COMPOSITIONALITY IN SOFTWARE PLATFORMS

Christian Prehofer, Jilles van Gurp, Jan Bosch
Nokia Research, Helsinki, Finland

1 Introduction

Software product lines or platforms have receiviéenéion in research, but especially in
industry. Many companies have moved away from agpiey software from scratch for
each product and instead focused on the comma@swalitetween the different products
and capturing those in a product line architectur@ an associated set of reusable assets.
This development is, especially in the embeddetesys industry, a logical development
since software is an increasingly large part ofdpds and often defines the competitive
advantage. When moving from a marginal to a magot @f products, the required effort
for software development also becomes a major iasdeindustry searches for ways to
increase reuse of existing software to minimizedpot-specific development and to
increase the quality of software. A number of atghbave reported on industrial
experiences with product line architectures. Earbrk on goes back to the late 90ies
[Bass et al. 97, Macala et al. 96, Dikel et al. 8¢l the field has since then developed in
new directions to extend the applicability of tlencept.

This paper addresses several challenges posedebintheasing range of successful
product lines and develops new concepts for a caeitippal approach to software
product lines [Ommering & Bosch 02, Ommering 02d éosch 06]. Further, the
implications of this approach to the different agpeof software development are
discussed, including also process and organizdteprestions.

Although the concept of software platforms is easynderstand in theory, in practice
there are significant challenges. As discussedBos¢h 00], the platform model is
supposed to capture the most generic and conségute least differentiating
functionality. However, the product specific furmetality frequently does not respect the
boundary between the platform and the softwareopnof it. Innovations in embedded
systems can originate from mechanics, hardwareoftiwvare. Both mechanical and
hardware innovations typically have an impact om sbftware stack. However, due to
the fact that the interface to hardware is placedevice drivers at the very bottom of the
stack and the affected applications and their urgerface are located at the very top of
the stack, changes to mechanics and hardware biypiave a cross-cutting effect that
causes changes in many places both below and #heywtatform boundary.

A second source of cross-cutting changes is saétwpecific. New products often enable
new use cases that put new demands on the softiaxarean not be captured in a single
component or application, but rather have archiratimpact. Examples include adding
security, a more advanced user interface framewoik web-services framework. Such



demands result in cross-cutting changes that affecty places in the software, again
both above and below the platform boundary.

Software product families have, in many cases, lween successful for the companies
that have applied them. Due to their success, heweluring recent years one can
identify a development where companies are stmegchiheir product families
significantly beyond their initial scope. This ocswither because the company desires to
ship a broader range of products due to, amongrqtlwenvergence, or because the
proven success of the product family causes eantieglated products to be placed under
the same family. This easily causes a situationrgvhibe software product family
becomes a victim of its own success. With the asirgg scope and diversity of the
products that are to be supported, the originagration-oriented platform approach
increasingly results in several serious problemthentechnical, process, organizational
and, consequently, the business dimension.

The “conventional”, integration-oriented platfornpproach in software product lines
typically splits R&D into a platform organizationhich delivers a platform as a large,
integrated and tested software system with an A&t ¢an be used by the product teams
to derive their products from. In addition, theréten is top-down, hierarchical
governance by the central platform organizatioduidiog the central management of
requirements and roadmap, complete control of featuvariability and product
derivations and integration and testing for prodalatform and derivations

A specific refinement of the integration-orienteldtform approach is the hierarchical
platform approach [Bosch 06], where the platfosnused a basis and extra functionality
is added on top without modifying the base. Thikasvever only suitable if the base is
well defined and sufficient for fast product creati Second, it does not limit the sharing
of code between different, derived products beybedoorderline of the base platform.

Despite the success of the integration-orientetfgela approach, in this paper we argue
that the approach suffers from limitations when sisepe of the product line starts to
increase. An intuitive reaction adopted by some mames is to adopt a hierarchical
platform approach. However, as discussed in [Bd36h this approach fails to be

sufficiently scalable for large systems with mampduct derivations, especially when
there is a wide range of products with unprediatadations and in the case of product
derivations requiring to modify and re-engineengigant parts of the system.

A main reason to question the traditional platfampproach is that we have seen the
organization into platform and product units toateea number of drawbacks regarding
integration. First, as integration and testing dome both at the platform and at the
product level, this can lead to an extremely higst@f integration if the scope of a
software product line widens. This strong dependent repeated integration also leads
lack of predictability and inefficiency. Second,ethbroad scope of the platform
functionality impedes flexibility and time to matk®r new features. Third, this easily
leads to a lack of flexibility and unacceptably godevelopment cycles because of the
brittleness of platform caused by its inabilitygo beyond initial scope. Finally, software
developed in a product unit cannot properly be e@dusy other units before it has been

2



included into a release of the platform unit. Ag tlatform unit has typically longer
release cycles, such reuse of software is diffimulichieve in such an approach. In other
words, we need to enable horizontal sharing betw®educts in addition to vertical
sharing between the platform and products.

Another significant fact is the growing significanof open-source and off-the-shelf

components in software product lines. This presset®ral challenges to the traditional

approaches to software product lines as it req@resre open approach which does not
assume full control of features, roadmaps and tools

As software development is now a key competencediiferentiating factor in many
areas such as embedded devices, there is a stemagfor a new approach. We argue
that we need a fundamental paradigm shift in the tlhat we engineer software product
lines if we are to achieve a significant improvemearproductivity and time to market.

This paper details a more flexible and more opeoragrh, called theompositional
product family approach, which addresses the above issues. The main ifldheo
compositional approach to software product lineshet the software platform of the
product line is not a fully integrated software wmn, but a set of components,
architecture guidelines, principles as well asitgstdocumentation and use case support.
Based on this flexible and open platform environtnéme full products are composed,
integrated and tested. While in this approachasoft component technology will play a
much bigger role, we also propose in this papeudeof “architecture slices”, which are
fragments of the full architecture. These are irdegl and tested as part of the
compositional software platform. Such architectliees are typically cover one or more
subsystem of the architecture. In this way, we @asure integration and testing which
goes beyond component-level testing. This is amportant regarding non-functional
requirements, beyond the scope of individual corepts This process is illustrated in
Figure 1 below. A critical point is that the ar@uture slices are not a full integration and
some external component dependencies have to be exaticit.

Adopting a compositional product family approachusms an intentional shift of
integration and testing responsibilities to the dmat creation, where products are
composed from the aforementioned elements. In gpergence, this approach is more
adequate for product families with wide scope, m@astlution and open innovation and
competition at the component level.



Component Architecture Slices Product integrations

Sources based on Architecture aEpEn
0 Slices SRR
0 O O 1)
) O QL) OO0
0 ]
0 O
" @ )
Sae 0
Components %
guarantee quality
OO
Integrated and tested,

documented dependencies
Figure 1: Compositional Approach

The motivation and basic characteristics of the positional product family approach
were introduced in Bosch 06]. The approach is teteand enhanced in this paper, in
particular by the architecture slice concept. Tomtribution of this paper is the
following. First, we present a detailed and pre@assessment of the problems of the
integration-oriented platform approach. Secondjmart the consequences of adopting
a compositional product family approach on all aspef SW development, including
requirements, process, organization, architectudet@ols.

The remainder of this paper is organized as folldwshe next section, we introduce the
integration-oriented approach, discuss its disathges and introduce the compositional
approach as an alternative. Subsequently, in $e8tithe concept of architecture slices is
presented as a key element of the compositionaloapp. Section 0O presents a set of
research challenges for the evolving and matutiegcompositional approach.

2 From Integration-oriented to the Compositional
Approach

This chapter discusses and presents an alternatittee traditional, integration centric
approach to product families. However, before we discuss this, the concerns of the
integration-oriented platform approach need to bBndd more clearly. Traditionally,
product families are organized using a strict sajgam between the domain engineering
organization and the product organizations. The alomengineering organization
employs a periodic release cycle where the domdifa@s are released in a fully
integrated and tested fashion, often referred ta pkatform. The product organizations
use the platform as a basis for creating and ewglvheir product by extending the
platform with product-specific features.



The platform organization is divided in a numbetedms, in the best case mirroring the
architecture of the platform. Each team develop$ ewolves the component (or set of
related components) that it is responsible for deldzers the result for integration in the

platform. Although many organizations have movedgplying a continuous integration

process where components are constantly integdteithg development, in practice

significant verification and validation work is pemmed in the period before the release
of the platform and many critical errors are ordyrid in that stage.

The platform organization delivers the platformadsrge, integrated and tested software
system with an API that can be used by the prothahs to derive their products from.
As platforms bring together a large collection efatures and qualities, the release
frequency of the platform is often relatively lownspared to the frequency of product
programs. Consequently, the platform organizatiften is under significant pressure to
deliver as many new features and qualities dutregrélease. Hence, there is a tendency
to short-cut processes, especially quality assergmmocesses. Especially during the
period leading up to a major platform release,validation and verification is often
transferred to the integration team. As the comptsise quality and integration team
is confronted with both integration problems anchponent-level problems, in the worst
case an interesting cycle appears where errorglangified by testing staff that has no
understanding of the system architecture and casezpently only identify symptoms,
component teams receive error reports that turnaworiginate from other parts in the
system and the integration team has to manageyhagiflicting messages from the
testing and development staff, leading to new emports, new versions of components
that do not solve problems, etc.

Although several software engineering challengeso@ated with software platforms
have been outlined, the approach often proves yigintcessful in terms of maximizing
R&D efficiency and cost-effectively offering a righroduct portfolio. Thus, in its initial
scope, the integration-centric approach has oftengm itself as a success. However, the
success can easily turn into a failure when thearmegtion decides to build on the
success of the initial software platform and sigatfitly broadens the scope of the
product family. The broadening of the scope cathkeaesult of the company deciding to
bring more existing product categories under tla¢f@m umbrella or because it decides
to diversify its product portfolio as the cost akating new products has decreased
considerably. At this stage, we have identifieéd inumber of companies that broadening
the scope of the software product family withoufuating the mode of operation quite
fundamentally leads to a number of key concerns @nathlems that are logical and
unavoidable. However, because of the earlier sgcdbat the organization has
experienced, the problems are insufficiently ideedi as fundamental, but rather as
execution challenges, and fundamental changesetontbde of operation are not made
until the company experiences significant financ@hsequences.

In the following, we detail these problems, firsgarding the scope of the platform, then
regarding openness.



2.1 Problems from Over-extended Scope

So, what are the problems causing a mode of oper#tiat was initially so successful to
turn into such a problematic approach? In the bistow, we discuss the problems
regarding scope that one can observe and perceectiy

Lack of component generality Although most components were useful for most
products in the initial scope of the product family the expanded scope, the
number of components that is only used in a sutfgatoducts is increasing.
Incorporation of immature functionality : As discussed in the previous bullet, in
the initial scope most functionality useful for opeoduct is likely to become
relevant for other products over time. Hence, thefeen is a tendency to
incorporate product specific functionality into th@atform very early on,
sometimes already before it has been used in istepfioduct. When the scope of
the family increases, the disadvantages of incatpag immature functionality
become apparent.

Slow evolution of functionality: As the scope of the product family increases and
the organization maintains an integration-oriengggbroach to developing the
shared software artifacts, the response time opldgorm in response to requests
to add functionality of existing features increases

Implicit dependencies In an integration-oriented approach, a relativghh
degree of connectivity between components is aede@s there are few
disadvantages at that stage and it increases t&mortdeveloper productivity.
When the scope of the product family increases, dbponents need to be
composed in more creative configurations and sugiddre, often implicit,
dependencies between components become a sighificasiem for the creation
new products.

Unresponsiveness of platform developmenEspecially for product categories
early in the maturation cycle, the slow releaselecyaf software platforms is
particularly frustrating. Often, a new feature egjuired rapidly in a new product.
However, the feature requires changes in someophaticomponents. As the
platform has a slow release cycle, the platforrtypcally unable to respond to
the request of the product team. The product teamilling to implement this
functionality itself, but the platform team is aftaot allowing this because of the
potential consequences for the quality of the pcotleam.

When analyzing these problems with the intentionniderstand their underlying causes,
among others, the following causes can be idedtifie

Decreasing complete commonalityBefore broadening the scope of the product
family, the platform formed the common core of prodfunctionality. However,
with the increasing scope, the products are inorghs diverse in their
requirements and amount of functionality that iguieed for all products is
decreasing, in either absolute or relative termenseéquently, the (relative)
number of components that is shared by all prodisctiecreasing, reducing the
relevance of the common platform.

Increasing partial commonality: Functionality that is shared by some or many
products, though not by all, is increasingly sigrahtly with the increasing scope.
Consequently, the (relative) number of componeh#d ts shared by some or

6



most products is increasing. The typical approacthis model is the adoption of
hierarchical product families. In this case, bustgroups or teams responsible
for certain product categories build a platform top of the company wide
platform. Although this alleviates part of the ple, it does not provide an
effective mechanism to share components betweemdsss groups or teams
developing products in different product categories

* Over-engineered architecture With the increasing scope of the product family,
the set of business and technical qualities thadsiéo be supported by the
common platform is broadening as well. Althoughproduct needs support for
all qualities, the architecture of the platform iequired to do so and,
consequently, needs to be over-engineered tos#tisfneeds of all products and
product categories. This however impedes extentgibiand increases
maintenance effort.

» Cross—cutting features Especially in embedded systems, new features
frequently fail to respect the boundaries of thatfpkm. Whereas the typical
approach is that differentiating features are imaeted in the product specific
code, often these features require changes indhenon components as well.
Depending on the domain in which the organizatiewetbps products, the notion
of a platform capturing the common functionalityveeen all products may easily
turn into an illusion as the scope of the prodaatify increases.

* Maturity of product categories: Different product categories developed by one
organization frequently are in different phasegh#f lifecycle. The challenge is
that, depending on the maturity of a product catggthe requirements on the
common platform are quite different. For instarfoe,mature product categories
cost and reliability are typically the most impottawhereas for product
categories early in the maturity phase featureness and time-to-market are the
most important drivers. A common platform has ttisfathe requirements of all
product categories, which easily leads to tensitmetween the platform
organization and the product categories.

2.2 Problems of the Closed Approach

A second major challenge to the traditional intdgraoriented approach is growing
importance of open source software and componédhtseoshelf (COTS). The core issue
is that the integration-oriented approach assumestrang governance of the
requirements, features and roadmaps of both th#opta as well as the products. In
particular, this leads to several problems:

* Inflexible base platform: If the base platform integrates external softwareh
as open source software, it does not have convenl the roadmap, development
process and release cycles. This leads to a nuofbeonstraints and in our
experience makes it more challenging to find arhiggcture which suits all
derived products.

» Evolution: In case an individual derived product extends glagform by open
source software, it is again difficult to later lunde this software into the main
product line platform.



* Tools and organization mismatch: Open source software employs different
organizational approaches, tools and quality asseraand testing practices.
These are difficult to integrate into software prodlines as discussed in 0.

The consequence is that we need a more open appvadach does not assume full
control of features, roadmaps and tools. The coitippal approach as discussed below
assumes a more open environment and caters mudbr eash this setting of
decentralized management and heterogeneous pre@sséools.

2.3 The Compositional Product Family Approach

The main idea of the compositional approach tosso# product lines is that the product
line is not an integrated, complete software sofutinstead, is provided as an open, but
integrated toolbox and software environment. Tdle of a fully integrated reference
platform is now taken over by a setavthitecture slices, which are integrated and tested
component compositions for one or more subsysté&ims.includes specific components
with high cohesion, which is typically a verticahtégration of highly dependent
components and can extend to small component framkew The set of architecture
slices shall cover the full scope of the softwaredpct line and both exemplify and
enable the later product integration. While the cemt of architecture slides appears
similar to related work on architecture modelingel® 00, Kim 99, van Gurp 02], our
notion of architecture slice is driven by integoatiand testing aspect and we consider
more the overall software product line approach.

For instance, on a mobile phone a set of multimegalications which use a built-in
camera can be an architecture slice. This may dieckeveral, interchangeable camera
drivers, picture taking and picture viewing applicas as well as several operating
system components for fast storage and retrievahedia data. These components can
vary depending on the camera resolution or on tmaber of cameras. Further, the
operating system support for the cameras may demendhe resolution and the
performance needed for data storage. In additt@dependencies to other components
and architecture slices must be specified. In &xample, the viewer application can
interface with messaging application to send pegutirectly. Also, a video conferencing
application may depend the camera support for deogrvideo calls. While these
dependencies must be documented and can be tasiteshmple code, the actual product
creation has the responsibility for the integratiblore details on architecture slices are
found in the following section.

In summary, a compositional software product farmtyudes the following:

* A set of coherently managed components that fatglieéasy integration.

* Overall architecture blueprints and principles tlmtide the later product
development.

» Architecture slices which cover the full scope bé tsoftware product line and
exemplify the product integration.

* Test cases and test environments for both comps i@t architecture slices.

» Detailed documentation on dependability betweenpmrents, architecture slices
as well their dependencies and recommended conpusit

8



Based on this flexible and open environment, thiepiwwducts are composed, integrated
and tested.

The compositional product family approach can idlitoh include a fully integrated
platform for certain base products without integigall components. This can also serve
as reference product in order to test integratiod aon-functional requirements. The
main difference is that the majority of productidation is a composition of the above
pieces.

In the integration-oriented approach, the fullyegriated software package must resolve
all dependencies and interactions between compsimwnactual code. In this approach
this is done by integrating typical sets of compuseby architecture slices and by
documenting the external dependencies. This doctatien of dependencies is highly
important and must be treated as an essential gdathe compositional approach.
Compared to the traditional approach, we make tependencies explicit and leave the
actual integration to the product creation.

The main advantages and technical characteridtitesoapproach are:

* More flexible product architecture.The software architecture of products is
much more freely defined and not constrained bjatgym architecture. This is
because there is no enforced platform architectaltbough a reference
architecture may exist to inspire product architezs.

* Local responsibility. The reusable components that may be used in produc
creation accept a much higher level of local resgmlity. This responsibility
means that (1) each component only uses predefmedded, required and
configuration interfaces, (2) verifies at compasitor deployment time that all its
interfaces are bound correctly and that the comptocen provide the use cases or
features (or parts thereof) that it promises anyl d@ntains intelligence to
dynamically adjust itself to client or server compats that either offer less than
expected functionality or require more than expe:étectionality.

* Reduced integration cost.Integration of reusable and product-specific safev
components takes place by each product and n@ptathtegration is performed.
Due to the increased intelligence of components,iritegration effort is brought
down to a fraction of the current effort requirensen

Clearly, this approach leads to several challertbas concern all aspects of software
development. We will discuss these in section Ovéleer, we first discuss the impact of
the approach on different aspects of software dgveént.

2.4 Key Differences of the Compositional Approach

To more precisely describe the compositional apgraa relation to the integration-
oriented approach, we discuss the two approacbes five perspectives that we believe
are of predominant importance in the context ohldeming the scope of software product
families, i.e. business strategy, architecture, maments, product creation and evolution:
* Business strategyThe original reason when adopting product famibéien is
the reduction of R&D expenditure through the sh@rof software artifacts

9



between multiple productsAlthough this is certainly not ignored in the
compositional approach, the main focus is typicalynaximize the scope of the
product family. Although R&D cost and time-to-matlkare obviously relevant
factors for any technology driven organization, thest important rationale for
the composition-oriented approach is that by givprgduct developers more
flexibility and freedom, the creation of a much #&der set of products is
facilitated.

Architecture. Initially, the architecture for the product family specified as a
complete structural architecture in terms of congms and connectors. The
architecture is the same for all products and tianais primarily captured
through variation points in the components. Whemvimg towards a
compositional approach, the structural view of dnehitecture is diminished and
increasing focus is directed towards the underlyarghitectural principles
guaranteeing compositionality. As discussed eartlez key difference between
this approach and other approaches is that thdtectiire is not described in
terms of components and connectors, but ratheenms of the architectural
slices, design rules and design constraints.

Components. During the first phase of a software product fgmithe
components are implemented for a specific architecthat is specified in all or
most of its aspects. The components contain vanapoints to satisfy the
differences between different products in the fgmbut these do not spread
significantly beyond the interfaces of the compdsefrinally, the components
are implemented such that they depend on the ingi&ation of other
components rather than on explicit and specifiegriaces. When evolving
towards a compositional approach, the focus on oompts remains. However,
these components are not developed ad-hoc, butcamstrained in their
implementation by the architecture, i.e. the aegttitral fragments, rules and
constraints discussed earlier. As each componeirttegrated in one or more
architecture slices, compositionality of theseedits ensured.

Product creation. The integration-oriented model typically assumesra-
integrated platform that contains the generic fiomatlity required by all or most
products in the family. A product is created byngsthe pre-integrated platform
as a basis and adding the product-specific codmprf the platform. Although
not necessarily so, often the company is also argdnis along this boundary.
The approach works very well for narrowly scopedduoict families, but less well
when the scope of the product family is broadenihg.the compositional
approach, the explicit goal is to facilitate therid&tion of a broad range of
products that may need to compose components irgaally wide range of
configurations. Product creation is, consequenthe selection of the most
suitable components, the configuration of these pmments according to the
product requirements, the development of glue codeplaces where the
interaction between components needs to be adjdetethe product specific
requirements and the development of product-specifde on top of the reusable
components.

Evolution. Often, in an integration-oriented approach, there strong preference
towards incorporating new features and requiremeémis the pre-integrated

10



platform. The reasoning behind this is that newuess, in due time, need to be
provided in all products anyway and consequenthe tnost cost effective

approach is to perform this directly. The altenatiintended approach where
product-specific functionality evolves and commudi$ over time and is

incorporated into the platform is often diminishingh the compositional

approach, product teams as well as component teame responsible for the
evolution of the code base. Product teams typicaitend existing components
with functionality that they need for their produmit is judged to be useful for
future products as well. Product teams may alsateraew components for the
same purpose. Component teams, if used, are mareerceed with adding

features that are required by multiple products.typical example is the

implementation of a new version of a communicapootocol.

3 Components and Architectural Slices

In the above we have the composition oriented ambroln this section we elaborate
compositional software development based on the ikgyedients, components and
architecture slices. The decentral nature of coimtipaal development makes it possible
to combine various styles of development since resgly, the composed artifacts are
developed independently.

3.1 Component Technology

The key difference between integration oriented @mdposition oriented development is
that the compositional approach is decentralizede Tomponents that are being
composed are developed independent from each atitefrom the products they are to
be used in. A definition of a component that stiits chapter well, is the one provided by
Clemens Szyperski in his book on componehss:software component is a unit of
composition with contractually specified interfaces and explicit context dependencies
only. A software component can be deployed independently and is subject to composition

by third parties’ [Szyperski 1997].

In other words, components are developed indepemtly then integrated by a third
party. We interpret the "unit of composition" brbatiere. In our experience, depending
on the level of abstraction, very large softwarstems, are broken down into hundreds
of components that may still be very large.

As noted in the introduction, the key activity imetintegration oriented approach is the
integration phase during which critical errors Ire tsoftware and its components are
identified and then fixed. A compositional approachsoftware development allows
product and component developers to operate indepglly. Consequently, it is a more
scalable approach that both allows more develojevgork together (by decentralizing
their work) and to build larger software produdty €ombining their output). However,
integration testing is inherently difficult to acuplish when developing in a
compositional way because of the independent motieperation of both product and
component teams and the absence of a central ptaand decision making.

Of course, the product developer will need to téet particular configuration of
components that is used in the product as wellngspaoduct specifics. However, the
product developers shall not change the componantee configuration (aside from

11



manipulating them through the configuration APIJs@\it is much harder for product
developers to demand from the developers of thepooents that they fix bugs,
implement or change features, etc. This may be foardarious reasons:

» The component is provided by external developerg. (sub contractors, a
commercial off the shelf component (COTS) vendoaoropen source project).
These parties may have some commitment towardsosiifyp and maintaining
their components (e.g. governed through a supmortract) but are unlikely to
care much about product specific issues manifestieghselves during product
integration.

 The component is developed according to its ownlmagp with planned major
and minor releases. Any issues that do not fihia toadmap are unlikely to be
addressed on short notice.

 The required changes conflict with those required diher users of the
component. Components may be used by multiple ptedun the case of
external components, these may even be competodupis. When confronted
with such conflicts, the solution will have to beowided in the product rather
than in the component.

Consequently, the components that are used in ritdupt need to be stable and well
tested well before the product integration phasether words, adopting a compositional
approach implies putting more emphasis on componesting and makes this the
responsibility of the component development teams.

In case essential functionality for a specific pretdis not provided by the component
environment and it cannot be added by extensiogtuercode, it may be needed to add a
derivative component. This will happen more fredlyeim the compositional approach as
roadmaps and features are less coordinated. Wihisegption however as an advantage
as it increases the internal competition. Using #wmpositional approach for
development it may be expected that these compemeay eventually become of use to
other products developed by the same organization.

3.2 Architecture Slices and Components

The approach we outline in this section addressegponent integration testing using the
notion of architecture slices and partial integnati An architecture slice does not
describe a full product architecture. Rather it cdégs relevant aspects of the
environment a component is expected to be used in.

The IEEE 1471 standard defines software architecast'the fundamental organization

of a system embodied in its components, their relationships to each other and to the
environment and the principles guiding its design and evolution" [IEEE1471 2000]. In
the case of compositional development, it is natsgme for component developers to
consider all products their component is to be usedrurthermore, all these products
may have little more commonality other than thet that they use the component. In
other words, rather than focussing on the full eecture, component developers need to
focus on the part of the architecture that reldiesctly to their component. We refer to
this as an architectural slice.

12



An architecture slice is a set of densely coupl@th@onents that are recommended to be
used in this combination in products. In most casi@s represents a subsystem of the
architecture. For example, in a mobile phone this loe a set of multimedia applications
for a built-in camera and include drivers or a getomponents for media playing. An
architecture slice also defines its external depeogs on other components or
subsystems. An architecture slice is not complatbout these external dependencies
and must describe its relation to these extern$ysiem. In other words, architecture
slices include assumptions about how other subsgstelate to it.

3.3 Architecture Slices and Integration Testing

As argued earlier, an essential part of the coniposil approach is the integration
testing of architecture slices. For this, a magsue is that the dependencies to external
components need to be addressed. In order to m®hponent or a architecture slice, a
developer will need to provide an environment fa#tlls these dependencies. Using the
resulting architecture slice configurations, simafglications may be implemented that
test various aspects of the component functiondlityhe case where the intended use is
extension by another component, creating such sixtes is the preferred way to test.

The dependencies to external components can bgocated in two groups:

* Uses dependencies. The component likely dependstl@r components. This
may either be specific versions of specific commiseor, as is increasingly
common in the Java world, implementations of a $jgestandard API.

» Usage dependencies. These dependencies indicatecottmponents that depend
on this component or must at least work correcit the component.

The dependency relations may also coupled so thausing component A implies also
using component B. Such relations should of cobesdocumented.

The process of integration testing is normally d@separt of product development.
However, as indicated earlier, this is generally fimte to address any component issues.
Consequently, integration testing needs to be deasier at the component and
architecture slice level. While it is impossibleréalize complete products as a part of the
component testing process, it is feasible to pmwide environment used for testing
representative of known or anticipated uses ottmponent in actual products:

* For the uses dependencies a selection of compomaytde used that is likely to
be used by product developers. If compatibility isiportant, various
configurations of the architecture slice with difat components may be created
to e.g. test various versions of the same componedifferent implementations
of the same API. In the situation that a comporextends another one, the
relation to the extended component can be charaeteas a uses relation as well.
In that case, selection is easy because it is alwlag same component that is
being extended.

* The usage dependencies may be more difficult. inescases it may be possible
to test using a complete product configuration. iéesv, when developing a new
version of the component (and particularly when ARdnges are involved), it is
not likely that existing components are compatibla. that case, usage
dependencies may need to be simulated using mocgklementations.

13



Additionally, in the case of commercial productse full product software may
not be available to the component developer.

3.4 Component Dependencies

While in general it is not possible to test all donations of all dependencies, it is
possible to determine combinations of componerds dhe known to work as expected.
This information can be provided in documentation.

This practice is quite common in the software indud-or example, the release notes of
Apache's Jakarta Commons Logging component (ver$i@rD) state that: "All core
classes were compiled with a 1.2.x JDK. JCL maykwar some augmented 1.1 series
JREs but it is recommended that those wish to rufh.&® JREs download the source and
create a custom implementation”. This is a nicemg#a of a dependency that might
work but is not recommended because the comporemlapers did not include it in
their testing procedure. The recommendation claadicates that users are discouraged
from using a 1.1 JRE but that it may be possibleldoso if needed. This is also an
example where product development may choose tatecrtheir own versions of
components at their own responsibility.

This practice of documenting working and recommenc@mbinations of components is
quite common. Many component vendors will certifyatt their software works in
combination with certain other components and bl able to provide more extensive
support to users if they use the recommended coemienin combination with
component releases they produce. This certificagioth support model is the basis for
most open source product companies like MySQL &us.

In practice this causes product developers tor{gtyd prefer release quality components
over development releases (if available) and tasfgatany dependencies those
components have using the recommended componeoitsg Bo allows them to rely on
the test work that has been done already by theponent developers and focus more on
testing the product specifics.

A second consequence is that this makes fulfiltimg dependencies a decision process
that is preferably completed early in the produetedopment process. Generally, in a
new product, most dependencies will be fulfilledidg the product architecture design
phase. Upgrades to new versions may of course dmduit is not likely that product
managers will want to risk having to be part of thenponent integration testing process.
These two practices are markedly different fromphectice of co-evolving components
and products in a software product line. During ittegration phase, components are
continuously integrated with development versiohshe other components. Likewise,
product developers will end up using modified vensi of the components thus negating
some of the earlier integration testing effort. Tj@ctices outlined above, strongly
discourage this from happening and allow produetetipers to build on a well tested
foundation.

14



3.5 Examples

In this section we have characterized how compodewtlopers can do integration level
without building a full product based on their campnt. This is important for creating
compositions of components because it allows prodlevelopers to rely on the
integration testing already done, rather than lgatando this themselves.

A convincing example of this is the Debian linuxstdbution. The Debian linux
distribution is a collection of thousands of ope&urse software packages running on
linux. The stated goal of the Debian foundationtoigorovide a stable, fully tested and
integrated distribution. Essentially, most of thework consists of integrating the
thousands of packages into their distribution. \Whihere is some Debian specific
development, most of it consists of Debian specifirastructure and gluecode.
Additionally the integration testing feedback i®pagated to the dependent open source
packages, often along with patches for the problem.

In [Amor-Iglesias et al. 2005] some impressiveistas are presented regarding the size
of this distribution: release 3.1 (a.k,a, Sarge$ weeasured to consist of 230 million lines
of code (MLOC). The 3.0 release only three yeariezavas measured at 105 MLOC
and the 2.1 release (according to [Wheeler 20023 5 MLOC. In other words the
distribution has quadrupled in size in roughly fixears. According to Wheeler, who has
applied the COCOMO model to these metrics, thisesmonds to multiple billions of
dollars worth of investment; requiring thousandssoftware engineers to work together
in a timeframe that exceeds the actual time spelweating these versions of Debian,
which is governed by a small foundation funded hlynations from industry and
individuals. In other words, the fully integrategpaoach that COCOMO models would
not be good enough to produce a software systenpa@ble in size to Debian.

An interesting development in recent years is theergence of open source projects
where software is co-developed by developers wgrkor or financed by competing

organization. This trend is motivated by the abowrics: it is the only cost effective

way to develop large software packages with marfiwaoe engineers in a short time
frame. If the software is not differentiating there products, continuing under an open
source license may actually make them more difteatng.

The natural tendency of companies to protect imvests and intellectual property is in
direct conflict with this and poses an organizaioand strategic challenge. A good
example of a company that has overcome this relaetais IBM. Five years ago they
released the popular java development environm#ipise under an open source license.
Later they even transferred development and owipetdtthis product to an independent
foundation. Doing so had benefits for them thatvaighed the lost sales of their visual
age product. First of all many of their competitbesse since contributed to the projects
and the resulting development environment is nogv itfdustry standard development
platform. Because IBM is heavily associated witk #tlipse product that means that
other companies have lost differentiating powerlevfiBM gained some. Additionally,
while IBM continues to invest much resources inpse, much of the investment is now
shared with their competitors. So either they cunhe cost here or they managed to

15



improve and innovate at a lower cost (compareddmgl everything in house). Also
some things that IBM was not interested in werarfted by others and are now also of
use to IBM customers. Finally, their strong invohent in this product makes IBM an
interesting partner for related products and sesvisuch as the middleware, hardware
and consultancy services IBM provides. Argumentsiglthe same line may be found in
the Cathedral and the Bazaar [Stallman 1999].

4 Research Challenges of the Compositional Approach

The compositional approach represents a potentgdravement for organizations
currently using a software product line approaahdieveloping their software. However,
there are many challenges that will need to beesseéd. In this section, we aim to
provide an overview of these challenges.

4.1 Decentralized Requirements Management

A consequence of using a compositional approathaisrequirements of the integrated
products are managed separately from those ohtheidual components that are used in
the system.

In the integration-oriented software product lirevelopment, requirements are managed
centrally. When developing a new product based len groduct line software, the
product architect identifies which requirements areduct specific and which are
fulfilled by the product line. The product line duton in turn is centrally governed and
driven by common requirements across products #ret cequirements that are believed
to be useful for future products. Development afividual components in the product
line is driven by these centrally managed requirgsie

Characteristic of the compositional approach ig thare is no central management of
requirements and features. Product developerstsaagponents and architecture slices
based on how well they support the product requeres but may also consider other
factors such as, for example:

* Ability to influence component requirements. Evérthie requirements do not
match 100%, the ability to influence the roadmaptted component may be
decisive.

* Component roadmap. The advertised component roadmaggdnclude items that
are currently not relevant for the product but niigcome relevant in the future

* Reputation. The component may have an establisiygatation with respect to
important quality attributes.

* Openness. While often advertised as black boxesiynsamponents require a
level of understanding of the internal componergigle that effectively makes
them white boxes. Arguably, this is an importargsan for the apparent lack of
success of COTSs. Additionally, it is an importéaxttor in the success of open
source components in the current software industry.

A successful component will be used by many pratitat may have little in common

aside from the fact that they somehow depend on dbmponent. Component
requirements may be driven by a number of factors:

16



* Feedback on potential improvements from existinggonent consumers. In case
of a commercial relation between producer and amesuihere may also be some
contractual terms (e.g. in the context of a suppantract).

* Market analysis of product requirements of prodtictt currently do not use the
component. Evolving the component to support thesgiirements presents an
opportunity to grow market share.

» External factors such as standards. Componentreggents may be (partially)
based on standardized or de-facto specification®eWWsuch specifications
evolve, supporting the evolved specification cacobee a requirement.

* Internal factors, such as improving quality factéhst are important to the
component developers such as e.g. maintainalitiyer factors may include the
personal interest of the developers that are irabo explore design alternatives
or realize small improvements.

This approach results in a more bottom up appredare instead of being tailored to a
specific set of products (i.e. top down approatieye tends to be an organic bottom up
process where more or less independently compormeatselected and put together to
fulfill products requirements. In this way, potetticonflicts between independently

developed components are eventually resolved by dbmponent selection and

integration process.

4.2 Quality Management & Architecture

A characteristic of the compositional approachhat tthere is no central architecture.
Instead, product and architecture slices each teie own architectures. This poses a
number of interesting research challenges with eetsgo e.g. applying quality
assessments methodologies, which mostly assumendhasai centrally managed
architecture and full control over the assets goeeiby this architecture.

The intention of applying quality assessment methad to verify conformance to
centrally managed quality requirements (which dister a compositional approach) and
to improve product quality by addressing any ideedi quality issues. However,
performing conventional architecture assessmenheatproduct level makes relatively
little sense due to the lack of control over themmposed components.

» Consequently, quality assessment and improvemesgsisnto happen at the
component or possibly architecture slice level. ide&r, given the lack of central
qguality requirement managed and the lack of conteér depending and
dependent components, this means that guarantegsigm level quality with
respect to quality requirements such as real-tiamstraints, throughput, security,
etc. is difficult. Component developers need tacgrate quality requirements of
their potential customers and convert this antieigademand into component
improvements.

* A second issue is that architecture assessmenbawgethostly require an already
integrated system. In a compositional approach yamed like to consider impact
on quality before the components are integrated; ilentified problems might
lead to component improvements but might also léadthe selection of
alternative components.

17



A second goal of having explicit software architeetis to enforce architectural style and
design rules. The reason for this is that this essthat the architectural components fit
together. A problem with commercial of the shelfnpmnents (COTS) has been finding
components with matching interfaces. The absence aédntrally governed architecture
does not mean that there are no guiding architggouinciples. Necessarily, components
that are going to be used together must share conamuhitecture. At least a significant
level of compatibility is required. Small differezs can be bridged using glue code.
However, it is not very desirable to create siguifit amounts of glue code when creating
products. Consequently, the compositionality poseswumber of interesting new
challenges:

» How to document architectural properties of compmand architecture slices?

* How to optimize product architecture such thatpsiroal for the components it

will be composed off?
* How to design components such that they do not sapoo many constraints.

4.3 Software Component Technology

Component oriented programming and later web sesvi@ve been advocated as a major
step forward in building large software systemsa[$®¥0]. This has been largely due to
providing standardized component infrastructuret wiell defined APIs and services as
well as interoperability support. While this hasebesignificant progress, it does not
address the issues of variability and architeciisren software product lines.

In software product lines as well as many tools @mnfiguration management,
dependencies between components are managed. Madagendencies are clearly a
basic ingredient for our compositional approacht, Yas covers only the management of
syntactic code dependencies, e.g. regarding versammd API compatibility. The
information in such systems can also include testedigurations and can hence be used
to describe architecture slices.

Interesting in this context is also the work preéednn [Ommering 02]. Van Ommering

is a proponent of so called populations of prodirmes and introduces component
technology that supports this. His approach is \&#mjilar to ours but focuses more on
the technical aspects of composing components rrétfa@ the other aspects that we
discuss in this chapter.

For our target of compositional software produated, we need components which can
also work in unforeseen use cases and environmeéhts. for instance means more
robustness and awareness of dependencies andtiiaesavith other components. More
specifically, the two main challenges we discus® feee semantic dependencies which
must be managed more explicitly and, secondly, ¢batponents are designed in a more
robust way.

Semantic interaction between components meanghatomponent behavior has to be
adapted when composing with others. This goes belbnd the syntactic compatibility

18



of APIs and has been examined extensively in timesd of feature interaction research
[Calder 00]. These interactions can be positiveeyative:

» Positive interaction require additional functiotalio be added. E.g. if we have
an email client on a mobile phone and a picturevere it should be possible to
email pictures from the viewer.

* Negative interaction require to disallow some casesemoval of ambiguities.
Typically, two components or features contradictneir behavior or compete for
resources which are limited. For instance, thenedemode of a phone should not
disable the alarm clock.

In fact, some dependencies occur only when sewaalponents are combined and
cannot be observed for two features at a time [ffeel01]. Negative feature interaction
related problems can be very hard to find and e ot likely to be identified in the
decentralized integration testing approach outlieadier.

4.4 Process and Organizational issues

As discussed in [Bosch 02], there are several waysrganize software product line
organizations. Adopting a compositional approachesat both possible and necessary
to organize differently. As argued in earlier segt, a key characteristic of a
compositional approach is that there is less ckentranagement of requirements,
architecture and implementation. Essentially dgwalent and evolution of components
happens in a decentralized fashion. Decouplingrofiyect and component development
is an explicit goal of a compositional approachduse it allows decision making that
affects products to be separate from decision ngatkiat affects components.

Doing this in one organization introduces a conttaeh in the sense that an organization
typically has goals, targets and a mission. Allivagt conducted by the organization
(including component and product development) fefio(or should follow from) this
overall mission. This implies that product and comgnt development are not
independent at all. Consequently, introducing apasttional approach in a product line
organization introduces a number of challenges:

* How to organize such that product development teaane the freedom to select
external components or initiate development of semponents rather than using
the internally developed component. The businesssid@ of a product team to
not use the in house developed component has wegatnsequences for the
component team. The best technical solution may bwtthe best for the
organization as a whole. Balancing such difficuid @onflicting interests is a key
challenge that needs to be addressed.

» Allowing component teams to take responsibility their own roadmap and
architecture may lead to a situation that resouraes spent on feature
development that is not going to be used by anhefproduct teams. Balancing
innovation of component teams and product developne required to keep
development cost under control.

* Anissue in any organization is the distributiorr@gources (money, people, time,
etc) over the organizational units. Essentiallyduct teams and component teams
are all competing for the same resources. Howegweduct teams are typically
the only organizational units directly contributitg revenue, which leads to a
bias in their favor. Adopting a compositional apar therefore needs to create

19



an internal value chain or market mechanism toridige the internal
development resources.

* While initially, components may be used only bydurct teams, components may
themselves become products that are potentiallgrasting for other software
developing organizations. Where this does not anflwith product
differentiation, it would be desirable to marketclsucomponents as separate
components or share the burden of developing swchponents with other
companies, even if these companies are competitrsductizing or open
sourcing internally components is a natural sidectfof a fully implemented
compositional approach but may also introduce neguirements that are well
outside the scope of product development.

For all these organizational challenges a caredildrite needs to be made between the
conflicting interests of component and product teamnd the overall corporate mission.

However, it should be noted that this is also fierea de-compositional approach. The

reason for converting from a software product Ibesed development approach to a
compositional one is that central management ofhaée decisions becomes harder as
development grows in scale and as the softwareugptdthe scope widens.

5 SUMMARY

Software product families have found broad adopiiothe embedded systems industry,
as well as in other domains. Due to their sucgassjuct families at several companies
experience a significant broadening of the scopgb@family. We have discussed several
key issues which can arise from this and also faiher trends like external or open
source software which is outside the control of organization.

For product families which aim primarily to be opamd cover a wide range of products,
we have proposed the concept of compositional mtofdmilies. This approach relies on
a decentralized organization that gives the proderetation more flexibility and
responsibility. Also it gives similar freedom tdennal component developers.

Instead of a fully integrated platform, we rely thie new concept of architecture slices to
ensure integration and testing beyond componerdl lgsting. Furthermore, we have
shown that this compositional approach must inclitlaspects of software development
in order to be successful. Additionally have idikedi several key research challenges of
this new approach with respect to requirements,lityuananagement, software
component technologies as well as processes and a$plesponsibility within an
organization.

A topic that interests us at Nokia, where developnaepends mostly on integration
oriented approaches, is that of cross-cutting biehand non-functional requirements
such as performance and power consumption. Thisphagen to be extremely hard
already in the integration oriented approach wesddpn currently.

REFERENCES

20



[Bosch 00] J. Bosch, Design and Use of SoftwarehAectures: Adopting and Evolving
a Product Line Approach, Pearson Education (Addid@sley & ACM
Press), ISBN 0-201-67494-7, May 2000.

[Bosch 02] J. Bosch, Maturity and Evolution in Sadte Product Lines: Approaches,
Artefacts and Organization, Proceedings of the S@conference Software
Product Line Conference (SPLC2), pp. 257-271, AugQ082.

[Bosch 06] Jan Bosch, Expanding the Scope of Softwaoduct Families: Problems and
Alternative Approaches, Proceedings of the 2ndrihatiional Conference on
the Quality of Software Architectures (QoSA 2008une 2006.

[Ommering & Bosch 02] R. van Ommering, J. Boschdgviing the Scope of Software
Product Lines - From Variation to Composition, Rredings of the Second
Software Product Line Conference (SPLC2), pp. 328-3ugust 2002.

[Ommering 02] R. van Ommering, Building product plgtions with software
components, Proceedings of the 24th Internatiormadféence on Software
Engineering, pp. 255 — 265, 2002.

[Pree 00] Wolfgang Pree, Kai Koskimies Frameletsaall and loosely coupled
frameworks, ACM Computing Surveys, Volume 32, @00

[Kim99] T Kim, YT Song, L Chung, DT Huynh DynamiSoftware Architecture
Slicing, - COMPSAC, 1999

[van Gurp 02] Jilles van Gurp, Rein Smedinga, JaacB, Architectural Design Support
for Composition and Superimposition, proceedingsli@CS 2002.

[Stal 00] Michael Stal, Web services: beyond congmitbased computing,
Communications of the ACM, Volume 45, Issue I0ctpber 2002)

[Calder 00] M Calder, M Kolberg, EH Magill, S Reiflarganiec, Feature interaction: a
critical review and considered forecast, Computetwarks, 2003, Elsevier

[van Gurp 06] Jilles van Gurp, OSS Product FamihgiBeering, First International
Workshop on Open Source Software and Product LateSPLC 2006.
Available from http://www.sei.cmu.edu/splc2006/

[Prehofer 01] Christian Prehofer, ,Feature-Orientésbgramming: A New Way of
Object Composition“, Concurrency and Computatiol, 13, 2001.

[Szyperski 1997]. C. Szyperski, Component Softwardeyond Object Oriented
Programming. Addison-Wesley 1997.

[[EEE1471 2000] IEEE Std P1471-2000, Recommendeattiee for Architectural
Description of Software-Intensive Systems, IEEE)®@0

[Wheeler 2002] David Wheeler, More Than a Gigabuegtimating GNU/Linux's Size,
http://www.dwheeler.com/sloc/redhat71-v1/redhat@ds$itml, 2002.

[Amor-Iglesias et al. 2005] Juan-José Amor-Iglsesidesus M. Gonzéalez-Barahona,
Gregorio Robles-Martinez, and Israel Herraiz-Tabeyn Measuring Libre
Software Using Debian 3.1 (Sarge) as A Case StRdgtiminary Results,
Upgrade: the european journal for the informatiosfessionals, vol 6(3),
June 2005.

[Dikel et al. 97]. D. Dikel, D. Kane, S. Ornburn, .Woftus, J. Wilson, ‘Applying
Software Product-Line Architecture,” IEEE Computep. 49-55, August
1997.

[Macala et al. 96]. R.R. Macala, L.D. Stuckey, D@&uoss, ‘Managing Domain-Specific
Product-Line Development,” IEEE Software, pp. 57-6996.

21



[Bass et al. 97]. L. Bass, P. Clements, S. CohemNdrthrop, J. Withey, ‘Product Line
Practice Workshop Report, Technical Report CMU/SEITR-003, Software
Engineering Institute, June 1997.

[Stallman 1999] Eric S. Raymond, The Cathedral #x@dBazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O'R&llAssociates 1999

22



