A Taxonomy of Variability Realization Techniques

MIKAEL SVAHNBERG
Blekinge Institute of Technology

JLLESVAN GURP AND JAN BOSCH
University of Groningen

Development of software product lines relies heavily on the use of variability to manage the differences between
products by delaying design decisions to later stages of the development and usage of the constructed software
systems. Implementation of variability isnot atrivial task, and is governed by a number of factorsto consider. In
this paper we describe the factors that are relevant to determine how to implement variability, and present a tax-
onomy of variability realization techniques.

Categories and Subject Descriptors: D.2.2 [Softwar e Engineering] Design Tools and Techniques - Modules and
Interfaces; D.2.2 [Software Engineering] Design Tools and Techniques - Object-oriented design methods;
D.2.11 [Software Engineering] Software Architectures - Domain-specific architectures; D.2.11 [Software
Engineering] Software Architectures - Patterns; D.2.13 [Software engineering] Reusable Software - Domain
engineering

General Terms: Design

Additional Key words and phrases: Variability, Software Product Lines

1. INTRODUCTION

Over the last decades, the software systems that we use and build require and exhibit increasing variability, i.e. the ability of a
software artefact to vary its behaviour at some point in its lifecycle. We can identify two underlying forces that drive this
development. First, we see that variability in systemsis moved from mechanics and hardware to the software. Second, because
of the cost of reversing design decisions once these are taken, software engineers typically try to delay such decisions to the
latest phase in the lifecycle that is economically defendable. One example of thefirst trend are car engine controllers. Most car
manufacturers now offer engines with different characteristics for aparticular car model. A new development is that frequently
these engines are the same from a mechanical perspective and differ only in the software of the car engine controller. Thus,
earlier the variation between different engine models first was incorporated through the mechanics and hardware. However,
due to economies of scale that exist for these artefacts, car devel opers have moved the variation to the software.

The second trend, i.e. delayed design decisions, can be illustrated through software product lines [Weiss & Lai 1999][Jaza-
yeri et a. 2000][Clements & Northrop 2002] and the increasing configurability of software products. Over the last decade,
many organizations have identified a conflict in their software development. On the one hand, the amount of software neces-
sary for individual products is constantly increasing. On the other hand, there is a constant pressure to increase the number of
software products put out on the market in order to better service the various market segments. For many organizations, the
only feasible way forward has been to exploit the commonality between different products and to implement the differences
between the products as variability in the software artefacts. The product line architecture and shared product line components
must be designed in such a way that the different products can be supported, whether the products require replaced compo-
nents, extensions to the architecture, or particular configurations of the software components.

Based on our case studies [Bosch 2000][Svahnberg & Bosch 1999a][Svahnberg & Bosch 1999b], we have found that it is
not atrivial task to introduce variability into a software product line. Many factors influence the choices of how design deci-
sions can be delayed. Influencing factors include the size of the software entity, how long the design decision can be delayed
and the intended runtime environment. Another thing to consider is that variability need not be represented only in the archi-
tecture or the source code of a system, it can also be represented as procedures during the devel opment process, making use of
various tools outside of the actual system being built.

Although the use of variability techniquesisincreasing, research, both by others (for example, [Jacobson et a. 1997][Jaza-
yeri et al. 2000][Griss 2000][Clements & Northrop 2002]), and by ourselves [van Gurp et al. 2001][Bosch et al. 2002][Jaring
& Bosch 2002], shows that several problems exist. A major source for these problems is that software architects typically lack
agood overview of the variability techniques available as well as the pros and cons of these techniques.

This paper discuss the factors that need to be considered for selecting an appropriate method or technique for implementing
variability. We also provide ataxonomy of techniques that can be used to implement variability. The contribution of thisis, we
believe, that the notion of variability, and its qualities, is better understood, and that more informed decisions concerning vari-

Authors' addresses: M. Svahnberg, Department of Software Engineering and Computer Science, Blekinge Institute of Technology, S-372 5 Ron-
neby, Sweden, e-mail: Mikael.Svahnberg@bth.se; J. van Gurp, Department of Mathematics and Computer Science, University of Groningen, PO
Box 800, 9700 AV, the Netherlands, e-mail: Jilles@cs.rug.nl; J. Bosch, Department of Mathematics and Computer Science, University of Gronin-
gen, PO Box 800, 9700 AV, the Netherlands, e-mail: Jan.Bosch@cs.rug.nl

Permission to make digital/hard copy of part of thiswork for personal or classroom use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage, the copyright notice, thetitle of the publication, and its date of appear, and noticeis given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or afee.

ability and variation points can be made during software development. Using the provided toolbox of available realization
techniques the devel opment processis facilitated as the consequences of a particular choice can be seen at an early stage, much
as the use of Design Patterns [Gamma et al. 1995] also present devel opers with consequences of a particular design.

It should be noted that this paper focus on implementing variability in architecture and implementation artefacts, such as
the software architecture, the components and classes of a software system. We do not address issues related to e.g. variability
of requirements, managing variations of design documents or test specifications, structure of the development organization,
etc. While these are important subjects, and need to be addressed to properly manage variability in a software product line, the
goal of this paper isto cover the area of how to technically achieving variability in the software system. This paper should thus
be seen as one piece in the large puzzle that is software product line variability. For a description of many of the other key
areas to consider, please see e.g. [Clements & Northrop 2002].

The remainder of this paper is organized as follows: In Section 2 we introduce the terminology that we use in this paper. In
Section 3 we describe the steps necessary to introduce variability into a software product line, and in Section 4 we go through
one of these steps in further detail, namely the step where the variability is characterized so that an informed decision on how
to implement it can be taken. In Section 5 we, based on the characterization done, present ataxonomy of variability realization
techniques. This is intended as a toolbox for software developers to find the most appropriate way to implement a required
variability in the software product. In Section 6 we briefly present a number of case studies, and how the companies in these
case studies usually implement variability. Related work is presented in Section 7, and the paper is concluded in Section 8.

2. TERMINOLOGY

When reading about software product lines, features and variability, there seems to still be some amount of confusion regard-
ing how different terms should be interpreted. To avoid confusion we present, in this section, a list of terms and phrases that
we use in this paper. Thisis provided to allow the reader to relate the terms to whatever terminology is preferred, and is not
meant to be a standard dictionary of software product line and variability terminology.

Variability. By this we denote the whole area of how to manage the parts of a software development process and its resulting
artefacts that is made to differ between products or in certain situations within a single product. Variability is concerned with
many topics, ranging from the devel opment process itself to the various artefacts created, such as requirements, requirements
specifications, design documents, source code, and executable binaries (to mention afew). In this paper, however, we focus on
the software artefacts, involving software architecture design, detailed design, components, classes, source code, and execut-
able binaries.

Feature. The Webster dictionary provides us with the following definition of afeature: “ 3 a: a prominent part or characteris-
tic b: any of the properties (asvoice or gender) that are characteristic of a grammatical element (as a phoneme or morpheme);
especially; one that is distinctive” . In [Bosch 2000], features are defined as follows: “a logical unit of behavior that is speci-
fied by a set of functional and quality requirements®. The point of view taken in the book is that a feature is a construct used to
group related requirements (“there should at least be an order of magnitude difference between the number of features and the
number of requirements for a product line member*).

In other words, features are an abstraction from requirements. In our view, constructing a feature set isthe first step of inter-
preting and ordering the requirements. In the process of constructing a feature set, the first design decisions about the future
system are aready taken. In [Gibson 1997], features are identified as units of incrementation as systems evolve. It isimportant
to redlize that there isan to m relation between features and requirements. This means that a particular requirement (e.g. a per-
formance requirement) may apply to several features and that a particular feature may meet more then one requirement (e.g. a
functional requirement and a couple of quality requirements).

A software product line provides a central architecture that can be evolved and specialized into concrete products. The dif-
ferences between those products can be discussed in terms of features (e.g. modelled as prescribed by FODA [Kang et al.
1990][Kang 1998]). Consequently, a software product line must support variability for those features that tend to differ from
product to product.

[Grisset al. 1998] suggest the following categorization of features:

e Mandatory Features. These are the features that identify a product. E.g. the ability type in a message and send it to the
smtp server isessential for an email client application.

e Optional Features. These are features that, when enabled, add some value to the core features of a product. A good exam-
ple of an optional feature for an email client is the ability to add a signature to each message. It isin no way an essential
feature and not all userswill useit but it is nice to have it in the product.

e Variant Features. A variant feature is an abstraction for a set of related features (optional or mandatory). An example of a
variant feature for the email client might be the editor used for typing in messages. Some email clients offer the feature of
having a user configurable editor.

In[van Gurp et a. 2001] we add a fourth category:

e External Features. These are features offered by the target platform of the system. While not directly part of the system,
they are important because the system uses them and depends on them. E.g. in an email client, the ability to make TCP
connections to another computer is essential but not part of the client. Instead the functionality for TCP connections is
typically part of the OS on which the client runs. Differences in external features may motivate inclusion of partsin the
software to manage such variability.

Our choice of introducing external features is further motivated by [Zave & Jackson 1997]. In this work it is argued that

requirements should not reflect on implementation details (such as platform specific features). Since features are abstractions

Mail Client
[

_____ [, | | | I

i .)
I TCP Connecnon: Type Message Receive Message | | Send Message

[s -y -y - __________
L—rumime—‘—‘ ﬁrumime—‘ compiletime%
R T
Signature file Edit Pop3 IMAP | win32 | i Linux |
[| L____
L runtim J_ A ‘
o == .
: VI : : Emacs | Internal Editor
L2 L __ I
r—-———-— - = ———— = .y . ",
: anExternalFeature : T or specialization composition
S 1 L
Xor specialization i
aFeature Zr p optional feature
L—o

Figure 1. Example feature graph

from requirements, we need external features to link requirements to features. Using this categorization we have, in [van Gurp
et al. 2001] adapted the notation suggested by [Griss et al. 1998] to support external features. In addition we have integrated
the notion of binding time which we discuss in detail in Section 4. An example of our enhanced notation can be found in Fig-
ure 1. In this feature graph, the features of aemail client are laid out. The notation uses various constructs to indicate optional
features; variant features in that exclude each other (xor) and variant features that may be used both (or).

The example in Figure 1 demonstrates how these different constructs can be used to indicate where variability is needed.
The receive message feature, for instance, is a mandatory variant feature that has pop3 and imap as its variants. The choice as
towhichisused isdelayed until runtime, meaning that users of the email client can configure to use either variant. Making this
sort of details clear early on helps identify the spots in the system where variability is needed early on. The Receive message
feature might be implemented using an abstract receive message class that has two subclasses, one for each variant.

Our decomposition might give readers the impression that a conversion to a component design is straightforward. Unfortu-
nately, due to a phenomena called feature interaction, thisis not true. Feature interaction is a well-known problem in specify-
ing systems. It is virtually impossible to give a complete specification of a system using features because the features cannot
be considered independently. Adding or removing afeature to a system has an impact on other features. In [Gibson 1997], fea-
tureinteraction is defined as a characteristic of “ a system whose compl ete behavior does not satisfy the separate specifications
of all its features’ .

In [Griss 2000], the feature interaction problem is characterized as follows:. “ The problemis that individual features do not
typically trace directly to an individual component or cluster of components - this means, as a product is defined by selecting
a group of features, a carefully coordinated and complicated mixture of parts of different components are involved.”. This
appliesin particular to so-called crosscutting features (i.e. features that are applicable to classes and components throughout
the entire system). A further discussion on crosscutting features can be found in [Kiczalez et al.1997].

Variant. We use this as a short form to represent a particular variant of a variant feature. For example, in the e-mail example
above one variant of the edit feature would be the internal editor. A single variant can consist of several software entities, col-
laborating to solve the functionality required for the variant feature.

Collection of Variants. A collection of variants isthe whole set of variants available for one variant feature. Note that we only
use the term collection of variants to refer to this set of available variant. Each of these variants, and in particular the software
entitiesit is constituted of, is then connected to the remainder of the system using a set of variation points.

Variation Point. We use thisterm, in this paper, to denote a particular place in a software system where choices are made asto
which variant to use. Thistermisfurther elaborated onin Section 4, but the gist of it isthat a variant feature translates to a col-
lection of variants and a number of variation pointsin the software system, and these variation points are used to tiein a partic-
ular variant to the rest of the system. In a larger perspective, a variation point can also involve other artefacts related to the
software product line, but in this paper, we focus on the software artefacts.

Variability Realization Technique. By this we refer to away in which one can implement a variation point. In Section 5 we
present ataxonomy of variability realization techniques, i.e. ataxonomy of different ways to implement variation points.

Software Entity. A software entity is simply a piece of software. The size of a software entity depends on the type of software
entity. Types of software entities are components, frameworks, framework implementations, classes or lines of code. An exam-
ple of a software entity is the Emacs editor in the examplein Figure 1, which is a component in a mail client. In this example,
the component represent an entire variant of the variant feature “type message’, whereas in other examples a variant of a vari-
ant feature is implemented by several software entities, possibly of different types. For example, if the choices for typing a
message had been “plain text” and “HTML-formatted text”, there might be a need for a software entity in the implementation
of “send message” that re-formats HTML-formatted messages to plain text and attaches both to the e-mail before sending it.

Component. We use the same definition of a component as [Szyperski 1997] (page 34) does, namely: “ a software component
isa unit of composition with contractually specified interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third parties.”

Framework. In our experience, many industries do not use the kind of components as defined by [Szyperski 1997]. Rather,
they use object-oriented frameworks in the style of e.g. [van Gurp & Bosch 2002], [Mattsson 2000] and [Roberts & Johnson
1996]. Such aframework consists of an abstract framework interface, i.e. a set of abstract classes that define the interface of
the framework, and a number of concrete framework implementations. Each of these framework implementations, which use
the same framework interface, can rangein size from afew thousand lines of code up to 100 000 KLOC. Frameworks like this
typically model an entire sub-domain, and the implementations represent variants of this sub-domain. An example of thisisa
file system framework, which has an abstract interface containing classes representing e.g. files and directories, and a number
of concrete implementations of file systems for e.g. Unix, Windows, Netware, etc.

3. INTRODUCING VARIABILITY IN SOFTWARE PRODUCT LINES

While introducing variability into a software product line, there are a number of steps to take along the way, in order to get the
wanted variability in place, and to take care of it onceit isin place. In this section we briefly present the steps that we perceive
as minimally necessary to take. These steps are also presented in [van Gurp et al. 2001].
The steps we perceive as minimally necessary are:
e ldentification of variability
e Constraining the variability
* Implementation of the variability
* Managing the variability
Below, we present these four steps further.

I dentification of variability. Thefirst step isto identify where variability is needed. The feature graph notation we suggest in
Section 2 might be of use for doing so, and if feature graphs are undesirable, variable features can be identified from the
requirements specification. The identification of variability is a rather large field of research (see for example [Clements &
Northrop 2002]), but it is unfortunately outside of the scope of this paper to investigate it further. However, there seemsto be
some consensus that there is alink between features and variability, in that variability can more easily be identified if the sys-
tem is modelled using the concept of features (see e.g. [Becker et al. 2002][Capilla & Duefias 2002][Krueger 2002][Salicki &
Farcet 2002], aswell as FODA [Kang et a. 1990] and FORM [Kang 1998]).

Constraining variability. Once avariant feature has been identified, it needs to be constrained. After all, the purposeis not to
provide limitless flexibility but to provide just enough flexibility to suit the current and future needs of the system in a cost
effective way. For constraining a variant feature, the following activities need to take place:
« Decidewhen the variant feature should be introduced into the design and implementation of the software product line and/
or into the software product.
« Decide when and how variants are to be added to the system.
e Choose abinding time for each variation point, i.e. when the variation point should be committed to a particular variant of
avariant feature.
After the variant features are identified, they are eventually designed as software entities, i.e. introduced into the software
product line. One variant feature may result in a number of software entities of varying sizes. Moreover, placesin the software
system are identified where the software entities for a variant feature are tied in to the rest of the system. These places we refer
to as variation points. Depending on how the variation points are implemented, they allow for adding variants and for binding
during different times.
In Section 4 we describe the process of constraining variability in further detail.

Implementing variability. Based on the previous constrainment of variability a suitable realization technique can be selected
for the variation points pertaining to a certain variant feature. The selected realization technique should strike the best possible
balance between the constraints that have been identified in the previous step. To facilitate the selection of variability realiza-
tion techniques, we provide, in Section 5, an overview of such techniques.

Managing the variability. The last step is, as with all software, to manage the variability. This involves maintenance (adap-
tive and corrective as well as perfective [Swanson 1976][Pigoski 1997]), and to continue to populate variant features with new
variants and pruning old, no longer used, variants. Moreover, variant features may be removed altogether, as the requirements
change, new products are added and old products are removed from the product line. Management also involves the distribu-
tion of new variantsto the already installed customer base, and billing model s regarding how to make money off new variants.
Aswith the identification of variability, thisis also outside the scope of this paper.

4. CONSTRAINING VARIABILITY

Having identified what type of variability is required, and where in the software product line it occurs, the next step is to
constrain the variant features. By this we mean that the characteristics of each variant feature is determined so that a way to
implement the variant feature, i.e. realize the variant feature in the software product line, can be chosen.

The aspects to consider when selecting how to implement a variant feature can be identified by considering the lifecycle of
the variant feature. During the lifecycle, the variant feature is transformed in several ways during different phases, until there

Table 1: Entitiesmost likely in focus during the different development

activities
Development Activities Softwar e Entity in Focus

Architecture Design Components

Frameworks
Detailed Design Framework Implementations

Sets of Classes
Implementation Individual Classes

Lines of Code
Compilation Lines of Code
Linking Components

isarepresentation in software of it. Below, we briefly discuss these phases, after which we present the phases within the scope
of this paper in further detail.

When a variant feature is first identified, it is said to be implicit, as it is not yet realized in the software product line. An
implicit variant feature exists only as a concept, and is not yet implemented. Software designers and devel opers are aware that
they eventually will need to consider the variant feature, but defer its implementation until alater stage.

A variant feature ceases to be implicit when it is introduced into the software product line. After avariant feature is intro-
duced it has a representation in the design and implementation of the software product line. This representation takes the form
of aset of variation points, i.e. placesin the design or implementation that together provide the mechanisms necessary to make
afeature variable. Note that the variants of the variant feature need not be present at thistime.

After the introduction of avariant feature, the next step is to add the variants of the feature in question. What thismeansis
that software entities are implemented for each of the variants available for the variant feature in such a way that they fit
together with the variation points that were previously introduced. Depending on how a variation point is implemented, it is
open for adding variants during different stages of the development, and closed at other times, which means that new variants
can only be added at certain stages of development.

Finally, at some stage, a decision must be taken which variant of avariant feature to use, and at this stage the software prod-
uct line or software system is bound to one of the variants for a particular variant feature. This means that the variation points
related to the variant feature are committed to the software entities representing the variant decided upon.

To summarize, avariant feature goes through the following phases during its lifecycle:

e Itisidentified as avariant feature.

« Itisimplicit, not yet represented in the software product line.

e ltisintroduced into the software product line, as a set of variation points.

e Variants are added to the system.

e Thesystemisbound to aparticular variant.

As stated earlier, the process of identifying variant featuresis outside the scope of this paper, asis the consideration of implicit
features. This paper is concerned with the characteristics that must be considered in order to select a suitable realization tech-
nique of variant features, and these characteristics are the introduction time, the process of adding new variants, and the bind-
ing time. These we discuss in further detail below.

4.1 Introducing a Variant Feature

After identifying a variant feature, it should be implemented into the software product line or into the relevant software prod-
ucts. For thisimplementation, one has to consider the most suitable size of the software entities intended to represent the vari-
ant feature, and the variants for the variant feature.

The variants of a variant feature can be implemented in a multitude of ways, using a range of different software entities,
such as components, sets of classes, single classes or lines of code. Because of this, variant features can be introduced in all
phases of a system’s lifecycle, from architectural design to detailed design, implementation, compilation and linking. Each of
these different phases has afocus on different software entities. Table 1 presents the different development phases and the soft-
ware entities most likely in focus during these phases. In thistable, we see that starting with architectural design down to com-
pilation, the size of the software entities in focus becomes smaller, i.e. the granularity is increased. During the linking phase
the size isagain increased, asit is not relevant to discuss smaller entities than components when it comesto linking.

However, in many cases the situation is not as ideal asis described above, i.e. that avariant feature, and the variants for this
variant feature, maps to a single type of software entity. It may well be the case that a single variant feature maps to a set of
software entities, that together constitute the desired functionality. This set of software entities need not be of the same type,
but can involve for example components as well asindividual classes and even lines of code. Because of this, asingle variant
feature typically manifest itself asa set of variation points in the implemented system, working on different abstraction levels
and with software entities of different sizes. It is desirable to select the means for implementing the variant feature such that
they make the resulting set of variation points as small as possible, as this increase the understanding of the source code and
hence facilitates maintenance.

The decision on when to introduce a variant feature is thus influenced by a number of things, relating both to the availabil-
ity of realization techniques supporting desired qualities such aswhen to bind and when to allow adding of new variants, relat-

ing to the sizes of the involved software entities, relating to the number of resulting variation points, and aso relating to the
cost of maintaining the introduced variation points. A variation point that is introduced early needs to be understood and con-
trolled during many subsequent development phases, whereas a variation point that is introduced late need only be controlled
during a shorter time. On the other hand, if the variation point is aso bound early, thereis no, or little, extra overhead in under-
standing and controlling the variation point, even if it isintroduced early. Furthermore, the overhead involved in keeping track
of implicit variation points not yet implemented may also be substantial.

4.2 Adding of New Variants

Having introduced the variant feature into the software product line, this means that the software product line is instrumented
with appropriate variation points that together can accommodate the variants of the variant feature. Then comes the task of
adding these variants, which is also governed by a number of aspects, pertaining to when to add the variants, and how to add
the variants. These aspects, further discussed below, need also be considered when deciding how to implement the variation
points for a variant feature.

A variation point can be open or closed for adding new variants to the collection for that variation point. This means that at
any given point in time either new variants can be added or old removed, i.e. the variation point is open, or it is no longer pos-
sible to add or remove variants, i.e. the system is dedicated to a certain set of variants which means that the variation point is
closed.

The time when avariation point is open or closed for adding new variantsis mainly decided by the development and runt-
ime environments, and the type of software entity that is represented by the variation point. Typicaly, realization techniques
open for adding variations during detailed design and implementation are closed at compile-time. Realization techniques
working with components and component implementations are of a magnitude that makes them interesting to keep open dur-
ing runtime as well, since they constitute large enough chunks of code to easily cope with.

An important factor to consider iswhen linking is performed. If linking can only be done in conjunction with compilation,
then this closes all mechanisms at this phase. If the system supports dynamically linked libraries, mechanisms can remain open
even during runtime.

Adding variants can be done in two ways, depending on how the variation point isimplemented. In the first case, the vari-
ants are added implicitly, which means that there is no representation of the collection of variants in the software system. The
collection of variants is managed outside of the system, using e.g. simple lists of what variants are available. Moreover, an
implicit collection of variants relies on the knowledge of the developers or the users to provide a suitable variant when so
prompted.

In the second case, the variants are added explicitly, which means that the collection of variants are manifested in the source
code of the software system. This means that there is enough information in the system so that it can, by itself, find a suitable
variant when so prompted.

The decision on when and how to add variants is governed by the business strategy and delivery model for the productsin
the software product line. For example, if the business strategy involves supporting late addition of variants by e.g. third party
vendors, this constrains the selection of implementation techniques for the variation points as they may need to be open for
adding new variants after compilation, or possibly even during runtime. This example also impacts whether or not the collec-
tion of variants should be managed explicitly or implicitly, which is determined based on how the third party vendors are sup-
posed to add their variants to the system. Likewise, if the delivery model involves updates of functionality into a running
system, thiswill also impact the choices of implementation techniques for the variation points.

Also the devel opment process and the tool s used by the development company influence how and when to add variants. For
example, if the company has a domain engineering unit developing reusable assets, more decisions may be taken during the
product architecture derivation, whereas another organization may defer many such decisions until compile or link-time.

4.3 Binding to a Variant

The main purpose of introducing a variant feature is to delay a decision, but at some time there must be a choice between the

variants and a single variant will be selected and executed. We refer to this as binding the system to a particular variant. This

can be done at several stages during the development and also as a system is being run. Decisions on binding to a particular
variant can be expected during the following phases of a system’s lifecycle:

e Product Architecture Derivation. The product line architecture typically contains many unbound variation points. The
binding of these variation pointsis what generates a particular product architecture. Typically, configuration management
toolsareinvolved in this process, and most of the mechanisms are working with software entities introduced during archi-
tectural design.

e Compilation. The finalization of the source code is done during the compilation. This includes pruning the code according
to compiler directivesin the source code, but also extending the code to superimpose additional behavior (e.g. macros and
aspects).

e Linking. When the link phase begins and when it ends is very much depending on what programming and runtime envi-
ronment is used. In some cases, linking is performed irrevocably just after compilation, and in some cases it is done when
the system is started. In other systems again, the running system can link and re-link at will. How long linking is available
also determines how late new variants can be added to the system.

* Runtime. Thisis the variability that renders an application interactive. Typically this type of binding decisions are dealt
with using any standard object-oriented language. The collection of variants can be closed at runtime, i.e. it is not possible
to add new variants, but it can also be open, in which caseit is possible to extend the system with new variants at runtime.

Table 2: Summary of Characteristics Constraining Variability

Characteristic Available Choices
Introduction Times Architecture Design, Detailed Design, Implementation, Compilation, Linking
Software Entity Components, Frameworks, Framework Implementations, Sets of Classes, Individual

Classes, Lines of Code
Timesfor Adding new Architecture Design, Detailed Design, |mplementation, Compilation, Linking

Variants
Binding Times Product Architecture Derivation, Compilation, Linking, Runtime
Management of Collec- Implicit or Explicit

tion of Variants
Placement of Functionality | Internal or External
for Binding

Typicaly, these are referred to as Plug-ins, and these can normally be developed by third party vendors. Another type of
runtime binding, perhaps not as interactive, is the interpretation of configuration files or startup parameters that deter-
mines what variant to bind to. This type of runtime binding is what is normally called parameterization.
Note that binding times do not include the design and implementation phases. Variation points may well be introduced during
these phases, but to the best of our knowledge a system can not be bound to a particular variant on other occasions than the
ones presented above.

Furthermore, there is an additional aspect of binding, namely whether the binding is done internally or externally. An inter-
nal binding implies that the system contains the functionality to bind to a particular variant. Thisistypically true for the bind-
ing that is done during runtime of the system. An external binding implies that there is a person or a tool that performs the
actual binding. Thisistypically true for the binding that is done during product architecture derivation, compilation, and link-
ing, where tools such as configuration management tools, compilers and linkers perform the actual binding.

Linking is sort of a special case sinceif it is done dynamically during runtime the system may, or may not, be in control of
the binding, which makes linking external in some cases but internal in others.

Whether to bind internally or externally is decided by many things, such as whether the binding is done by the software
developers or the end users, and whether the binding should be made transparent to the end users or not. Moreover, an external
binding can sometimes be preferred as it does not necessarily leave any traces in the source code, asis the case when the bind-
ing isinternal and the system must contain functionality to bind. Thus, an external binding helps in reducing the complexity of
the source code.

As with the adding of variants, the time when one wants to bind the system constrains the selection of possible ways to
implement avariation point. For avariant feature resulting in many variation points, thisresultsin quite afew problems, asthe
variation points need to be bound either at the same time (asisthe caseif binding is required at runtime), or that the binding of
severa variation points is synchronized so that, for example, a variation point that is bound during compilation binds to the
same variant that related variation points have already bound to during product architecture derivation.

When determining when to bind a variant feature to a particular variant, what needs to be considered is how late binding is
absolutely required. As arule of thumb, one can say that the later the binding is done, the more costly it is. Deferring binding
from product architecture derivation to compilation means that developers need to manage all variants during implementation,
and deferring binding from compilation to runtime means that the system will have to include binding functionality, and there
isacost in terms of e.g. performance to perform the binding. However, as we discussed related to adding variants to the sys-
tem, the binding time may be determined by business strategies, delivery models and development processes. Naturally, this
works both ways. There may be guidelines in the business strategy that binding should not be performed after a certain point,
aswell as arequirement that binding should be deferred until as late as possible.

4.4 Summary

In summary, there are anumber of aspectsto consider when selecting how to actually implement a variant feature. The first of
these aspects is when to introduce the variant feature in terms of variation points and variants, which ultimately depends on the
size of the software entities representing the variants. Secondly, there are two aspects to consider regarding when and how to
add new variants, namely when the variation points are open for adding and whether or not the collection of variants should be
managed implicitly by the developers and users or whether it should be explicitly represented in the system itself. Thirdly, the
binding of a system to a particular variant is governed by the two aspects when to bind, and whether the binding is done exter-
nally by developers or users (potentially using a software tool to perform the binding), or whether it should be done internally
by the system itself. The characteristics and the possible choices are summarized in Table 2.

5. VARIABILITY REALIZATION TECHNIQUES

To summarize what we have presented hitherto, we have, in Section 3, presented how variability is first identified and then
constrained. In Section 4 we discussed in further detail how, from an implementation point of view, variability is constrained
by a number of characteristics. The next step is to use the identified aspects of a particular variant feature, i.e. the size of the
involved software entities, when it should be introduced, when it should be possible to add new variants, and when it needs to
be bound to a particular variant, to select which way to implement the variation points associated with the variant feature.
These ways to implement variation points we refer to as variability realization techniques. In this section we present the vari-

Table 3: Variability Realization Techniques

Binding Time
Involved Software .
Entities Product Architecture Compilation Linking Runtime
Derivation
Components Architecture Reorgani- | N/A Binary Replacement - | Infrastructure-Cen-
Frameworks zation (Section 5.1.1) Linker Directives tered Architecture
Variant Architecture (Section 5.1.4) (Section 5.1.6)
Component
(Section 5.1.2)
Optional Architecture Binary Replacement -
Component Physical
(Section 5.1.3) (Section 5.1.5)
Framework Imple- | Variant Component Code Fragment Super- | Binary Replacement - | Runtime Variant Com-
mentations Specializations imposition Linker Directives ponent Specializations
Classes (Section 5.1.7) (Section 5.1.13) (Section 5.1.4) (Section 5.1.9)
Optional Component Binary Replacement - | Variant Component
Specializations Physical Implementations
(Section 5.1.8) (Section 5.1.5) (Section 5.1.10)
Lines of Code N/A Condition on Constant | N/A Condition on Variable
(Section 5.1.11) (Section 5.1.12)
Code Fragment Super-
imposition
(Section 5.1.13)

ability realization techniques we have knowledge of and those that we have come across during our collaborations with indus-
try. Most likely, thislist is not complete, and we encourage readers to submit missing realization techniques to the authors.
The variability realization techniques are summarized in Table 3. In this table, the variability realization techniques are

organized according to the software entity the variability realization techniques work with, and when it is, at the latest, possi-

ble to bind them. For each variability realization technique, there is also a reference to a more detailed description of the tech-

nique, which are presented bel ow. There are some areasin thistable that are shaded, where we perceive that it is not interesting

to have any variability realization techniques. These areas are:

« Components and Frameworks during compilation, as compilation works with smaller software entities. This type of soft-
ware entities comes into play again only during linking.

» Linesof Code during Product Architecture Derivation, as we know of no tools working with product architecture deriva-
tion that also work with lines of code.

* Linesof Code during Linking, as linkers work with larger software entities.

5.1 A Detailed Description of the Variability Realization Techniques

Below, we present each of these realization techniques in further detail. We present these using a Design Pattern like form, in

the style used by e.g. [Buschman et al. 1996] and [Gamma et a. 1995]. For each of the variability realization techniques we

discuss the following topics:

e Intent. Thisisashort description of the intent of the realization technique.

e Motivation. A description of the problems that the realization technique address, and other forces that may be at play.

e Solution. Known solutions to the problems presented in the motivation section.

e Lifecycle. A description of when the realization technique is open, when it closes, and when it allows binding to one of the
variants.

e Consequences. The consequences of using the realization technique, both positive and negative effects.

e Examples. Some examples of the realization technique in use at the companies in which we have conducted case studies.

5.1.1 Architecture Reorganization
I ntent. Support severa product specific architectures by reorganizing the overall product line architecture.

M otivation. Although products in a product line share many concepts, the control flow and data flow between these concepts
need not be the same. Therefore, the product line architecture is reorganized to form the concrete product architectures. This
involves mainly changesin the control flow, i.e. the order in which components are connected to each other, but may also con-
sist of changes in how particular components are connected to each other, i.e. the provided and required interface of the com-
ponents may differ from product to product.

Solution. Thistechnique isimplicit and external, as there is no first-class representation of the architecture in the system. For
an explicit realization technique, see Infrastructure-Centered Architecture. In the Architecture Reorganization technique, the
components are represented as subsystems controlled by configuration management tools or, at best, Architecture Description

Languages. What variants to include in a system is determined the configuration management tools. The actual architectureis
then depending on variability realization techniques on lower levels, for example Variant Component Specialization.

Lifecycle. Thistechniqueis open for the adding of new variations during architectural design, where the product line architec-
ture is used as atemplate to create a product specific architecture. As detailed design commences, the architecture is no longer
afirst class entity, and can hence not be further reorganized. Binding time, i.e. when a particular architecture is selected, is
when a particular product architecture is derived from the product line architecture. This also implies that this is not a tech-
nique for achieving dynamic architectures. If thisiswhat isrequired, see Infrastructure-Centered Architecture.

Consequences. The major disadvantage of Architecture Reorganization is that, although there is no first class representation
of the architecture on subsequent devel opment phases, they (the subsequent phases) still need to be aware of the potential reor-
ganizations. Code is thus added to cope with this reorganization, be it used in a particular product or not.

Examples. At Axis Communications, a hierarchical view of the Product Line Architecture is employed, where different prod-
ucts are grouped in sub-trees of the main Product Line. To control the derivation of one product out of this tree, a rudimentary,
in-house developed, ADL is used. Another example is Symbian that reorganizes the architecture of the EPOC operating sys-
tem for different hardware system families.

Table 4: Summary of Architecture Reorganization

Introduction Times Architecture Design
Open for Adding Variants |Architecture Design
Collection of Variants | Implicit
Binding Times Product Architecture Derivation
Functionality for Binding | External

5.1.2 Variant Architecture Component
I ntent. Support several, differing, architectural components representing the same conceptual entity.

M otivation. In some cases, an architectural component in one particular place in the architecture can be replaced with another
that may have a differing interface, and sometimes also representing a different domain. This need not affect the rest of the
architecture. For example, some products may work with hard disks, whereas others (in the same product line) may work with
scanners. In this case, the scanner component replaces the hard disk component without further affecting the rest of the archi-
tecture.

Solution. The solution to this is to, as the title implies, support these architectural components in parallel. The selection of
which to use any given moment is then delegated to the configuration management tools that select what component to include
in the system. Parts of the solution is also del egated to subsequent devel opment phases, where the Variant Component Special-
ization will be used to call and operate with the different components in the correct way. To summarize, this technique has an
implicit collection, and the binding functionality is external.

Lifecycle. It is possible to add new variants, i.e. parallel components, during architectural design, when new components can
be added, and aso during detailed design, where these components are concretely designed as separate architectural compo-
nents. The architecture is bound to a particular component during the transition from a product line architecture to a product
architecture, when the configuration management tool selects what architectural component to use.

Consequences. A consequence of using this pattern isthat the decision of what component interface to use, and how to useiit,
is placed in the calling components rather than where the actual variant feature is implemented. Moreover, the handling of the
differing interfaces cannot be coped with during the same devel opment phase as the varying component, but has to be deferred
until later devel opment stages.

Examples. At Axis Communications, there existed during along period of time two versions of a file system component; one
supporting both read and write functionality, and one supporting only read functionality. Different products used either the
read-write or the read-only component. Since they differed in the interface and implementation, they were, in effect, two dif-
ferent architectural components.

Table 5: Summary of Variant Architecture Component

Introduction Times Architecture Design
. . Architecture Design
Open for Adding Variants Detailed Design
Collection of Variants Implicit
Binding Times Product Architecture Derivation

Functionality for Binding | External

5.1.3 Optional Architecture Component
I ntent. Provide support for a component that may, or may not be present in the system.

Motivation. Some architectural components may be present in some products, but absent in other. For example, a Storage
Server at Axis Communications can optionally be equipped with a so-called hard disk cache. This means that in one product
configuration, other components need to interact with the hard disk cache, whereas in other configurations, the same compo-
nents do not interact with this architectural component.

Solution. There are two ways of solving this problem, depending on whether it should be fixed on the calling side or the called
side. If we desire to implement the solution on the calling side, the solution is simply delegated to variability realization tech-
niques introduced during later development phases. To implement the solution on the called side, which may be nicer, but is
less efficient, create a “null” component, i.e. a component that has the correct interface, but replies with dummy values. This
latter approach assumes, of course, that there are predefined dummy values that the other components know to ignore. The
binding for this technique is done external to the system.

Lifecycle. Thistechnique is open when a particular product architecture is designed based on the product line architecture, but,
for the lack of architecture representation during later development phases, is closed at all other times. The architecture is
bound to the existence or non-existence of a component when a product architecture is sel ected from the product line architec-
ture.

Consequences. Consequences of using this technique is that the components depending on the optional component must
either have realization techniques to support its not being there, or have techniques to cope with dummy values. The latter
technique also impliesthat the “plug”, or the null component, will occupy space in the system, and the dummy values will con-
sume processing power. An advantage is that should this variation point later be extended to be of the type variant architecture
component, the functionality is already in place, and all that needs to be done is to add more variants for the variant feature.

Examples. The Hard Disk Cache at Axis Communications, as described above. Also, in the EPOC Operating System, the
presence or absence of a network connection decides whether network drivers should be loaded or not.

Table 6: Summary of Optional Architecture Component

Introduction Times Architecture Design
Open for Adding Variants |Architecture Design
Collection of Variants Implicit
Binding Times Product Architecture Derivation
Functionality for Binding | External

5.1.4 Binary Replacement - Linker Directives
I ntent. Provide the system with alternative implementations of underlying system libraries.

Motivation. In some cases, al that is required to support a new platform is that an underlying system library is replaced. For
example, when compiling a system for different UNIX-dialects, this is often the case. It need not even be a system library, it
can also bealibrary distributed together with the system to achieve some variability. For example, agame can be released with
different libraries to work with the window system (Such as X-windows), an OpenGL graphics device or to use a standard
SVGA graphics device.

Solution. Represent the variants as stand-alone library files, and instruct the linker which file to link with the system. If this
linking is done at runtime, the binding functionality must be internal to the system, whereasit can, if the linking is done during
the compile and linking phase prior to delivery, be external and managed by a traditional linker. An external binding also
implies, in this case, an implicit collection.

Lifecycle. This technique is open for new variants as the system is linked. It is also bound during this phase. As the linking
phase ends, this technique becomes unavailable. However, it should be noted that the linking phase need not end. In modern
systems, linking is also available during execution.

Consequences. Thisisafairly well developed variability realization technique, and the consequences of using it are relatively
harmless.

Examples. For Linux, the web browser Konqueror can optionally use the web browsing component of Mozillainstead of its
own web browsing component in this fashion.

5.1.5 Binary Replacement - Physical

I ntent. Facilitate the modification of software after delivery.

M otivation. Unfortunately, very few software systems are released in a perfect and optimal state, which creates a need to
upgrade the system after delivery. In some cases, these upgrades can be done using the variability realization techniques at

Table 7: Summary of Binary Replacement - Linker Directives
Introduction Times Architecture Design
Open for Adding Variants JLinking
Collection of Variants |Implicit or Explicit
Binding Times Linking
Functionality for Binding |External or Internal

variation points already existing in the system, but in others, the system does not currently support variability at the places
needed.

Solution. In order to introduce a new variation point after delivery, the software binary must be atered. The easiest way of
doing thisis to replace an entire file with a new copy. To facilitate this replacement, the system should thus be organized as a
number of relatively small binary files, to localize the impact of replacing afile. Furthermore, the system can be altered in two
ways: Either the new binary completely coversthe functionality of the old one, or the new binary provides additional function-
ality in the form of, for example, a new variant feature using other variability realization techniques. In this technique the is
collection implicit, and the binding external to the system.

Lifecycle. Thistechnique is bound before start-up (i.e. before runtime) of the system. In this technique the method for binding
to avariant is aso the one used to add new variants. After delivery (i.e. after compilation), the technique is always open for
adding new variants.

Consequences. If the new binary does not introduce a “traditional” variation point, the same technique will have to be used
again the next time a new variant for the variant feature in question is detected. However, if traditional variation points are
introduced, this facilitates future changes at this particular point in the system. Replacing binary files is normally a volatile
way of upgrading a system, since the rest of the system may in some cases even be depending on software bugsin the replaced
binary in order to function correctly. Moreover, it isnot trivial to maintain the release history needed to keep consistency in the
system. Furthermore, there are also some trust issuesto consider here, e.g. who provides the replacement component, and what
are the guarantees that the replacement component actually does what it is supposed to do.

Examples. Axis Communications provide a possibility to upgrade the software in their devices by re-flashing the ROM. This
basically replaces the entire software binary with a new one.

Table 8: Summary of Binary Replacement - Physical

Introduction Times Architecture Design
Open for Adding Variants |After Compilation
Collection of Variants Implicit
Binding Times Before Runtime
Functionality for Binding |External

5.1.6 Infrastructure-Centered Architecture
I ntent. Make the connections between components afirst class entity.

M otivation. Part of the problem when connecting components, and in particular components that may vary, is that the know!-
edge of the connections is often hard coded in the required interfaces of the components, and is thus implicitly embedded into
the system. A reorganization of the architecture, or indeed a replacement of a component in the architecture, would be vastly
facilitated if the architecture is an explicit entity in the system, where such modifications could be performed.

Solution. Convert the connectors into first class entities, so the components are no longer connected to each other, but are
rather connected to the infrastructure, i.e. the connectors. This infrastructure is then responsible for matching the required
interface of one component with the provided interface of one or more other components. The infrastructure can either be an
existing standard, such as COM or CORBA [Szyperski 1997], or it can be an in-house developed standard. The infrastructure
may also be a scripting language, in which the connectors are represented as snippets of code that are responsible for binding
the components together in an architecture. These code snippets can either be done in the same programming language as the
rest of the system, or it can be done using a scripting language. Such scripting languages are, according to e.g. [Ousterhout
1998], highly suitable for “gluing” components together. The collection of variants is, in this realization technique, either
implicit or explicit, and the binding functionality isinternal, provided by the infrastructure.

Lifecycle. Depending on what infrastructure is selected, the technique is open for adding new variants during a shorter or
longer period. In some cases, the infrastructure is open for the addition of new components as late as during runtime, and in
other cases, the infrastructure is concretized during compile and linking, and is thus open for new additions only until then.
However, since the additions are in the magnitude of architectural components or component implementations, it becomes

unpractical to talk about adding new variants during, for example, the implementation phase, as components are not in focus
during this phase. This realization technigque can be seen as open for adding new variants during architectural design, and dur-
ing runtime. If this perspectiveistaken, itis closed during all other phases, becauseit is not relevant to model this type of vari-
ation in any of the intermediate development phases. Another view is that the variability realization technigue is only open
during linking, which may be performed at runtime. The latter perspective assumes a minimalistic view of the system, where
anything added to the infrastructureis not really added until at link-time. The technique binds the system to a particul ar variant
either during compilation time, when the infrastructure is tied to the concrete range of components, or at runtime, if the infra-
structure supports dynamical adding of new components.

Consequences. Used correctly, this realization technique yields perhaps the most dynamic of all architectures. Performanceis
impeded dightly because the components need to abstract their connections to fit the format of the infrastructure, which then
performs more processing on a connection, before it is concretized as a traditional interface call again. In many ways, this
technique is similar to the Adapter Design Pattern [Gamma et al. 1995].

Theinfrastructure does not remove the need for well-defined interfaces, or the troubles with adjusting components to work
in different operating environments (i.e. different architectures), but it removes part of the complexity in managing these con-
nections.

Examples. Programming languages and tools such as Visua Basic, Delphi and JavaBeans support a component based devel-
opment process, where the components are supported by some underlying infrastructure. Ancther example is the Mozillaweb
browser, which makes extensive use of a scripting language, in that everything that can be varied isimplemented in a scripting
language, and only the atomic functionality is represented as compiled components.

Table 9: Summary of Infrastructure-Centered
Architecture

Introduction Times Architecture Design
Architecture Design
Open for Adding Variants JLinking
Runtime
Collection of Variants |Implicit or Explicit
- . Compilation
Binding Times Runtime
Functionality for Binding |!nternal

5.1.7 Variant Component Specializations
Intent. Adjust a component implementation to the product architecture.

M otivation. Some variability realization techniques on the architectural design level require support in later stages. In particu-
lar, those techniques where the provided interfaces vary need support from the required interface side as well. In these cases,
what isrequired is that parts of a component implementation, namely those parts that are concerned with interfacing a compo-
nent representing a variant of a variant feature, needs to be replaceable as well. This technique can also be used to tweak a
component to fit a particular product’s needs.

Solution. Separate the interfacing parts into separate classes that can decide the best way to interact with the other component.
Let the configuration management tool decide what classes to include at the same time as it is decided what variant of the
interfaced component to include in the product architecture. Accordingly, this technique has an implicit collection, and exter-
nal binding functionality.

Lifecycle. The available variants are introduced during detailed design, when the interface classes are designed. The technique
is closed during architectural design, which is unfortunate since it is herethat it is decided that the variability realization tech-
nigque is needed. This technique is bound when the product architecture is instantiated from the source code repository.

Consequences. Consequences of using classes are that it introduces another layer of indirection, which may consume process-
ing power (Although today, the extra overhead incurred by an extralayer of indirection is minimal.). Nor may it aways be a
simple task to separate the interface. Suppose that the different variants require different feedback from the common parts,
then the common part will be full with method calls to the varying parts, of which only a subset is used in a particular config-
uration. Naturally this hinders readability of the source code. However, the use of classes like this has the advantage that the
variation point islocalized to one place in the source code, which facilitates adding more variants and maintaining the existing
variants.

Examples. The Storage Servers at Axis Communications can be delivered with atraditional cache or a hard disk cache. The
file system component must be aware of which is present, since the calls needed for the two are dightly differing. Thus, the
file system component is adjusted using this variability realization technique to work with the cache type present in the system.

Table 10: Summary of Variant Component Specialization
Introduction Times Detailed Design
Open for Adding Variants |Detailed Design

Collection of Variants | Implicit
Binding Times Product Architecture Derivation

Functionality for Binding |External

5.1.8 Optional Component Specializations
Intent. Include or exclude parts of the behavior of a component implementation.

Motivation. A particular component implementation may be customized in various ways by adding or removing parts of its
behavior. For example, depending on the screen size an application for ahandheld device can opt not to include some features,
and in the case when these features interact with others, this interaction also needs to be excluded from the executing code.

Solution. Separate the optional behavior into a separate class, and create a“null” class that can act as a placeholder when the
behavior isto be excluded. L et the configuration management tool s decide which of these two classes to include in the system.
Alternatively, surround the optional behavior with compile-time flags to exclude it from the compiled binary. Binding isin this
technique done externally, by the configuration management tools or the compiler.

Lifecycle. This technique is introduced during detailed design, and is immediately closed to adding new variants, unless the
variation point is transformed into a Variant Component Specialization. The system is bound to the inclusion or exclusion dur-
ing the product architecture derivation or, if the second solution is chosen, during compilation.

Consequences. It may not be easy to separate the optional behavior into a separate class. The behavior may be such that it can-
not be captured by a“null” class.

Examples. At one point, when Axis Communications added support for Novel Netware, some functionality required by the
filesystem component was specific for Netware. This functionality was fixed external of the file system component, in the
Netware component. As the functionality was later implemented in the file system component, it was removed from the Net-
ware component. The way to implement this was in the form of an Optional Component Specialization.

Table 11: Summary of Optional Component Specialization
Introduction Times Detailed Design
Open for Adding Variants |Detailed Design

Collection of Variants ~ |Implicit
Binding Times Product Architecture Derivation

Functionality for Binding |External

5.1.9 Runtime Variant Component Specializations
I ntent. Support the existence and selection between several specializations inside a component implementation.

Motivation. It is required of a component implementation that it adapts to the environment in which it is executing, i.e. that
for any given moment during the execution of the system, the component implementation is able to satisfy the requirements
from the user and the rest of the system. This implies that the component implementation is equipped with a number of alter-
native executions, and is able to, at runtime, select between these.

Solution. Basically, there are two Design Patterns [Gamma et a. 1995] that are applicable here: Strategy and Template
Method. Alternating behavior is collected into separate classes, and mechanisms are introduced to, at runtime, select between
these classes. Using Design Patterns makes the collection explicit, and the binding is done internally, by the system.

Lifecycle. This technique is open for new variations during detailed design, since classes and object oriented concepts are in
focus during this phase. Because these are not in focus in any other phase, this technique is not available anywhere else. The
system is bound to a particular specialization at runtime, when an event occurs.

Consequences. Depending upon the ease by which the problem divides into a generic and variant parts, more or less of the
behavior can be kept in common. However, the case is often that even common codeis duplicated in the different strategies. A
hypothesisisthat this could stem from quirks in the programming language, such as the self problem [Lieberman 1986].

Examples. A hand-held device can be attached to communication connections with differing bandwidths, such as a mobile
phone or aLAN, and thisimplies different strategies for how the EPOC operating system retrieves data. Not only do the algo-
rithms for, for example, compression differ, but on a lower bandwidth, the system can also decide to retrieve less data, thus

reducing the network traffic. This variant need not be in the magnitude of an entire component, but can often be represented as
strategies within the concerned components.

Table 12: Summary of Runtime Variant Component Specializations

Introduction Times Detailed Design
Open for Adding Variants Detailed Design
Collection of Variants Explicit
Binding Times Runtime
Functionality for Binding Internal

5.1.10 Variant Component |mplementations
Intent. Support several concurrent and coexisting i mplementations of one architectural component.

Motivation. An architectural component typically represents some domain, or sub-domain. These domains can be imple-
mented using any of a number of standards, and typically a system must support more than one simultaneously. For example,
a hard disk server typically supports severa network file system standards, such as SMB, NFS and Netware, and is able to
choose between these at runtime. Forces in this problem isthat the architecture must support these different component imple-
mentations, and other components in the system must be able to dynamically determine to what component implementation
data and messages should be sent.

Solution. Implement several component implementations adhering to the same interface, and make these component imple-
mentations tangible entities in the system architecture. There exists a number of Design Patterns [Gamma et al. 1995] that
facilitates in this process. For example, the Strategy patternis, on alower level, a solution to the issue of having severa imple-
mentations present simultaneously. Using the Broker pattern is one way of assuring that the correct implementation gets the
data, as are patterns like Abstract Factory and Builder. Part of the flexibility of this variability realization technique stems from
the fact that the collection is explicitly represented in the system, and the binding is done internally.

The decision on exactly what component implementations to include in a particular product can be delegated to configura-
tion management tools.

Lifecycle. This technique is introduced during architectural design, but is not open for addition of new variants until detailed
design. It is not available during any other phases. Binding time of this technique is at runtime. The binding is done either at
start-up, where a start-up parameter decides which component implementation to use, or at runtime, when an event decides
which implementation to use. If the system supports dynamic linking, the linking can be delayed until binding time, but the
technique work equally well when all variants are already compiled into the system. However, if the system does support
dynamic linking, the techniqueisin fact open for adding new variations even during runtime.

Consequences. Consequences of using this technique are that the system will support several implementations of a domain
simultaneoudly, and it must be possible to choose between them either at start-up or during execution of the system. Similari-
tiesin the different domains may lead to inclusion of several similar code sections into the system, code that could have been
reused, had the system been designed differently.

Examples. Axis Communications uses this technique to, for example, select between different network communication stan-
dards. Ericsson Software Technology uses this technique to select between different filtering techniques to perform on call
data in their Billing Gateway product. The web browsing component of Mozilla, called Gecko, supports the same interface
that enables Internet Explorer to be embedded in applications, thus enabling Gecko to be used in embedded applications as an
alternative to Internet Explorer.

Table 13: Summary of Variant Component | mplementations

Introduction Times Architecture Design
Open for Adding Variants | Detailed Design
Collection of Variants Explicit
Binding Times Runtime
Functionality for Binding Internal

5.1.11 Condition on Constant
I ntent. Support several ways to perform an operation, of which only one will be used in any given system.

M otivation. Basically, this is a more fine-grained version of a Variant Component Specializations, where the variant is not
large enough to be a class in its own right. The reason for using the condition on constant technique can be for performance
reasons, and to help the compiler remove unused code. In the case where the variant concerns connections to other, possibly

variant, components, it is also a means to actually get the code through the compiler, since a method call to a nonexistent class
would cause the compilation process to abort.

Solution. We can, in this technique, use two different types of conditional statements. One form of conditional statementsis
the pre-processor directives such as C++ ifdefs, and the other is the traditional if-statements in a programming language. If the
former is used, it can actually be used to alter the architecture of the system, for example by opting to include one file over
another or using another class or component, whereas the latter can only work within the frame of one system structure. In
both cases, the collection of variantsisimplicit, but, depending on whether traditional constants or pre-processor directives are
used, the binding is either internal or external, respectively. Another way to implement this variability realization techniqueis
by means of the C++ constructs templates, which is, in our experience, handled as pre-processor directives by most compilers
we have encountered. (Granted, it is along time since we had a chance to work with C++, and evolution of what one can do
with templates has moved forward, so our knowledge of this may be a bit rusty. Templates may today be a variability realiza-
tion technique in its own merit.)

Lifecycle. This technique is introduced while implementing the components, and is activated during compilation of the sys-
tem, where it is decided using compile-time parameters which variation to include in the compiled binary. If a constant is used
instead of a compile-time parameter, thisis also bound at this point. After compilation, the technique is closed for adding new
variations.

Consequences. Using ifdefs, or other pre-processor directives, is always arisky business, since the number of potential execu-
tion paths tends to explode when using ifdefs, making maintenance and bug-fixing difficult. Variation points often tend to be
scattered throughout the system, because of which it gets difficult to keep track of what parts of a system is actually affected
by one variant.

Examples. The different cache typesin Axis Communications different Storage Servers, that can either be a Hard Disk cache
or atraditional cache, where the file system component must call the one present in the system in the correct way. Working
with the cache is spread throughout the file system component, because of which many variability realization techniques on
different levels are used, including in some cases Condition on Constant.

Table 14: Summary of Condition on Constant

Introduction Times Implementation
Open for Adding Variants |/mplementation
Collection of Variants | Implicit
Binding Times Compilation
Functionality for Binding |!nternal or External

5.1.12 Condition on Variable

Intent. Support several ways to perform an operation, of which only one will be used at any given moment, but allow the
choice to be rebound during execution.

M otivation. Sometimes, the variability provided by the Condition on Constant technique needs to be extended into runtime as
well. Since constants are evaluated at compilation, this cannot be done, because of which a variable must be used instead.

Solution. Replace the constant used in Condition on Constant with a variable, and provide functionality for changing this vari-
able. This technique cannot use any compiler directives, but is rather a pure programming language construct. The collection
of variants pertaining to the variation point need not be explicit, and the binding to a particular variant is internal.

Lifecycle. This technique is open during implementation, where new variants can be added, and is closed during compil ation.
Itisbound at runtime, where the variable is given avalue that is evaluated by the conditional statements.

Consequences. Thisis a very flexible realization technique. It is a relatively harmless technique, but, as with Condition on
Constant, if the variation points for a particular variant feature are spread throughout the code, it becomes difficult to get an
overview.

Examples. Thistechniqueisused in all software programs to control the execution flow.
Table 15: Summary of Condition on Variable
Introduction Times Implementation

Open for Adding Variants |Implementation
Collection of Variants | Implicit or Explicit
Binding Times Runtime

Functionality for Binding |!nternal

5.1.13 Code Fragment Superimposition
I ntent. Introduce new considerations into a system without directly affecting the source code.

Motivation. Because a component can be used in several products, it is not desired to introduce product-specific consider-
ations into the component. However, it may be required to do so in order to be able to use the component at al. Product spe-
cific behavior can be introduced in a multitude of ways, but these al tend to obscure the view of the component’s core
functionality, i.e. what the component is really supposed to do. It is also possible to use this technique to introduce variants of
other forms that need not have to do with customizing source code to a particular product.

Solution. The solution to this is to develop the software to function generically, and then superimpose the product-specific
concerns at stage where the work with the source code is completed anyway. There exists a number of tools for this, for exam-
ple Aspect Oriented Programming [Kiczalez et al.1997], where different concerns are weaved into the source code just before
the software is passed to the compiler and superimposition as proposed by [Bosch 1999b], where additional behavior is
wrapped around existing behavior. The collection is, in this case, implicit, and the binding is performed externaly.

Lifecycle. Thistechnique is open during the compilation phase, where the system is also bound to a particular variation. How-
ever, the superimposition can also simulate the adding of new concerns, or aspects, at runtime. These are in fact added at com-
pilation but the binding is deferred to runtime, by internally using other variability realization techniques, such as Condition on
Variable.

Consequences. Consequences of superimposing an agorithm are that different concerns are separated from the main func-
tionality. However, this also means that it becomes harder to understand how the final code will work, since the execution path
is no longer obvious. When developing, one must be aware that there will be a superimposition of additional code at a later
stage. In the case where binding is deferred to runtime, one must even program the system to add a concern to an object.

Examples. To the best of our knowledge, none of the case companies use this technique. This is not surprising, considering
that most tools for this technique are at a research and prototyping stage.

Table 16: Summary of Code Fragment Superimposition

Introduction Times Compilation

Open for Adding Variants | Compilation
Collection of Variants Implicit

P : Compilation
Binding Times Runtime
Functionality for Binding | External

5.2 Summary

In this section we present a taxonomy of variability realization techniques. These techniques make use of various imple-
mentation techniques, asidentified by [Jacobson et al. 1997]: inheritance, extensions, parameterization, configuration and gen-
eration. The variability realization techniques are categorized by a number of characteristics, as summarized in Table 17.

6. CASE STUDIES

In this section we briefly present a set of companies that use product lines, and how these have typically implemented variabil -
ity, i.e. what variability realization techniques they have mostly used in their software product lines.

The cases are divided into three categories:

e Caseswhich we based the taxonomy of variability realization techniques on.

« Unrelated case studies conducted after theinitial taxonomy was created, which were used to confirm and refine the taxon-
omy.

» Casesfoundin literature, that contains information regarding how variability was typically implemented.

We provide a brief presentation of the companies within each category, and how they have typically implemented variability.

The cases from the first category are presented to give a further overview of the companies behind the examplesin the taxon-

omy. The second category is presented to give further examples of which we have in-depth knowledge and have had full

insight in the devel opment process of, and which have confirmed or confuted our taxonomy. The third category isincluded to

extend the generalizability of the taxonomy further, by means of increasing the statistical power of our findings.

Inthefirst category, the taxonomy of variability realization techniques, and indeed the identification of the relevant charac-
teristics to distinguish between different variability realization techniques, was created using information gathered from four
companies. These companies are:

e Axis Communications AB and their storage server product line [Svahnberg & Bosch 1999a][Svahnberg & Bosch
1999b] [Bosch 2000] (presented in Section 6.1)

e FEricsson Software Technology and their Billing Gateway product [Mattsson & Bosch 1999a][Mattsson & Bosch
1999b] [Svahnberg & Bosch 19994 (presented in Section 6.2)

e The Mozillaweb browser [Mozilla][Oeschger 2000][van Gurp et al. 2001] (presented in Section 6.3)

e Symbian and the EPOC Operating System [Symbian][Bosch 2000] (presented in Section 6.4)

In the second category we have case studies conducted by the research groups of the authors of this paper. These case studies
were not conducted with the purpose of neither creating nor refining the taxonomy of variability realization techniques, but
during these studies we have had the opportunity to see and understand their software product lines to such a degree that we
can also make confident statements regarding how these companies choose implementation strategies for their variant fea
tures, and what these implementation strategies are. The companiesin this category are:

e NDC Automation AB [Svahnberg & Mattsson 2002] (presented in Section 6.5)

* Rohill Technologies BV [Jaring & Bosch 2002] (presented in Section 6.6)

In the third, and final, category, we include examples of case studies described in literature, where these descriptions are of
sufficient detail to discern what types of variability realization techniques these companies typically use. The casesin this cat-
egory are;

e Cummins Inc. [Clements & Northrop 2002] (presented in Section 6.7)

e Control Channel Toolkit [Clements & Northrop 2002] (presented in Section 6.8)

e Market Maker [Clements & Northrop 2002] (presented in Section 6.9)

6.1 Axis Communications AB

Axis Communications is a medium sized hardware and software company in the south of Sweden. They develop mass-market
networked equipment, such print servers, various storage servers (CD-ROM servers, JAZ servers and Hard disk servers), cam-
era servers and scan servers. Since the beginning of the 1990s, Axis Communications has employed a product line approach.
This Software Product Line consists of 13 reusable assets. These Assets are in themselves object-oriented frameworks, of dif-
fering size. Many of these assets are reused over the complete set of products, which in some cases have quite differing
requirements on the assets. Moreover, because the systems are embedded systems, there are very stringent memory require-
ments; the application, and hence the assets, must not be larger than what is already fitted onto the motherboard. What this
impliesisthat only the functionality used in a particular product may be compiled into the product software, and this calls for
asomewhat different strategy when it comesto variation handling.

Table 17: Summary of Variability Realization Techniques

Name Introduction Open for Adding | Collection of Binding Times Functionality
Time Variants Variants for Binding
Architecture Reorgani- | Architecture Architecture Implicit Product Archi- | External
zation Design Design tecture Deriva
tion
Variant Architecture | Architecture Architecture Implicit Product Archi- | Externa
Component Design Design tecture Deriva-
Detailed Design tion
Optional Architecture JArchitecture Architecture Implicit Product Archi- | Externa
Component Design Design tecture Deriva-
tion
Binary Replacement - | Architecture Linking Implicit or Linking External or Inter-
Linker Directives Design Explicit nal
Binary Replacement - | Architecture After Compilation |Implicit Before Runtime | External
Physical Design
Infrastructure-Cen- Architecture Architecture Implicit or Compilation Internal
tered Architecture Design Design Explicit Runtime
Linking
Runtime
Variant Component Detailed Design Detailed Design Implicit Product Archi- | Externa
Specializations tecture Deriva
tion
Optional Component | Detailed Design Detailed Design Implicit Product Archi- | Externa
Specializations tecture Deriva-
tion
Runtime Variant Com- | Detailed Design Detailed Design Explicit Runtime Internal
ponent Specializations
Variant Component Architecture Detailed Design Explicit Runtime Internal
Implementations Design
Condition on Constant | Implementation I mplementation Implicit Compilation Internal or Exter-
nal
Condition on Variable |Implementation Implementation Implicit or Runtime Internal
Explicit
Code Fragment Super- | Compilation Compilation Implicit Compilation or | External
imposition Runtime

In this paper we have given several examples of how Axis implements variability in its software product line, but the vari-
ability realization technique they prefer is that of variant component implementations (Section 5.1.10), which is augmented
with runtime variant component specializations (Section 5.1.9). Axis use severa other variability realization techniques as
well, but thisis more because of architectural decay which has occurred during the evolution of the software product line.

Further information can be found in two papers by Svahnberg & Bosch [Svahnberg & Bosch 1999a][Svahnberg & Bosch
1999b] and in our co-author’s book on software product lines [Bosch 2000].

6.2 Ericsson Software Technology

Ericsson Software Technology is a leading software company within the telecommunications industry. At their site in Ron-
neby, in the same building as our university, they develop their Billing Gateway product. The Billing Gateway is a mediating
device between telephone switching stations and post-processing systems such as billing systems, fraud control systems, etc.
The Billing Gateway has al so been devel oped since the early 1990’s, and is currently installed at more than 30 locations worl d-
wide. The system is configured for every customer’s needs with regards to, for instance, what switching station languages to
support, and each customer builds a set of processing points that the telephony data should go through. Examples of process-
ing points are formatters, filters, splitters, encoders, decoders and routers. These are connected into a dynamically configurable
network through which the data is passed.

Also for Ericsson, we have given several examples of how variability isimplemented. As with Axis Communications, the
favoured variability realization technique is that of variant component implementations (Section 5.1.10), but Ericsson has
managed to keep the interfaces and connectors between the software entities intact as the system has evolved, so thereislesser
need to augment this realization technique with other techniques.

For further reading, see [Mattsson & Bosch 1999a][Mattsson & Bosch 1999b] and [Svahnberg & Bosch 1999a).

6.3 Mozilla

The Mozillaweb browser is Netscape's Open Source project to create their next generation of web browsers. One of the design
goals of Mozillais to be a platform for web applications. Mozilla is constructed using a highly flexible architecture, which
makes massive use of components. The entire system is organized around an infrastructure of XUL, alanguage for defining
user interfaces, JavaScript, to bind functionality to the interfaces, and XPCOM, a COM-like model with componentswrittenin
languages such as C++. The use of C++ for lower level components ensures high performance, whereas XUL and JavaScript
ensure high flexibility concerning appearance (i.e. how and what to display), structure (i.e. the elements and relations) and
interactions (i.e. the how elements work across the relations). This model enables Mozillato use the same infrastructure for al
functionality sets, which ranges from e-mail and news handling to web browsing and text editing. Moreover, any functionality
defined in this way is platform independent, and only require the underlying C++ components to be reconstructed and/or
recompiled for new platforms. Variability issues here concern the addition of new functionality sets, i.e. applications in their
own right, and incorporation of new standards, for instance regarding data formats such asHTML, PDF and XML.

Asdescribed above, Mozilla connects its components using XUL and XPCOM. In our taxonomy, thiswould trandlate to the
use of an infrastructure-centered architecture (Section 5.1.6).

For further information regarding Mozilla, see [Mozilla], [Oeschger 2000] and [van Gurp et a. 2001].

6.4 Symbian - Epoc

EPOC is an operating system, an application framework, and an application suite specially designed for wireless devices such
as hand-held, battery powered, computers and cellular phones. It is devel oped by Symbian, a company that is owned by major
companies within the domain, such as Ericsson, Nokia, Psion, Motorola and Matsushita, in order to be used in these compa-
nies wireless devices. Variability issues here concern how to alow third party applications to seamlessly and transparently
integrate with a multitude of different operating environments, which may even affect the amount of functionality that the
applications provide. For instance, with screen sizes varying from afull VGA screen to atwo-line cellular phone, the function-
ality, and how this functionality is presented to the user, will differ vastly between the different platforms.

Symbian, by means of EPOC, does not interfere in how applications for the EPOC operating system implement variability.
they do, however, provide support for creating applications supporting different operating environments. This is done by
dividing applicationsinto a set of components handling user interface, application control and data storage (i.e. a Model-View-
Controller pattern [Buschman et al. 1996]). The EPOC operating system itself is specialized for different hardware environ-
ments by using the architecture reorganization (Section 5.1.1) and variant architecture component (Section 5.1.2) variability
realization techniques. Mainly, different hardware environments are related to differences in screen sizes.

More information can be obtained from Symbian’s website [Symbian] and in [Bosch 2000].

6.5 NDC Automation AB

NDC Automation AB develops general control systems, software and electronic equipment in the field of materials handling
control. Specifically, they develop the control software for automated guided vehicles, i.e. automatic vehicles that handle
transport of goods on factory floors. NDC's product line consists of arange of software components that together control the
assignment of cargo to vehicles, monitor and control the traffic (i.e. intelligent routing of vehiclesto avoid e.g. traffic jams) as
well as steering and navigating the actual vehicles. The most significant variant features in this product line concern a variety
of navigation techniques ranging from inductive wires in the factory floor to laser scanners mounted on the vehicles and spe-
cializations to each customer installation, such as different vehicles with different loading facilities, and of course different
factory layouts.

The variability realization techniques used in this software product line is mainly by using parameterization, e.g. in the
form of a database with the layout of the factory floor, which translates to the realization technique “condition on variable’
described in Section 5.1.12. For the different navigation techniques, the realization technique used is mainly the “variant archi-
tecture component” (Section 5.1.2), which is also aided by the use of an infrastructure-centered architecture (Section 5.1.6).

For further information about NDC Automation AB, see [NDC] and [Svahnberg & Mattsson 2002]. For a further introduc-
tion to the domain of automated guided vehicles, see [Feare 2001].

6.6 Rohill Technologies BV

Rohill Technologies BV is aDutch company that specializesin product and system devel opment for professional mobile com-
munication infrastructure, e.g. radio networks for police and fire departments. One of their major product linesis TetraNode, a
product line of trunked mobile radios. In this product line, the products are tailored to each customers’ requirements by modi-
fying the soft- and/or hardware architecture. The market for this type of radio systemsis divided into a professional market, a
medium market and a low-end market. The products for these three markets all use the same product line architecture,
designed to support al three market segment. The architecture is then pruned to suit the different product architectures for
each of these markets.

Rohill identifies two types of variability: anticipated (domain engineering) and unanticipated (application engineering). It is
mainly through the anticipated variability that the product line is adjusted to the three market segments. This is done using
license keys that load a certain set of dynamic linked libraries, as described in the variability realization technique “binary
replacement - linker directives’ (Section 5.1.4). The unanticipated variability is mainly adjustments to specific customers
needs, something which is needed in approximately 20% of all products developed and delivered. The unanticipated variabil-
ity is solved by introducing new source code files, and instrumenting the linker through makefiles to bind to these product spe-
cific variants. This variability is, in fact, using the same realization technique as the anticipated variability, i.e. the binary
replacement through linker directives (Section 5.1.4), with the difference that the binding is external as opposed to the internal
binding for anticipated variability.

For further information regarding Rohill Technologies BV and their TetraNode product line, see [Jaring & Bosch 2002].

6.7 Cummins Inc.

Cummins Inc. is a USA-based company that develops diesel engines and, for this paper more interestingly, it also develops the
control software for these engines. Examples of usages of diesel enginesinvolve automotives, power generation, marine, min-
ing, railroad and agriculture. For these different markets, the types of diesel engines variesin a number of ways. For example,
the number of horsepowers, the number of cylinders, the type of fuel system, air handling systems and sensors varies between
the different engines. Since 1994, Cummins Inc. develops the control software for the different engine types in a software
product line.

Cummins Inc. use several variability realization techniques, ranging from the variant architecture components
(Section 5.1.2) to select what components to include for a particular hardware configuration, to #ifdefs, which trandates to the
realization technique condition on constant (Section 5.1.11), which is used to specify the exact hardware configuration with
how many cylinders, displacement, fuel type, etc. that the particular engine type has. The system also provides alarge number
of user-configurable parameters, which are implemented using the variability realization technique condition on variable
(Section 5.1.12).

The company Cummins Inc. and its product lineis further described in [Clements & Northrop 2002].

6.8 Control Channel Toolkit

Control Channel Toolkit, or CCT for short, is a software asset base commissioned by the National Reconnaissance Office (in
the USA), and built by the Rayethon Company under contract. The asset base that is CCT consists of generalized require-
ments, domain specifications, a software architecture, a set of reusable software components, test procedures, a development
environment definition and a guide for reusing the architecture and components. With the CCT, products are built that com-
mand and control satellites, typically one software system per satellite. Development on CCT started in 1997.

The CCT uses an infrastructure-centered architecture (Section 5.1.6), i.e. CORBA, to connect the components in the archi-
tecture. Within the components, CCT provides a set of standard mechanisms: dynamic attributes, parameterization, template,
function extension (callbacks), inheritance and scripting. Dynamic attributes and parameterization amounts to the variability
realization technique condition on variable (Section 5.1.12). Templates are, by the C++ compilers we have had experience
with, handled as a condition on constant realization technique (Section 5.1.11). Inheritance is what we refer to as runtime vari-
ant component speciaizations (Section 5.1.9). Scripting is another example of an infrastructure-centered architecture
(Section 5.1.6). We have not found sufficient information regarding function extension to identify which variability realization
techniquethisis.

Further information on CCT can be found in [Clements & Northrop 2002].

6.9 Market Maker

Market Maker is a german company that develops products that presents stock market data, and also provides stock market
data to users of its applications. Their product line includes a number of functionality packages to manage different aspects of
the customers' needs, such as depot management, trend analysis, option strategies. It also consists of a number of products for
different customer segments, such as individuals and different TV networks or TV news magazines. In 1999 a project was
started to integrate this product line with another product line with similar functionality but with the ability to update and

present stock data continuously, rather than at specified time intervals (six times/day). This new product line, the MERGER
product line, isimplemented in Java, and also includes salvaged Delphi code from the previous product line.

Market Maker manages variability by having a property file for each customer, that decides which features to enable for the
particular customer. This property file translates to the variability realization technique condition on variable (Section 5.1.12).
Propertiesin the property file are used even to decide what parts of the system to start up, by also making use of Java's reflec-
tion mechanism in which classes can be instantiated by providing the name of the class as atext string.

For further information about Market Maker and its MERGER product line, see [Clements & Northrop 2002].

7. RELATED WORK

Software Product Lines. In the past few years, there have been a number of publications on how to design and implement
software product lines such as, for instance, [Weiss & Lai 1999][Jazayeri et al. 2000][Clements & Northrop 2002]. These and
other publications such as [Bass et al. 1997], our co-author’s book [Bosch 2000] and conferences such as SPLC 1 [Donohoe
2000] and the upcoming SPLC 2 conference have increased interest in and use of software product lines.

Empirical research such as [Rine & Sonnemann 1996], suggests that a software product line approach stimulates reuse in
organizations. In addition, afollow up paper by [Rine & Nada 2000] provides empirical evidence for the hypothesis that orga-
nizations get the greatest reuse benefits during the early phases of devel opment. Because of thiswe believe it is worthwhile for
software product line devel oping companiesto invest time and money in performing methods for determining and implement-
ing variability.

In[Basset a. 1997], the authors define a software product line as a collection of systems sharing a managed set of features
from a common set of core software assets. Thisis entirely in line with our view that using feature models is an important way
of identifying and managing variability [van Gurp et al. 2001].

A case study presented by [Dikel et al 1997] recommends that a focus on simplification, clarification and minimization is
essential for the success of software product line architectures. However they also warn not to over simplify since the architec-
ture needs to be adaptable to future needs. In a case where the architecture was over simplified, the time needed to introduce a
new feature tripled. Clearly the use of variation techniques is needed to be adaptable and our taxonomy can help selecting the
right techniques so that the architecture can be both adaptable and not be too complex. In addition identifying the need for
variation using for example feature diagrams (such as in our earlier work in [van Gurp et a. 2001]). Other methods that may
be of use in doing so are the FAST and PASTA methods discussed in [Weiss & Lai 1999] and FODA [Kang et al. 1990].

In [Jazayeri et a. 2000], a number of variability mechanisms are discussed. However it fails to put these mechanismsin a
taxonomy like we do. In addition, variability is not linked to features. This is an important characteristic of our approach as it
is an important means for early identification (i.e. before architecture design) of variability needsin the future system.

A comprehensive work on software product linesis[Clements & Northrop 2002]. This book presents what a software prod-
uct lineisand is not, the benefits gained by using a product line approach, and awide range of practice areas, covering aspects
in software engineering, technical management and organizational management. This book also presents, in great detail, three
cases studies of companies using software product line solutions.

Variability. There appears to be alot of consensus that domain analysis and feature diagrams in particular are suitable for
identifying and documenting variability. FODA [Kang et a. 1990], for instance, introduces a feature diagram notation that
includes things like optional, mandatory and alternative features. In [Kang 1998], which discusses the FODA derived FORM
method, feature diagrams are identified as a means of identifying commonality between products. Related to FODA is Featur-
eRSEB [Griss et a. 1998], which extends the use-case modelling of RSEB [Jacobson et a. 1997] with the feature model of
FODA. Also related is the FAST method described in [Weiss & Lai 1999] which also includes analyzing variability. The use
of such techniques to organize requirementsis also recommended in [Clements & Northrop 2002]. This book presents a num-
ber of practices and patterns for the devel opment of software product lines.

In [Griss 2000], it is observed that typically changes in a system can be related to individual features or small groups of fea-
tures. Griss also states that “ Sarting from the set of common and variable features needed to support a product-line, we can
systematically develop and assembl e the reusable elements needed to produce the customized components and frameworks to
implement the product” .

A good overview of domain analysis and engineering methods is provided in [Czarnecki & Eisenecker 2000]. In this book,
the authors also include a chapter on feature modeling and the relation of feature models to various generative programming
techniques such as inheritance and parametrization. These techniques can be regarded as variability realization techniques as
well.

In[Wallnau et al. 2002] methodology for using COTS (Commercia Of The Shelf) componentsis discussed. The discussion
also includes what the authors refer to as alter native refinements. These alternative refinements can be seen an instance of our
variant architecture component technique.

Variability realization techniques. In [Jacobson et a. 1997], five ways to implement variability are presented, namely: inher-
itance, extensions, parameterization, configuration and generation. Most of the variability realization techniques we present
are based on these implementation techniques. Our contribution is that we explore when it is more suitable to select one tech-
nique over another, and what the consequences are of a particular technique. Moreover, we present more than one way in
which one can use these implementation techniques.

The two major techniques for variability, as identified in our taxonomy are configuration management and design patterns.
Configuration management is dealt with extensively in [Conradi & Westfechtel 1998], presenting the common configuration

management tools of today, with their benefits and drawbacks. Design patterns are discussed in detail in [Gamma et al. 1995]
and [Buschman et al. 1996], where many of the most commonly used design patterns are presented.

Configuration management is also identified as a variability reaization mechanism in [Bachmann & Bass 2001]. This
paper primarily focus on how to model variability in terms of software modules, and is as such a complement to the feature-
graphs as discussed above. It does, however, aso include a section on how to realize variability in the software product line,
which includes techniques such as generators, compilation, adaption during start-up and during runtime, and also configura-
tion management. Our work complement this work by providing further detail on when to introduce variability, when it is pos-
sible to add new variants, and when it is possible to bind to a particular variant. We provide a comprehensive taxonomy that
brings these things together into the decision of which realization technique to use, rather than just focusing on one of these
aspects.

Another technique for variability, seen more and more often these days, is to use some form of infrastructure-centered
architecture. Typically these infrastructures involve some form of component platform, e.g. CORBA, COM/DCOM or Java-
Beans [Szyperski 1997].

During recent years, code fragment superimposition techniques have received increasing attention. Examples of such tech-
niques are Aspect-, Feature- and Subject-oriented programming. In Aspect-oriented programming, features are weaved into
the product code [Kiczalez et al.1997]. These features are in the magnitude of afew lines of source code. Feature-oriented pro-
gramming extends this concept by weaving together entire classes of additional functionality [Prehofer 1997]. Subject-ori-
ented programming [Kaplan et a. 1996] is concerned with merging classes developed in parallel to achieve a combination of
the merged classes.

8. CONCLUSIONS

Variahility is not trivial to manage. There are severa factors that influence the choice of implementation technique, such as
identifying the variant features, when the variant feature is to be bound, by which software entities to implement the variant
feature and last but not least how and when to bind the variation points related to a particular variant feature.

Moreover, the job is not done just because the variant feature, including the variants of the variant feature and the corre-
sponding variation points, is implemented. It need to be managed during the product’s lifecycle, extended during evolution,
and used during different stages of the development cycle. This also constrains the choices of how to implement the variability
into the software system.

In this paper we present aminimal set of steps by which to introduce variability into a software product line, and what char-
acteristics distinguish the ways in which one can implement variability. We present how these characteristics are used to con-
strain the number of possible ways to implement the variability, and what needs to be considered for each of these
characteristics.

Once the variability has been constrained, the next step is to select away in which to implement it into the software system.
To this end we provide, in this paper, a taxonomy of available variability realization techniques. This taxonomy presents the
intent, motivation, solution, lifecycle, consequences and a brief example for each of the realization techniques.

We believe that the contribution of this taxonomy is to provide a toolbox for software developers when designing and
implementing a software system, to assist them in selecting the most appropriate means by which to implement a particular
variant feature and its corresponding variation points.

The contribution of this paper is, we believe, that by taking into account the steps outlined in this paper, and considering the
characteristics we have identified, a more informed, and hopefully more accurate, decision can be taken with respect to the
variability realization techniques chosen to implement the variant features during the construction of a product or a software
product line.

References

[Bachmann & Bass 2001] F. Bachmann, L. Bass, “Managing variability in software architectures’. proceedings of the ACM Symposiumon
Software Reusability: Putting Software Reuse in Context, pp. 126-132, 2001

[Basset al. 1997] L. Bass, P. Clements, R. Kazman. “ Software Architecture in Practice” , Addison-Wesl ey, 1997.

[Batory & O'Malley] D. Batory, S. O'Malley, “ The Design and implementation of Hierarchical Software Systems with Reusable
Components*, in ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 4, October 1992, pp. 355-398.

[Becker et al. 2002] M. Becker, L. Geyer, A. Gilbert, K. Becker, “Comprehensive Variability Modelling to Facilitate Efficient Variability
Treatment”, in Proceedings of the 4th International Workshop on Product Family Engineering, F. v.d. Linden (ed), Lecture Notesin
Computer Science 2290, Springer Verlag, Germany, 2002.

[Bosch 1998] J. Bosch, “Product-Line Architecturesin Industry: A Case Study”, in Proceedings of the 21t International Conference on
Software Engineering, November 1998.

[Bosch 1999a] J. Bosch, “Evolution and Composition of Reusable Assetsin Product-Line Architectures: A Case Study”, in Proceedings of
the First Working IFIP Conference on Software Architecture, February 1999.

[Bosch 1999b] J. Bosch, “ Superimposition: A Component Adaption Technique”, in Information and Software Technology, (41)5, pp. 257-
273, 1999.

[Bosch 2000] Jan Bosch, “ Design & Use of Software Architectures - Adopting and Evolving a Product Line Approach”, Addison-Wesley,
ISBN 020167494-7, 2000.

[Bosch et al. 2002] J. Bosch. G. Florijn, D. Greefhorst, J. Kuusela, H. Obbink, K. Pohl, “Variability issuesin Software Product Lines’, in
Proceedings of the 4th Inter national Workshop on Product Family Engineering, F. v.d. Linden (ed), Lecture Notesin Computer Science
2290, Springer Verlag, Germany, 2002.

[Buschman et al. 1996] F. Buschmann, C. J&kel, R. Meunier, H. Rohnert, M. Stahl, “ Pattern-Oriented Software Architecture - A System of
Patterns‘, John Wiley & Sons, 1996.

[Capilla & Duefias 2002] R. Capilla, J.C. Dugfias, “Modelling Variahility with Featuresin Distributed Architectures’, in Proceedings of the
4th Inter national Workshop on Product Family Engineering, F. v.d. Linden (ed), Lecture Notes in Computer Science 2290, Springer
Verlag, Germany, 2002.

[Clements & Northrop 2002] P. Clements, L. Northrop, “ Software Product Lines - Practices and Patterns’ , Addison-Wesley, 2002.

[Conradi & Westfechtel 1998] R. Conradi, B. Westfechtel, “Version Models for Software Configuration Management”, in ACM
Computing Survey, 30(2):232-282.

[Czarnecki & Eisenecker 2000] K. Czarnecki, U. W. Eisenecker, “ Generative Programming - Methods, Tools and Applications’ , Addison-
Wesley, 2000.

[Dikel et al 1997] D. Dikel, D. Kane, S. Ornburn, W. Loftus, J. Wilson, “Applying Software Product-Line Architecture”, IEEE Computer,
August 1997.

[Donohoe 2000] P. Donohoe, “ Proceedings of the First Software Product Line Conference” (SPLC1), Kluwer, 2000.

[Feare 2001] T. Feare, “A roller-coaster ride for AGVS’, in Modern Materials Handling 56(1):55-63, january 2001.

[Gamma et al. 1995] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “ Design Patterns: Elements of Reusable Object-Oriented Software”
Addison-Wesley Publishing Co., Reading MA, 1995.

[Gibson 1997] J.P. Gibson, “Feature Requirements Models. Understanding Interactions’, in Feature Interactions in Telecommunications |V,
|OS Press, 1997.

[Grisset al. 1998] M. L. Griss, J. Favaro, M. d'Alessandro, “Integrating feature modelling with the RSEB”, Proceedings. Fifth International
Conference on Software Reuse (Cat. No.98TB100203). IEEE Comput. Soc, Los Alamitos, CA, USA, 1998, xiii+388 pp. p.76-85.
[Griss2000] M.L. Griss, “Implementing Product Line Features with Component Reuse”, in Proceedings of 6th International Conference on

Software Reuse, 2000.

[Jacobson et al. 1997] |. Jacobson, M. Griss, P. Johnson, “ Software Reuse: Architecture, Process and Organization for Business success',
Addison-Wesley, 1997.

[Jaring & Bosch 2002] M. Jaring, J. Bosch, “ Representing Variability in Software Product Lines: A Case Study”, to appear in the Second
Product Line Conference (SPLC-2), San Diego CA, August 19-22, 2002.

[Jazayeri et al. 2000] M. Jazayeri, A. Ran, F. Van Der Linden, “ Software Architecture for Product Families: Principles and Practice”,
Addison-Wesley, 2000.

[Kang et al. 1990] K. C. Kang, S. G. Cohen, J. A. Hess, W.E. Novak, A.S. Peterson, “ Feature Oriented Domain Analysis (FODA)
Feasibility Sudy" , Technical report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

[Kang 1998] K. C. Kang, “FORM: afeature-oriented reuse method with domain specific architectures*, in Annals of Software Engineering
volume 5, pp. 345-355, 1998.

[Kaplan et al. 1996] M. Kaplan, H. Ossher, W. Harrisson, V. Kruskal, “ Subject-Oriented Design and the Watson Subject Compiler”,
position paper for OOPSLA’ 96 Subjectivity Workshop, 1996.

[Kiczalez et al.1997] G. Kiczalez, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, JM. Loingtier, J. Irwin, “ Aspect Oriented
Programming”, in Proceedings of 11th European Conference on Object-Oriented Programming, pp. 220-242, Springer Verlag, Berlin
Germany, 1997.

[Krueger 2002] C.W. Krueger, “Easing the Transition to Software Mass Customization”, in Proceedings of the 4th International Workshop
on Product Family Engineering, F. v.d. Linden (ed), Lecture Notes in Computer Science 2290, Springer Verlag, Germany, 2002.

[Lieberman 1986] H. Lieberman, “Using Prototypical Objectsto Implement Shared Behavior”, in Proceedings on Object-Oriented
Programming systems, Languages and Applications, pp. 214-223, 1986.

[Mattsson 2000] M. Mattsson, “ Evolution and Composition of Object-Oriented Frameworks’ , Phd Thesis defended at Blekinge I nstitute of
Technology, Sweden, 2000.

[Mattsson & Bosch 1999a] M. Mattsson, J. Bosch, “Evolution Observations of an Industry Object-Oriented Framework” , in Proceedings
International Conference on Software Maintenance, IEEE Computer Society Press: Los Alamitos CA, pp. 139-145, 1999.

[Mattsson & Bosch 1999b] M. Mattsson, J. Bosch, “ Characterizing Stability in Evolving Frameworks”, in Proceedings TOOLS Europe
1999, IEEE Computer Society Press. Los Alamitos CA, pp. 118-130, 1999.

[Mozilla] Mozillawebsite, http://mww.moZzilla.org/.

[NDC] NDC Automation AB website, http://Mmww.ndc.se/.

[Oeschger 2000] 1. Oeschger, “XULNotes: A XUL Bestiality”, web page: http://www.mozlla.org/docs/xul/xulnotes/xulnote_beasts.html,
Last Checked: May 2000.

[Ousterhout 1998] J.K. Ousterhout, “ Scripting: Higher Level Programming for the 21st Century”, in IEEE Computer, May 1998.

[Pigoski 1997] T.M. Pigoski, “ Practical Software Maintenance - Best Practices for Managing Your Software Investment” , John Wiley &
Sons, New York NY, 1997.

[Prehofer 1997] C. Prehofer, “Feature-Oriented Programming: A fresh look at objects’, in Proceedings of ECOOP’ 97, Lecture Notesin
Computer Science 1241, Springer Verlag, Berlin Germany, 1997.

[Rine & Sonnemann 1996] D. C. Rine, R. M. Sonnemann, “Investmentsin reusable software. A study of software reuse investment success
factors®, in The journal of systems and software, nr. 41, pp 17-32, Elsevier, 1998.

[Rine & Nada 2000] D. C. Rine, N. Nada, “An empirical study of a software reuse reference model“, in Information and Software
Technology, nr 42, pp. 47-65, Elsevier, 2000.

[Roberts & Johnson 1996] D. Roberts, R.E. Johnson, “Evolving Frameworks: A Pattern Language for Developing Object-Oriented
Frameworks’, in Pattern Languages of Programming Design 3, R. Martin, D. Riehe, F. Buschmann (eds), Addison-Wesley Publishing
Co, Reading MA, pp. 471-486, 1996.

[Salicki & Farcet 2002] S. Sdlicki, N. Farcet, “ Expression and usage of the Variability in the Software Product Lines’, in Proceedings of the
4th International Workshop on Product Family Engineering, F. v.d. Linden (ed), Lecture Notes in Computer Science 2290, Springer
Verlag, Germany, 2002.

[Svahnberg & Bosch 1999a] M. Svahnberg, J. Bosch, “Evolution in Software Product Lines: Two Cases”, in Journal of Software
Maintenance - Research and Practice, 11(6), pp. 391-422, 1999.

[Svahnberg & Bosch 1999b] M. Svahnberg, J. Bosch, “ Characterizing Evolution in Product Line Architectures’, in Proceedings of the 3rd
annual 1ASTED International Conference on Software Engineering and Applications, IASTED/Acta Press, Anaheim, CA, pp. 92-97,
1999.

[Svahnberg & Mattsson 2002] M. Svahnberg, M. Mattsson, “ Conditions and Restrictions for Product Line Generation Migration”, in
Proceedings of the 4th I nternational Workshop on Product Family Engineering, F. v.d. Linden (ed), L ecture Notesin Computer Science
2290, Springer Verlag, Germany, 2002.

[Swanson 1976] E.B. Swanson, “ The dimensions of Maintenance’, in Proceedings of the 2nd International Conference on Software
Engineering, pp. 492-497, IEEE Computer Society Press, Los Alamitos CA, 1976.

[Symbian] Symbian Website, http://www.symbian.conv.

[Szyperski 1997] C. Szyperski, “ Component Software - Beyond Object-Oriented Programming” , Pearson Education Limited, Harlow UK,
1997.

[van Gurp et al. 2001] J. van Gurp, J. Bosch, M. Svahnberg, “On the Notion of Variability in Software Product Lines’, in Proceedings of
WICSA 2001, August 2001.

[van Gurp & Bosch 2002] J. van Gurp, J. Bosch, “Role-Based Component Engineering”, in Building Reliable Component-Based Software
Systems, editors: Ivica Crnkovic and Magnus Larsson, Artech House publishers, Norwood MA, to be published in 2002.

[Wallnau et al. 2002] K. Wallnau, S. A. Hissam, R. C. Seacord, “ Building Systems from Commercial Components* , Addison-Wesley, 2002.

[Weiss& Lai 1999] C. T. R. Lai, D. M. Weiss, “ Software Product-Line Engineering: A FamilyBased Software Devel opment Process” ,
Addison-Wesley, 1999.

[Zave & Jackson 1997] P. Zave, M. Jackson, “Four Dark Corners of Requirements Engineering“, ACM Transactions on Software
Engineering and Methodology, Vol. 6. No. 1, January 1997, p. 1-30.

	1. Introduction
	2. Terminology
	3. Introducing Variability in Software Product Lines
	4. Constraining Variability
	4.1 Introducing a Variant Feature
	4.2 Adding of New Variants
	4.3 Binding to a Variant
	4.4 Summary

	5. Variability Realization Techniques
	5.1 A Detailed Description of the Variability Realization Techniques
	5.1.1 Architecture Reorganization
	5.1.2 Variant Architecture Component
	5.1.3 Optional Architecture Component
	5.1.4 Binary Replacement - Linker Directives
	5.1.5 Binary Replacement - Physical
	5.1.6 Infrastructure-Centered Architecture
	5.1.7 Variant Component Specializations
	5.1.8 Optional Component Specializations
	5.1.9 Runtime Variant Component Specializations
	5.1.10 Variant Component Implementations
	5.1.11 Condition on Constant
	5.1.12 Condition on Variable
	5.1.13 Code Fragment Superimposition

	5.2 Summary

	6. Case Studies
	6.1 Axis Communications AB
	6.2 Ericsson Software Technology
	6.3 Mozilla
	6.4 Symbian - Epoc
	6.5 NDC Automation AB
	6.6 Rohill Technologies BV
	6.7 Cummins Inc.
	6.8 Control Channel Toolkit
	6.9 Market Maker

	7. Related Work
	8. Conclusions

