Christian Prehofer - Jilles van Gurp -

Cristiano di Flora

Towards the Web as a Platform for Ubiquitous

Applications in Smart Spaces

Abstract We introduce our web based middleware for
smart spaces, which strongly relies on technologies used
in Internet services. Following the key requirements and
technologies, we present our architecture for ubiqui-
tous applications in smart spaces. It exploits and lever-
ages many of the key web-technologies as well as “Web
2.0” collaborative and social Internet services, includ-
ing browsers, web servers, development tools and con-
tent management systems. In this way, we aim to make
many of the highly disruptive ubiquitous applications
less disruptive from a technology point of view. Further-
more, we discuss a number of new challenges for applying
these technologies in ubiquitous applications. These in-
clude the areas of discovery/delivery of services, security,
content management, and networking.

1 Introduction

This paper focuses on software infrastructure for ubiq-
uitous applications in — what we call — smart spaces.
A smart space is a multi-user, multi-device, dynamic in-
teraction environment that enhances a physical space by
virtual services [1]. These services enable the participants
to interact with each other and other objects in the smart
space. The research in the area of ubiquitous and per-
vasive computing has led to many interesting research
demos and usage experiences. Building on widely spread
wireless devices such as phones, PDAs and other spe-
cial purpose devices, there is an enormous potential to
create new smart space services and applications. De-
spite many efforts in industrial and academic research
[1-5], the mass market uptake has however been very

Christian Prehofer
Nokia Research Center

Jilles Van Gurp
Nokia Research Center

Cristiano di Flora

Nokia Research Center

P.O. Box 407, FI-00045 NOKIA GROUP, Finland

E-mail: {christian.prehofer, jilles.vangurp, cristiano.di-
flora}@nokia.com

sluggish. At the same time, we have witnessed an as-
tounding growth of web-based, Internet applications in
the last 15 years. Most recently this has been around the
areas of web services and Web 2.0 [21]. What has enabled
this progress is not just the web browser and the agree-
ment on some key (de-facto) standards, but also a wealth
of development tools and content management systems.
For instance, even end-users can now easily create con-
tent on many Internet sites.

Our approach aims at smart space applications by
building on the above technologies developed for the web
based Internet applications. We are reusing the technolo-
gies that are enabling the type of collaborative and so-
cial services associated with the mentioned Web 2.0 phe-
nomenon. What we are creating in the smart space do-
main is similar in the sense that it involves mash-ups of
services in the local space, thus allowing users to derive
value from interacting locally with people, devices and
services.

Earlier approaches like CoolTown [13] have applied
basic web architectures to ubiquitous applications based
on PDAs. We now see the opportunity to use tradi-
tional as well as Web 2.0 technologies as a platform for
providing services to ubiquitous devices [14,15]. Recent
advances in device technologies allow us to bring both
the key web standard software and development tools
to widely deployed personal devices (mobile phones,
PDAs). For instance, many mobile devices can not only
surf the Internet, but can also provide web services based
on mobile web servers. An example is the open source
Nokia Raccoon server [18], which is a port of the Apache
web server to Nokia S60 smartphones that uses Python
as a scripting language. This enables us to leverage new
web technologies for content hosting and management.
In addition, we can also include other smart devices, such
as home entertainment devices and dedicated sensor de-
vices.

Following this approach, we also have to understand
the specific requirements and settings of ubiquitous com-
puting research. For instance, ubiquitous research has
often focused on novel hardware or software technolo-
gies to implement and evaluate a few specific ubiquitous



computing techniques (e.g. location-sensing techniques,
context management). Consequently, this has resulted in
green field approachs where researchers decided to imple-
ment components from scratch, tailored to the require-
ments of a specific setting. While there are exceptions, a
greenfield approach strongly obstructs reuse of software
and has not led to any viable platform.

In summary, the underlying problem for mass mar-
ket commercial success of smart space applications is
that they are highly disruptive to existing consumer de-
vices, which are typically high-volume and inexpensive.
To view this from a business perspective, we would like
to quote from the well known book “The innovators solu-
tion” [10]: “Disruptive innovations usually do not entail
technological breakthroughs. Rather, they package avail-
able technologies in a disruptive business model.” This
basic insight has been seen in history in many cases, even
such prominent, highly disruptive examples like electric-
ity or cars. These took many years or decades to establish
themselves. Thus our claim is that many smart space ap-
plications present not too little but too many innovations
for a disruptive new market.

Following the above, this paper presents our approach
to build smart space applications by using web technolo-
gies as a platform in ubiquitous devices. In the remainder
of this paper we first discuss scenarios and existing tech-
nologies and then present our web-based architecture.
We then discuss related work and discuss open research
issues stemming from our approach.

2 Scenarios, Requirements, and Existing
Technologies

The type of scenarios we envision involves users bring-
ing their devices into a space in order to interact with
other people’s devices and other objects in the space.
Such smart spaces can be associated with a community
of end-users who share a common goal or interest around
a specific location. A space can be any place where peo-
ple come together: e.g. a home, an office, a restaurant,
a bar, a hotel, a concert, a cinema, a bus or a park.
Smart spaces can augment local events by providing at-
tendees with end-user applications to enhance interac-
tion between end-users themselves, as well as to improve
experience of individual users attending the event. In all
these cases, the smart space must provide interopera-
ble and configurable mechanisms to communicate with
people, devices and services in local environment. Addi-
tionally, services in a smart space may be intermingled
with external Internet services.

As an example, consider public events such as for
example people watching a jazz performance in a bar.
Generally, such events have many people in them doing
things like taking pictures with their cameras and cam-
era phones; shooting video and expressing opinions via
phone or text messages. This information is however not
easily shared with the other people in the local space.

2.1 Main Requirements and Stakeholders

In the following, we give a short overview of some of the
key requirements. We start first by requirements from
the key stakeholders, and then structure the remainder
by technology areas.

End users and usability. For end users, the ex-
perience of connecting to and interacting with the smart
space needs to be effortless and seamless. In other words,
it is crucial that the system is easy to configure and use.
Ideally, users should be able to connect to the local space
without any configuration and connect to it by simply
walking into it. A further key requirement is that the
platform must work with the widest possible range of
devices.

Smart space customization and service cre-
ation. A second group of stakeholders consists of peo-
ple owning, deploying and customizing services in the
space. This includes the owner of the space (e.g. the bar
owner) and also some visitors may choose to host ser-
vices on their own devices (e.g. a photo blog). In neither
case these people are likely to be technical experts. In-
stalling, configuring and customizing the services should
therefore be straightforward.

Connectivity. A basic requirement for devices in the
smart space is to be able to connect to an IP network
locally. Such a network may be provided by smart space
owners in the form of a wireless access point. Alterna-
tively, devices can connect directly in a peer-to-peer fash-
ion. Non-IP devices can be attached by service specific
gateways or proxies. Additionally, there may be remote
users wanting to participate in activities taking place in
a smart space.

Security. An important aspect of managing the local
smart space is dealing with trust and security. Unlike
the Internet, it is quite difficult to rely on centralized
facilities to orchestrate trust and security strategies in
a smart space. Consequently, a decentralized solution is
preferable. On the other hand, being connected locally
makes it easier to establish trust relations in some cases.
For example, in the previously mentioned scenario, the
bar keeper could grant default access to an audio system
from devices known to be local.

Interoperability. A key requirement for software
development in this space is interoperability. Interop-
erability with other software components is important
because the smart space is very likely to be populated
by many different devices and software components. Web
technologies can be applied in the local smart space since
they are now also well supported on mobile devices, but
limitations and specific characteristics of mobile and em-
bedded devices must be taken into account.

Engaging the development community. Devel-
opment should be easy enough to engage a wide commu-
nity of developers. On the Internet, the wide deployment
of scripting languages such as PHP has opened up web



application and service development to millions of pro-
fessional and amateur developers.

2.2 Existing Technologies

In the following we survey and classify existing technolo-
gies according to different device categories.

PC-class devices and high-end mobile devices.
High end mobile devices can connect to a WLAN and
have the ability to run web application server software
needed for hosting services in the smart spaces.

Personal mobile devices with WLAN and a
browser. This growing category overlaps with the pre-
vious category, but includes phones that may not able to
host services, e.g. due to lack of software or memory.

2G/3G Phones with a browser. While many
phones still lack the ability to connect to a WLAN, quite
many have a browser and can connect to the Internet.
It is possible to integrate them into the smart space via
normal Internet by a gateway, although e.g. NAT trans-
lation and firewalls may pose problems.

Low end phones without a browser. While the
before mentioned devices represent the future, low end
devices without a browser represent still a considerable
group of devices which cannot connect to the smart
space. For example, while limited, SMS messaging has
been successfully used for large public events and could
also be used for smart spaces.

Non personal, networked devices. There is an
increasing amount of non personal devices with a net-
work connection. This includes multimedia home appli-
ances such as Universal Plug’'n’Play (UPnP) [24] media
servers and renderers, Bluetooth accessories. home au-
tomation systems, and sensor/actuator networks. Some
of these devices can connect directly to an IP network;
others connect via alternative network technologies.

Independently of a specific device category, soft-
ware development for the smart space needs to build
on, and integrate with existing mobile software devel-
opment platforms. These platforms currently include
web browsers and mobile Java, which are both widely
supported across devices. While suitable for running
client applications with a graphical user interface, nei-
ther browsers nor mobile Java platforms are suitable for
developing server applications. For that purpose other
platforms need to be used. Fortunately, many high end
devices support both application servers and scripting
languages such as for example Python. This enables the
porting and use of a wide range of technologies currently
used on web application servers. This trend will progress
rapidly and many devices will be capable of running and
hosting web servers and other service technologies. This
makes it possible to build the software infrastructure for
smart spaces on this technology. Mobile servers can host
familiar web applications such as photo albums, blogs,
content management systems, while their clients can run
sophisticated AJAX user interfaces to provide users with

o
e

: Smart Space
WIFI - IP

| ']

2 — -“\

Sensor
Networks

Fig. 1 Local IP network with smart devices acting as proxies

a nice user experience. In addition they can host a wide
variety of networked services with a web service APIs.

3 Architecture and System Design Approach

In the following, we first introduce our network architec-
ture and then present an overview of our system archi-
tecture.

3.1 Smart Space Network

Our Smart Space Network (see Figure 1) is based
on a decentralized, local, IP-based network which in-
cludes devices and services provided by the smart space
owner. While all devices discussed above can be part
of the smart space directly or indirectly, only the top
two categories of the classification in the last section
have the ability to run custom service software. Conse-
quently, we consider these devices to be the backbone of
the smart space. In addition, sensor/actuator networks,
where power usage is a great concern, are often connected
to high end devices not by IP networking but through
technologies such as Wibree or Bluetooth. To integrate
such devices in the smart space, their services must be
published by and accessed through technology-specific
proxies running on a high-end device. This means that
a high-end device accesses the sensor using the sensor-
specific interconnection technology and exposes its fea-
tures to the rest of the smart space.

Devices joining the smart space network become part
of the smart space. However, to access services and web
applications in the smart space network, a device needs
to discover their existence and their network addresses.
In the local smart space we use the Zeroconf mDNS
mechanism [22,23], which is similar to DNS and inte-
grates into the hostname resolution at the OS level. This
also supports service registration and discovery. By us-
ing mDNS, devices can advertise their name within a lo-
cally scoped namespace, e.g., device A is available at de-



Smart Space
Portal

Application

Multimedia
Layer

Smart Space
library ‘

Aggregated
Search

Context Management
Web Access

Services

Services
(on different
runtimes)

‘ Platform

Zeroconf Web ‘ ’

Distributed
Service

Storage

Smartspace
Search

Mobile Web
Application Server

Publish -
Subscribe

Smart Space User &
Content Management

SQL Messaging
Database Server

Zeroconf Discovery
UDP / TCP

Base Platform
‘ & Communication

Networking
Layers

Fig. 2 System Architecture

viceA.local address. Such a locally scoped symbolic host-
name may then be transparently resolved by other de-
vices in the smart space. Indeed, since mDNS integrates
into the OS in the same way as DNS does, existing soft-
ware such as web browsers or web service clients can use
the .local hostnames without any modification.
Additionally, devices can make services available
through such locally scoped web server URLSs. For exam-
ple, a photo website offered by the mydevice.local device
could be accessed at http://mydevice.local/photos.

3.2 System Architecture and Design Decisions

Figure 2 provides a bird’s eye view on the architecture of
our web based infrastructure for smart spaces. A detailed
discussion of this architecture is beyond the scope of this
article. In this section we will focus on the key design
decisions underlying this architecture.

The bottom layer contains the mechanisms discussed
previously, including a network protocol stack and Ze-
roconf device discovery layer. The base platform and
communication layer on top of that contains components
that we see as necessary to realize a full web platform
in the smart space. Most of these components are based
on existing software already available in the market. For
example, we use the Nokia S60 version of Apache httpd
[18] and the S60 port of Python as well as the Java OSGI
Http Service on top of the J2ME CDC environment.
These two components can both be used as the mobile
web application server in Figure 2. They are used to run
web services, web applications and for hosting multime-
dia content. The difference with a normal web server
is that services and applications running on it (e.g. a
python script or OSGI Java components) can access the
Zeroconf service discovery mechanism to integrate other
services in the smart space. Other run-times, for exam-
ple a PHP interpreter, can be integrated alternatively.
Using off-the-shelf web components allows us to bring
many features to the smart space such as, for example,

user management and security solutions, instant messag-
ing, and asynchronous communication infrastructures.

Smart space services can be created by using the tech-
nologies in the second layer. A few typical smart space
specific services are shown in the third layer. Applica-
tions that use these services are listed in the top layer.
These may be web applications, which can be accessed
using a browser and which can be hosted on the mobile
web application server. Alternatively, they can be writ-
ten using any of the device specific development kits that
access the services.

Compared to other work, the key design decisions
that characterize our approach are as follows:

Bridging/proxying non IP devices. As we fo-
cus on IP infrastructure, we also run technology-specific
proxy components on smart devices that connect to non
IP devices to access the features and services of these
devices and offer them to the rest of the smart space.

Zeroconf naming and service discovery. The
infrastructure cannot rely on central facilities (such as
DNS) to address naming of devices in the smart space.
Zeroconf mDNS is designed to solve this issue and in-
tegrates into the operating systems hosting it, so as to
allow existing software to use it without requiring any
modification.

HTTP. HTTP and web services are used as the pri-
mary means for integrating software across devices in the
smart space, similarly to what currently happens on the
Internet, where http forms the cross platform glue that
allows mash-ups across the extremely heterogeneous net-
work of the Internet.

Reuse of existing web technology. As mentioned
in Section I, a key problem with existing solutions in
the ubiquitous and pervasive computing research com-
munity is that they are rarely reusable. By relying on
existing web technology, the infrastructure opens up to
a large number of devices already available in the current
market.

Multiple software run-times. After years where
mobile development platform choice was limited to
J2ME and C/C++, high end mobile devices are now
offering devices a much wider range of technologies, in-
cluding the already mentioned support for Python and
other scripting languages. In this way, platform devel-
opers can use several run times. This means that many
existing components used on the web can be used in a
smart space context as well.

4 Related Work and Research Challenges

There has been abundant research in the area of ubiq-
uitous computing and we cannot list all challenges here.
We focus on a few key issues which arise from applying
existing software and technologies to our setting.
Content-management. Content management sys-
tem (CMS) software for e.g. blogging, web-forms, or In-



ternet services like MySpace.com, have made it increas-
ingly more simple for users to create content on the In-
ternet.

There are thousands of CMS products available that
are optimized for various use cases (see e.g. the CMS
Matrix [20]). These products provide a wide range of fea-
tures related to content syndication, versioning, scalabil-
ity, security, web site design, etc. In recent years the phe-
nomenon of users adopting CMS tools and using them to
create massive amounts of content and to remix content
and services on a large scale, has inspired the term Web
2.0 [21].

In the smart space, Web 2.0 technology may enable
local participants and service providers to create content
in the smart space. However, there are several challenges
related to the ad-hoc and local character of smart spaces.
For example, the smart space CMS content would ideally
be robust against users and services joining and leaving
the smart space.

A clear example of such issues is provided by the
work in [11], which shows how a well architected modu-
lar design can address such challenges in location-based
systems. However, it does not discuss the issues re-
lated to other types of smart space systems. The work
in [12] by Storz et al. outlines several lessons learnt
on content management that have general applicability
to many types of public ubiquitous computing deploy-
ments for situated displays. The work makes it clear that
content management requirements of pervasive environ-
ments cannot be satisfied by existing content manage-
ment systems.

Additionally, in typical content management sys-
tems, there are clear roles and responsibilities for the
content. In the smart space this has to be managed in
a more dynamic way e.g. taking into account that some
services may be less trusted as they are user created.
Finally, links to other services have to be more dynamic
because they can start/stop working as devices come and
go. Related to this is the need to ensure availability of
important content by, for example, replicating it on mul-
tiple devices.

Web technology for smart space services. The
idea of using web technologies as a smart space middle-
ware and of considering the web itself as a smart space
runtime environment has been already investigated by
several state-of-the-art research works. The Cooltown
system [13] provides one of the clearest examples of such
a research effort. Our work and much earlier work on
Cooltown share the same goal to enable people to build
a Web presence for real-world entities without requiring
advanced programming expertise. As discussed above,
we now exploit a much larger part of the tools for Inter-
net services.

Universal Plug'n’Play (UPnP) [24] and the more
recent Device Profile for Web Services (DPWS) [16]
are two clear examples of off-the-shelf service discov-
ery and delivery infrastructures built on top of exist-

ing web technologies. UPnP is designed to support zero-
configuration, invisible networking, and automatic dis-
covery for a breadth of device categories. The UPnP
technology has very strong roots in standard Web tech-
nologies. It is based on IP, HTTP, Web browsing, XML
and SOAP. UPnP’s service discovery and event notifica-
tion frameworks are strongly based on HT'TP and rely on
several IETF standards. DPWS is aligned with Web Ser-
vices standards, such as WSDL (Web Services Descrip-
tion Language), XML Schemas, SOAP, and other web-
services protocols concerning addressing, security, and
meta-data exchange. The main limitation of Cooltown as
well as of UPnP, DPWS, and other related approaches
is that they rely on traditional web technologies without
taking into account the latest advances in technologies
and user-interaction models related to the web. On the
contrary, our work takes explicitly into account migra-
tion of web-technologies and related user communities
towards before mentioned Web 2.0 technologies. We are
aiming at exploiting these technologies as the basic en-
abling platform for our smart spaces.

Security. A pervasive challenge is of course security.
As we have several server devices distributed in the net-
work, users certainly do not want to log in separately to
each of them. The challenge is to manage user credentials
in such a way that the user can rely on the trust provider.
Additional challenges come from privacy requirements,
which can vary widely between different smarts space
scenarios.

Network issues. Web platform technologies have
advanced significantly in reliability by many techniques
for redundancy and scalability for the Internet. In our
smart space setting, challenges come more from the lim-
itations of devices and dynamic network scenarios. So
far, we have evaluated infrastructure based WLAN, but
more dynamic ad-hoc connectivity with multiple wireless
hops is even more challenging. For instance, users mov-
ing in a building may not always be best connected to a
WLAN access point and suffer from interruptions and/or
high packet loss. This can lead poor user experience, e.g.
due to session termination.

As we aim to run services mostly on mobile devices,
and some of them joining dynamically, energy efficiency
and energy awareness are crucial. For instance, in larger
scenarios, services may have to be replicated and load
balancing is needed not just for network load but also
for power reasons.

Similarly, monitoring the smart space and ensuring a
consistent user experience is difficult for several reasons.
First, the network capacity is difficult to plan and moni-
tor in WLANSs. For instance, the owner of a smart space
in a restaurant may want to ensure that all users have
acceptable service experience. In this case, it may be bet-
ter to limit the number of streaming sessions before the
quality for all users decreases. Secondly, disruptions such
as intentional or unexpected disconnections and variable



network performance can degrade the service quality and
are difficult to monitor.

5 Conclusions

We have presented a web based middleware for smart
spaces, which strongly relies on technologies used in In-
ternet services. In this way we aim at simplifying the
creation of ubiquitous services and making many of the
highly disruptive ubiquitous applications less disruptive
from a technology point of view. Based on an analysis of
requirements and technologies, we have presented an ar-
chitecture for a web based middleware designed for smart
spaces. We have shown that many of the key technolo-
gies for “Web 2.0” Internet services can be exploited.
This includes not just browsers and basic web servers,
but also development tools, scripting languages and con-
tent management. While many technologies can be re-
used from Internet applications, we also face a number
of additional challenges in this new setting. These have
been discussed with respect to several key issues such as
discovery/delivery of services, security, content manage-
ment, and networking. We are currently implementing
the presented architecture and already have good ex-
perience running several popular software packages and
applications on the Nokia N800 Internet tablet on top of
Python and OSGI Java components. Furthermore, many
of the key Internet technologies are available as open
source projects, which makes them more accessible and
adaptable to our platform.

Acknowledgements The authors are grateful to the
project team at Nokia Research Center for many discus-
sions and insights leading to this approach. Further, Pasi
Liimatainen has given valuable feedback to this paper.

References

1. Wang, X., Dong, J.S., Chin, C.Y., Hettiarachchi, S.R.,
Zhang, D., Semantic Space: an infrastructure for smart
spaces, Pervasive Computing, IEEE , 3(3) pp. 32-39, 2004.

2. Abowd, G. D. Mynatt, E. D., Designing for the human
experience in smart environments. In Cook, D. J. and Das,
S. K., eds., Smart Environments: Technology, Protocols,
and Applications, pp. 153-174, Wiley, 2005.

3. Kaasinen, E., Niemela, M., Tuomisto, T., Valkkynen, P.,
Ermolov, V., Identifying User Requirements for a Mo-
bile Terminal Centric Ubiquitous Computing Architecture,
Proc. of International Workshop on System Support for Fu-
ture Mobile Computing Applications, pp. 9-16, IEEE Com-
puter Society, 2006.

4. Coen, M., Phillips, B., Warshawsky, N., Weisman, L., Pe-
ters, S., Finin, P., Meeting the computational needs of intel-
ligent environments: The Metaglue system. In Proceedings
of MANSE’99, Dublin, Ireland, 1999.

5. Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S,
FasyLiving: Technologies for intelligent environments. In
Proceedings of Second International Symposium on Hand-
held and Ubiquitous Computing (HUC 2000), Bristol, UK.
Springer, LNCS1927, 2000.

6. Martin, D., Cheyer, A., Moran, D., The Open Agent Ar-
chitecture: A framework for building distributed software
systems, in Applied Artificial Intelligence: An International
Journal, 13(1-2), pp. 91-128, 1999.

7. Fox, A., Johanson, B., Hanrahan, P., Winograd, T.,
Integrating Information Appliances into an Interactive
Workspace, in IEEE Computer Graphics and Applications,
20(3), pp. 54-65, 2000.

8. Xie, W., Shi, Y., Xu, G., Mao, Y., Smart Platform - a soft-
ware infrastructure for Smart Space (SISS), proceedings of
the Fourth IEEE International Conference on Multimodal
Interfaces, 2002.

9. Uribarren, A., Parra, J., Uribe, J.P., Makibar, K., Olalde,
I., Herrasti, N., Service Oriented Pervasive Applications
Based On Interoperable Middleware, Proceedings of the 1st
International Workshop on Requirements and Solutions for
Pervasive Software Infrastructures, Dublin, Ireland, 2006.

10. Christensen, C. M., Raynor, M. E., The Innovator’s So-
lution: Creating and Sustaining Successful Growth, Boston:
Harvard Business School Press, 2003.

11. Tummala, H., Jones, J. Developing spatially-aware con-
tent management systems for dynamic, location-specific in-
formation in mobile environments. 3rd ACM international
Workshop on Wireless Mobile Applications and Services on
WLAN Hotspots (Cologne, Germany). WMASH ’05. ACM
Press, New York, NY, 2005.

12. Storz, O., Friday, A., Davies, N., Finney, J. Sas, C., Sheri-
dan, J., Public Ubiquitous Computing Systems: Lessons
from the e-Campus Display Deployments, IEEE Pervasive
Computing, 5(3), pp. 40-47, 2006.

13. Debaty, P., Caswell, D., Uniform Web presence architec-
ture for people, places, and things, IEEE Personal Commu-
nications, 8(4), pp. 46-51, 2001.

14. Schroth, C., Janner, T., Web 2.0 and SOA: Converging
Concepts Enabling the Internet of Services, IT Professional,
9(3), pp. 36-41, 2007.

15. Yamakami, T., MobileWeb 2.0: Lessons from Web 2.0 and
Past Mobile Internet Development, in Proceedings of Inter-
national Conference on Multimedia and Ubiquitous Engi-
neering, 2007.

16. Chan, S., Kaler, C., Kuehnel, T., Regnier, A., Roe,
B., Sather, D., Schlimmer, J., Sekine, H., Walter, D.,
Weast, J. and others., Devices Profile for Web Ser-
vices, May 2005, Microsoft Developers Network Library,
http://specs.xmlsoap.org/ws/2005/05/devprof/
devicesprofile.pdf, 2005

17. Jammes, F., Mensch, A., Smit, H. Service-oriented device
communications using the devices profile for web services,
3rd international Workshop on Middleware For Pervasive
and Ad-Hoc Computing, Grenoble, France. MPAC 05, vol.
115. ACM Press, New York, 2005.

18. Mobile Web Server,
http://wiki.opensource.nokia.com/
projects/Mobile_Web_Server, 2007.

19. Kindberg, T., et al., People, Places, Things: Web Pres-
ence for the Real World, Third IEEE Workshop on Mobile
Computing Systems and Applications, 2000.

20. CMS Matrix, http://cmsmatrix.org. 2007.

21. O’Reilly, T., Web 2.0: Compact Defini-
tion, http://radar.oreilly.com/archives/2005/10/
web_20_compact_definition.html, 2005.

22. Guttman, E., Microsyst, S., Autoconfiguration for IP
Networking: Enabling Local Communication, IEEE Inter-
net Computing 5 (3), pp. 81-86, 2001.

23. Engelstad, P., Van Thanh, D., Jonvik, T.E., Name res-
olution in mobile ad-hoc networks, in Proceedings of the
10th International Conference on Telecommunications, ICT
2003., IEEE Computer Society, 2003.

24. UpnP Forum, UpnP Device Architecture 1.0, July 2006,
http://www.upnp.org/resources/documents.asp, 2006.

Raccoon,



