecture design activities are also affected.

Assuming that software development is fully decaited, this means the
following:

* New features or variant features are identifiedjorfiized and
implemented locally rather than at a central level.

* Important architecture decisions with respect tmpgonent variability and
flexibility are mostly taken without consulting aemtral board of
architects.

* New variant features are not represented in céytnadintained feature
models unless the updating of such models is eithgomated or
enforced with (central) processes and bureaucrleig. may be hard or
even impossible given differences between orgaoizat& processes of
the various software development teams involved.

* For the same reason, any tool mapping of such remant features to
software variation points is not updated. Such riveggpare critical in e.qg.
build configuration tools.

Variability Management and Compositional SPL Development 5

Provided vs. required variability

Feature models may be regarded as descriptionstluér erequired or provided
features in a software system. Feature modelsqfined features are the output of
the software analysis process. They may be integras specifications of the
software or be used to guide the design processh®uother hand, feature models of
provided features describe implemented softwaréesys in terms of the features
actually implemented in the software. Models ofyied features may be of use for
e.g. configuring software products derived from pretform. In theory, these models
should be the same but in practice requirementstantly change and few software
products actually conform to initial requirementpesifications. In fact, most
development on large software systems is softwaeentenance and concerns
changes to both the software and its provided featpecifications.

A similar distinction can be made for architectat@cuments. While the words
‘architecture document' suggest that software veldped according to the blueprints
outlined in this document, a more popular use chi&cture documentation tools
seems to be to document the design of already imgtéed software. This type of
documentation is generally used to, for exampleroanicate the design to various
stakeholders. Additionally, models described inaachitecture description language
may be used to do automated architecture validstimulations; or system
configuration.

When using a build configuration tool based ondeatimodels, developers select
existing implementations of features or varianttdezs. In other words, they make
use of a model of the provided variability. Theltooturn needs to map the feature
configuration to variation points in the implemdida artifacts. In other words, it has
an internal model of the provided variation poimtshe software architecture.

This distinction of provided vs. required variatyilis highly relevant because we
observe that much of the SPL tooling is more relateprovided rather than required
variability. De-centrally developed components nmay conform to a centrally pre-
defined model of required features but they celyaiio provide features that may be
described. Similarly, these components do not zeala pre-defined central
architecture but may still provide explicit vargii points. There is nothing inherently
central about either feature models or architecture

Research Issues & Concluding remarks

This article observes that there is a trend to ikealize software development in the
current software industry and that this raisesdsswith respect to SPL development,
particularly where it concerns the use of centrd#iyined feature models, architecture
models, and related tooling. Fundamentally, thistredized/top down style of
software development is not compatible with thetdmtup style development seen
across the industry and we foresee that this demgdaapproach will not continue to
scale to the required levels. Already, the incoaion of de-centralized elements is
evident in the increasing popularity & use of opgurce components, and also in
publications such as Van Ommering.

6 Jilles van Gurp

From this observation, we explored a bit what itame to do decentralized
compositional development and what that meansHercentralized use of feature
models and architecture models in current SPL dgwveént. An important
conclusion we make is that most of the currentibgois focused around using feature
models of provided features in a software systeroafigure provided variability
points in a software architecture. We do not seg famdamental objections to
continue doing that in a decentralized developmertdel. Feature models of
individual components may be provided and similénky variability provided in these
components may be described.

The above suggest that much of the tooling thateotly exists for variability
management may be adapted for use in a de-ceastailbh. Some potential research
topics related to this that we intend to explongHfer in future work are:

 How to synthesize aggregated feature models aritecture models
from the individual component level models given camponent
configuration.

* How to validate component configurations given mgtete feature &
architecture information from components.

* How to deal with integrating components withoutrfiatly documented
features and variation (e.g. most open source aoftwomes without such
documentation).

« How to deal with crosscutting variant features tladtect multiple,
independently developed components. E.g., secuetsted features
generally have such crosscutting properties.

Some preliminary work related to this has alreaglgrbdone by amongst other Van
Ommering [6] who wrote articles on KOALA and devaheent issues related to
compositional development. The trend, judging frll®ALA, similar approaches
and, also from the increased popularity of compbn&ameworks such as
standardized in OSGI, seems to be to address tksses with microkernel like
architectures that explicitly requires componeatstate dependencies and interfaces.

References

[1] J. van Gurp, J. Bosch, M. Svahnberg, On theidwoof Variability in Software Product
Lines, Proceeedings of WICSA 2001, 2001.

[2] P. Clements, L. Northrop, “Software Product ésn- Practices and Patterns”, Addison-
Wesley, 2002.

[3] J. van Gurp, J. Bosch, Proceedings of Firstkatoop on software variability management
(SVM 2003), Groningen 2003.

[4] J. van Gurp, C. Prehofer, J. Bosch, ScalinglBebLines to new Levels: the

Open Compositional approach, submitted Decembes.200

[5] B. Lang, Overcoming the Challenges of COTS, ®ew@ SEl, 4(2)
http://www.sei.cmu.edu/news-at-sei/features/200012gature-5-2q01.htm, 2001.

[6] R. van Ommering, Building product populationghwsoftware components, proceedings of
Proceedings of the 24rd International Conferenc8aftware Engineering (ICSE 2002), pp.
255-265, 2002.

