

1

COMPOSITIONALITY IN SOFTWARE PLATFORMS

Christian Prehofer, Jilles van Gurp, Jan Bosch
Nokia Research, Helsinki, Finland

1 Introduction

Software product lines or platforms have received attention in research, but especially in
industry. Many companies have moved away from developing software from scratch for
each product and instead focused on the commonalities between the different products
and capturing those in a product line architecture and an associated set of reusable assets.
This development is, especially in the embedded systems industry, a logical development
since software is an increasingly large part of products and often defines the competitive
advantage. When moving from a marginal to a major part of products, the required effort
for software development also becomes a major issue and industry searches for ways to
increase reuse of existing software to minimize product-specific development and to
increase the quality of software. A number of authors have reported on industrial
experiences with product line architectures. Early work on goes back to the late 90ies
[Bass et al. 97, Macala et al. 96, Dikel et al. 97] and the field has since then developed in
new directions to extend the applicability of the concept.

This paper addresses several challenges posed by the increasing range of successful
product lines and develops new concepts for a compositional approach to software
product lines [Ommering & Bosch 02, Ommering 02, and Bosch 06]. Further, the
implications of this approach to the different aspects of software development are
discussed, including also process and organizational questions.

Although the concept of software platforms is easy to understand in theory, in practice
there are significant challenges. As discussed in [Bosch 00], the platform model is
supposed to capture the most generic and consequently the least differentiating
functionality. However, the product specific functionality frequently does not respect the
boundary between the platform and the software on top of it. Innovations in embedded
systems can originate from mechanics, hardware or software. Both mechanical and
hardware innovations typically have an impact on the software stack. However, due to
the fact that the interface to hardware is placed in device drivers at the very bottom of the
stack and the affected applications and their user interface are located at the very top of
the stack, changes to mechanics and hardware typically have a cross-cutting effect that
causes changes in many places both below and above the platform boundary.

A second source of cross-cutting changes is software specific. New products often enable
new use cases that put new demands on the software that can not be captured in a single
component or application, but rather have architectural impact. Examples include adding
security, a more advanced user interface framework or a web-services framework. Such

2

demands result in cross-cutting changes that affect many places in the software, again
both above and below the platform boundary.

Software product families have, in many cases, been very successful for the companies
that have applied them. Due to their success, however, during recent years one can
identify a development where companies are stretching their product families
significantly beyond their initial scope. This occurs either because the company desires to
ship a broader range of products due to, among others, convergence, or because the
proven success of the product family causes earlier unrelated products to be placed under
the same family. This easily causes a situation where the software product family
becomes a victim of its own success. With the increasing scope and diversity of the
products that are to be supported, the original integration-oriented platform approach
increasingly results in several serious problems in the technical, process, organizational
and, consequently, the business dimension.

The “conventional”, integration-oriented platform approach in software product lines
typically splits R&D into a platform organization which delivers a platform as a large,
integrated and tested software system with an API that can be used by the product teams
to derive their products from. In addition, there often is top-down, hierarchical
governance by the central platform organization including the central management of
requirements and roadmap, complete control of features, variability and product
derivations and integration and testing for product platform and derivations

A specific refinement of the integration-oriented platform approach is the hierarchical
platform approach [Bosch 06], where the platform is used a basis and extra functionality
is added on top without modifying the base. This is however only suitable if the base is
well defined and sufficient for fast product creation. Second, it does not limit the sharing
of code between different, derived products beyond the borderline of the base platform.

Despite the success of the integration-oriented platform approach, in this paper we argue
that the approach suffers from limitations when the scope of the product line starts to
increase. An intuitive reaction adopted by some companies is to adopt a hierarchical
platform approach. However, as discussed in [Bosch 06], this approach fails to be
sufficiently scalable for large systems with many product derivations, especially when
there is a wide range of products with unpredicted variations and in the case of product
derivations requiring to modify and re-engineer significant parts of the system.

A main reason to question the traditional platform approach is that we have seen the
organization into platform and product units to create a number of drawbacks regarding
integration. First, as integration and testing are done both at the platform and at the
product level, this can lead to an extremely high cost of integration if the scope of a
software product line widens. This strong dependence on repeated integration also leads
lack of predictability and inefficiency. Second, the broad scope of the platform
functionality impedes flexibility and time to market for new features. Third, this easily
leads to a lack of flexibility and unacceptably long development cycles because of the
brittleness of platform caused by its inability to go beyond initial scope. Finally, software
developed in a product unit cannot properly be reused by other units before it has been

3

included into a release of the platform unit. As the platform unit has typically longer
release cycles, such reuse of software is difficult to achieve in such an approach. In other
words, we need to enable horizontal sharing between products in addition to vertical
sharing between the platform and products.

Another significant fact is the growing significance of open-source and off-the-shelf
components in software product lines. This presents several challenges to the traditional
approaches to software product lines as it requires a more open approach which does not
assume full control of features, roadmaps and tools.

As software development is now a key competence and differentiating factor in many
areas such as embedded devices, there is a strong need for a new approach. We argue
that we need a fundamental paradigm shift in the way that we engineer software product
lines if we are to achieve a significant improvement in productivity and time to market.

This paper details a more flexible and more open approach, called the compositional
product family approach, which addresses the above issues. The main idea of the
compositional approach to software product lines is that the software platform of the
product line is not a fully integrated software solution, but a set of components,
architecture guidelines, principles as well as testing, documentation and use case support.
Based on this flexible and open platform environment, the full products are composed,
integrated and tested. While in this approach software component technology will play a
much bigger role, we also propose in this paper the use of “architecture slices”, which are
fragments of the full architecture. These are integrated and tested as part of the
compositional software platform. Such architecture slices are typically cover one or more
subsystem of the architecture. In this way, we can ensure integration and testing which
goes beyond component-level testing. This is also important regarding non-functional
requirements, beyond the scope of individual components. This process is illustrated in
Figure 1 below. A critical point is that the architecture slices are not a full integration and
some external component dependencies have to be made explicit.

Adopting a compositional product family approach causes an intentional shift of
integration and testing responsibilities to the product creation, where products are
composed from the aforementioned elements. In our experience, this approach is more
adequate for product families with wide scope, fast evolution and open innovation and
competition at the component level.

4

Integrated and tested,

documented dependencies

Components

guarantee quality

Component

Sources
Architecture Slices Product integrations

based on Architecture

Slices

Figure 1: Compositional Approach

The motivation and basic characteristics of the compositional product family approach
were introduced in Bosch 06]. The approach is detailed and enhanced in this paper, in
particular by the architecture slice concept. The contribution of this paper is the
following. First, we present a detailed and precise assessment of the problems of the
integration-oriented platform approach. Second, we impart the consequences of adopting
a compositional product family approach on all aspects of SW development, including
requirements, process, organization, architecture and tools.

The remainder of this paper is organized as follows. In the next section, we introduce the
integration-oriented approach, discuss its disadvantages and introduce the compositional
approach as an alternative. Subsequently, in section 3, the concept of architecture slices is
presented as a key element of the compositional approach. Section 0 presents a set of
research challenges for the evolving and maturing the compositional approach.

2 From Integration-oriented to the Compositional
Approach

This chapter discusses and presents an alternative to the traditional, integration centric
approach to product families. However, before we can discuss this, the concerns of the
integration-oriented platform approach need to be defined more clearly. Traditionally,
product families are organized using a strict separation between the domain engineering
organization and the product organizations. The domain engineering organization
employs a periodic release cycle where the domain artifacts are released in a fully
integrated and tested fashion, often referred to as a platform. The product organizations
use the platform as a basis for creating and evolving their product by extending the
platform with product-specific features.

5

The platform organization is divided in a number of teams, in the best case mirroring the
architecture of the platform. Each team develops and evolves the component (or set of
related components) that it is responsible for and delivers the result for integration in the
platform. Although many organizations have moved to applying a continuous integration
process where components are constantly integrated during development, in practice
significant verification and validation work is performed in the period before the release
of the platform and many critical errors are only found in that stage.

The platform organization delivers the platform as a large, integrated and tested software
system with an API that can be used by the product teams to derive their products from.
As platforms bring together a large collection of features and qualities, the release
frequency of the platform is often relatively low compared to the frequency of product
programs. Consequently, the platform organization often is under significant pressure to
deliver as many new features and qualities during the release. Hence, there is a tendency
to short-cut processes, especially quality assurance processes. Especially during the
period leading up to a major platform release, all validation and verification is often
transferred to the integration team. As the components lose quality and integration team
is confronted with both integration problems and component-level problems, in the worst
case an interesting cycle appears where errors are identified by testing staff that has no
understanding of the system architecture and can consequently only identify symptoms,
component teams receive error reports that turn out to originate from other parts in the
system and the integration team has to manage highly conflicting messages from the
testing and development staff, leading to new error reports, new versions of components
that do not solve problems, etc.

Although several software engineering challenges associated with software platforms
have been outlined, the approach often proves highly successful in terms of maximizing
R&D efficiency and cost-effectively offering a rich product portfolio. Thus, in its initial
scope, the integration-centric approach has often proven itself as a success. However, the
success can easily turn into a failure when the organization decides to build on the
success of the initial software platform and significantly broadens the scope of the
product family. The broadening of the scope can be the result of the company deciding to
bring more existing product categories under the platform umbrella or because it decides
to diversify its product portfolio as the cost of creating new products has decreased
considerably. At this stage, we have identified in a number of companies that broadening
the scope of the software product family without adjusting the mode of operation quite
fundamentally leads to a number of key concerns and problems that are logical and
unavoidable. However, because of the earlier success that the organization has
experienced, the problems are insufficiently identified as fundamental, but rather as
execution challenges, and fundamental changes to the mode of operation are not made
until the company experiences significant financial consequences.

In the following, we detail these problems, first regarding the scope of the platform, then
regarding openness.

6

2.1 Problems from Over-extended Scope
So, what are the problems causing a mode of operation that was initially so successful to
turn into such a problematic approach? In the list below, we discuss the problems
regarding scope that one can observe and perceive directly.

• Lack of component generality: Although most components were useful for most
products in the initial scope of the product family, in the expanded scope, the
number of components that is only used in a subset of products is increasing.

• Incorporation of immature functionality : As discussed in the previous bullet, in
the initial scope most functionality useful for one product is likely to become
relevant for other products over time. Hence, there often is a tendency to
incorporate product specific functionality into the platform very early on,
sometimes already before it has been used in the first product. When the scope of
the family increases, the disadvantages of incorporating immature functionality
become apparent.

• Slow evolution of functionality: As the scope of the product family increases and
the organization maintains an integration-oriented approach to developing the
shared software artifacts, the response time of the platform in response to requests
to add functionality of existing features increases.

• Implicit dependencies: In an integration-oriented approach, a relative high
degree of connectivity between components is accepted as there are few
disadvantages at that stage and it increases short-term developer productivity.
When the scope of the product family increases, the components need to be
composed in more creative configurations and suddenly the, often implicit,
dependencies between components become a significant problem for the creation
new products.

• Unresponsiveness of platform development: Especially for product categories
early in the maturation cycle, the slow release cycle of software platforms is
particularly frustrating. Often, a new feature is required rapidly in a new product.
However, the feature requires changes in some platform components. As the
platform has a slow release cycle, the platform is typically unable to respond to
the request of the product team. The product team is willing to implement this
functionality itself, but the platform team is often not allowing this because of the
potential consequences for the quality of the product team.

When analyzing these problems with the intention to understand their underlying causes,
among others, the following causes can be identified:

• Decreasing complete commonality: Before broadening the scope of the product
family, the platform formed the common core of product functionality. However,
with the increasing scope, the products are increasingly diverse in their
requirements and amount of functionality that is required for all products is
decreasing, in either absolute or relative terms. Consequently, the (relative)
number of components that is shared by all products is decreasing, reducing the
relevance of the common platform.

• Increasing partial commonality: Functionality that is shared by some or many
products, though not by all, is increasingly significantly with the increasing scope.
Consequently, the (relative) number of components that is shared by some or

7

most products is increasing. The typical approach to this model is the adoption of
hierarchical product families. In this case, business groups or teams responsible
for certain product categories build a platform on top of the company wide
platform. Although this alleviates part of the problem, it does not provide an
effective mechanism to share components between business groups or teams
developing products in different product categories.

• Over-engineered architecture: With the increasing scope of the product family,
the set of business and technical qualities that needs to be supported by the
common platform is broadening as well. Although no product needs support for
all qualities, the architecture of the platform is required to do so and,
consequently, needs to be over-engineered to satisfy the needs of all products and
product categories. This however impedes extensibility and increases
maintenance effort.

• Cross–cutting features: Especially in embedded systems, new features
frequently fail to respect the boundaries of the platform. Whereas the typical
approach is that differentiating features are implemented in the product specific
code, often these features require changes in the common components as well.
Depending on the domain in which the organization develops products, the notion
of a platform capturing the common functionality between all products may easily
turn into an illusion as the scope of the product family increases.

• Maturity of product categories: Different product categories developed by one
organization frequently are in different phases of the lifecycle. The challenge is
that, depending on the maturity of a product category, the requirements on the
common platform are quite different. For instance, for mature product categories
cost and reliability are typically the most important whereas for product
categories early in the maturity phase feature richness and time-to-market are the
most important drivers. A common platform has to satisfy the requirements of all
product categories, which easily leads to tensions between the platform
organization and the product categories.

2.2 Problems of the Closed Approach
A second major challenge to the traditional integration-oriented approach is growing
importance of open source software and components off the shelf (COTS). The core issue
is that the integration-oriented approach assumes a strong governance of the
requirements, features and roadmaps of both the platform as well as the products. In
particular, this leads to several problems:

• Inflexible base platform: If the base platform integrates external software, such
as open source software, it does not have control over the roadmap, development
process and release cycles. This leads to a number of constraints and in our
experience makes it more challenging to find an architecture which suits all
derived products.

• Evolution: In case an individual derived product extends the platform by open
source software, it is again difficult to later include this software into the main
product line platform.

8

• Tools and organization mismatch: Open source software employs different
organizational approaches, tools and quality assurance and testing practices.
These are difficult to integrate into software product lines as discussed in 0.

The consequence is that we need a more open approach which does not assume full
control of features, roadmaps and tools. The compositional approach as discussed below
assumes a more open environment and caters much easier with this setting of
decentralized management and heterogeneous processes and tools.

2.3 The Compositional Product Family Approach
The main idea of the compositional approach to software product lines is that the product
line is not an integrated, complete software solution: Instead, is provided as an open, but
integrated toolbox and software environment. The role of a fully integrated reference
platform is now taken over by a set of architecture slices, which are integrated and tested
component compositions for one or more subsystems. This includes specific components
with high cohesion, which is typically a vertical integration of highly dependent
components and can extend to small component frameworks. The set of architecture
slices shall cover the full scope of the software product line and both exemplify and
enable the later product integration. While the concept of architecture slides appears
similar to related work on architecture modeling [Pree 00, Kim 99, van Gurp 02], our
notion of architecture slice is driven by integration and testing aspect and we consider
more the overall software product line approach.

For instance, on a mobile phone a set of multimedia applications which use a built-in
camera can be an architecture slice. This may include several, interchangeable camera
drivers, picture taking and picture viewing applications as well as several operating
system components for fast storage and retrieval of media data. These components can
vary depending on the camera resolution or on the number of cameras. Further, the
operating system support for the cameras may depend on the resolution and the
performance needed for data storage. In addition, the dependencies to other components
and architecture slices must be specified. In this example, the viewer application can
interface with messaging application to send pictures directly. Also, a video conferencing
application may depend the camera support for recording video calls. While these
dependencies must be documented and can be tested with sample code, the actual product
creation has the responsibility for the integration. More details on architecture slices are
found in the following section.

In summary, a compositional software product family includes the following:

• A set of coherently managed components that facilitate easy integration.
• Overall architecture blueprints and principles that guide the later product

development.
• Architecture slices which cover the full scope of the software product line and

exemplify the product integration.
• Test cases and test environments for both components and architecture slices.
• Detailed documentation on dependability between components, architecture slices

as well their dependencies and recommended compositions.

9

Based on this flexible and open environment, the full products are composed, integrated
and tested.

The compositional product family approach can in addition include a fully integrated
platform for certain base products without integrating all components. This can also serve
as reference product in order to test integration and non-functional requirements. The
main difference is that the majority of product derivation is a composition of the above
pieces.

In the integration-oriented approach, the fully integrated software package must resolve
all dependencies and interactions between components by actual code. In this approach
this is done by integrating typical sets of components by architecture slices and by
documenting the external dependencies. This documentation of dependencies is highly
important and must be treated as an essential part of the compositional approach.
Compared to the traditional approach, we make these dependencies explicit and leave the
actual integration to the product creation.

The main advantages and technical characteristics of this approach are:

• More flexible product architecture.The software architecture of products is
much more freely defined and not constrained by a platform architecture. This is
because there is no enforced platform architecture although a reference
architecture may exist to inspire product architectures.

• Local responsibility. The reusable components that may be used in product
creation accept a much higher level of local responsibility. This responsibility
means that (1) each component only uses predefined provided, required and
configuration interfaces, (2) verifies at composition or deployment time that all its
interfaces are bound correctly and that the component can provide the use cases or
features (or parts thereof) that it promises and (3) contains intelligence to
dynamically adjust itself to client or server components that either offer less than
expected functionality or require more than expected functionality.

• Reduced integration cost. Integration of reusable and product-specific software
components takes place by each product and no platform integration is performed.
Due to the increased intelligence of components, the integration effort is brought
down to a fraction of the current effort requirements.

Clearly, this approach leads to several challenges that concern all aspects of software
development. We will discuss these in section 0. However, we first discuss the impact of
the approach on different aspects of software development.

2.4 Key Differences of the Compositional Approach
To more precisely describe the compositional approach in relation to the integration-
oriented approach, we discuss the two approaches from five perspectives that we believe
are of predominant importance in the context of broadening the scope of software product
families, i.e. business strategy, architecture, components, product creation and evolution:

• Business strategy. The original reason when adopting product families often is
the reduction of R&D expenditure through the sharing of software artifacts

10

between multiple products. Although this is certainly not ignored in the
compositional approach, the main focus is typically to maximize the scope of the
product family. Although R&D cost and time-to-market are obviously relevant
factors for any technology driven organization, the most important rationale for
the composition-oriented approach is that by giving product developers more
flexibility and freedom, the creation of a much broader set of products is
facilitated.

• Architecture. Initially, the architecture for the product family is specified as a
complete structural architecture in terms of components and connectors. The
architecture is the same for all products and variation is primarily captured
through variation points in the components. When moving towards a
compositional approach, the structural view of the architecture is diminished and
increasing focus is directed towards the underlying architectural principles
guaranteeing compositionality. As discussed earlier, the key difference between
this approach and other approaches is that the architecture is not described in
terms of components and connectors, but rather in terms of the architectural
slices, design rules and design constraints.

• Components. During the first phase of a software product family, the
components are implemented for a specific architecture that is specified in all or
most of its aspects. The components contain variation points to satisfy the
differences between different products in the family, but these do not spread
significantly beyond the interfaces of the components. Finally, the components
are implemented such that they depend on the implementation of other
components rather than on explicit and specified interfaces. When evolving
towards a compositional approach, the focus on components remains. However,
these components are not developed ad-hoc, but are constrained in their
implementation by the architecture, i.e. the architectural fragments, rules and
constraints discussed earlier. As each component is integrated in one or more
architecture slices, compositionality of these slices is ensured.

• Product creation. The integration-oriented model typically assumes a pre-
integrated platform that contains the generic functionality required by all or most
products in the family. A product is created by using the pre-integrated platform
as a basis and adding the product-specific code on top of the platform. Although
not necessarily so, often the company is also organized is along this boundary.
The approach works very well for narrowly scoped product families, but less well
when the scope of the product family is broadening. In the compositional
approach, the explicit goal is to facilitate the derivation of a broad range of
products that may need to compose components in an equally wide range of
configurations. Product creation is, consequently, the selection of the most
suitable components, the configuration of these components according to the
product requirements, the development of glue code in places where the
interaction between components needs to be adjusted for the product specific
requirements and the development of product-specific code on top of the reusable
components.

• Evolution. Often, in an integration-oriented approach, there is a strong preference
towards incorporating new features and requirements into the pre-integrated

11

platform. The reasoning behind this is that new features, in due time, need to be
provided in all products anyway and consequently, the most cost effective
approach is to perform this directly. The alternative, intended approach where
product-specific functionality evolves and commoditizes over time and is
incorporated into the platform is often diminishing. In the compositional
approach, product teams as well as component teams can be responsible for the
evolution of the code base. Product teams typically extend existing components
with functionality that they need for their product but is judged to be useful for
future products as well. Product teams may also create new components for the
same purpose. Component teams, if used, are more concerned with adding
features that are required by multiple products. A typical example is the
implementation of a new version of a communication protocol.

3 Components and Architectural Slices
In the above we have the composition oriented approach. In this section we elaborate
compositional software development based on the key ingredients, components and
architecture slices. The decentral nature of compositional development makes it possible
to combine various styles of development since essentially, the composed artifacts are
developed independently.

3.1 Component Technology
The key difference between integration oriented and composition oriented development is
that the compositional approach is decentralized. The components that are being
composed are developed independent from each other and from the products they are to
be used in. A definition of a component that suits this chapter well, is the one provided by
Clemens Szyperski in his book on components: "A software component is a unit of
composition with contractually specified interfaces and explicit context dependencies
only. A software component can be deployed independently and is subject to composition
by third parties" [Szyperski 1997].
In other words, components are developed indepently and then integrated by a third
party. We interpret the "unit of composition" broadly here. In our experience, depending
on the level of abstraction, very large software systems, are broken down into hundreds
of components that may still be very large.

As noted in the introduction, the key activity in the integration oriented approach is the
integration phase during which critical errors in the software and its components are
identified and then fixed. A compositional approach to software development allows
product and component developers to operate independently. Consequently, it is a more
scalable approach that both allows more developers to work together (by decentralizing
their work) and to build larger software products (by combining their output). However,
integration testing is inherently difficult to accomplish when developing in a
compositional way because of the independent modes of operation of both product and
component teams and the absence of a central planning and decision making.
Of course, the product developer will need to test the particular configuration of
components that is used in the product as well as any product specifics. However, the
product developers shall not change the components in the configuration (aside from

12

manipulating them through the configuration API). Also it is much harder for product
developers to demand from the developers of the components that they fix bugs,
implement or change features, etc. This may be hard for various reasons:

• The component is provided by external developers (e.g. sub contractors, a
commercial off the shelf component (COTS) vendor or an open source project).
These parties may have some commitment towards supporting and maintaining
their components (e.g. governed through a support contract) but are unlikely to
care much about product specific issues manifesting themselves during product
integration.

• The component is developed according to its own roadmap with planned major
and minor releases. Any issues that do not fit in this roadmap are unlikely to be
addressed on short notice.

• The required changes conflict with those required by other users of the
component. Components may be used by multiple products. In the case of
external components, these may even be competing products. When confronted
with such conflicts, the solution will have to be provided in the product rather
than in the component.

Consequently, the components that are used in the product need to be stable and well
tested well before the product integration phase. In other words, adopting a compositional
approach implies putting more emphasis on component testing and makes this the
responsibility of the component development teams.

In case essential functionality for a specific product is not provided by the component
environment and it cannot be added by extensions or glue code, it may be needed to add a
derivative component. This will happen more frequently in the compositional approach as
roadmaps and features are less coordinated. We see this option however as an advantage
as it increases the internal competition. Using the compositional approach for
development it may be expected that these components may eventually become of use to
other products developed by the same organization.

3.2 Architecture Slices and Components
The approach we outline in this section addresses component integration testing using the
notion of architecture slices and partial integration. An architecture slice does not
describe a full product architecture. Rather it describes relevant aspects of the
environment a component is expected to be used in.
The IEEE 1471 standard defines software architecture as "the fundamental organization
of a system embodied in its components, their relationships to each other and to the
environment and the principles guiding its design and evolution" [IEEE1471 2000]. In
the case of compositional development, it is not possible for component developers to
consider all products their component is to be used in. Furthermore, all these products
may have little more commonality other than the fact that they use the component. In
other words, rather than focussing on the full architecture, component developers need to
focus on the part of the architecture that relates directly to their component. We refer to
this as an architectural slice.

13

An architecture slice is a set of densely coupled components that are recommended to be
used in this combination in products. In most cases, this represents a subsystem of the
architecture. For example, in a mobile phone this can be a set of multimedia applications
for a built-in camera and include drivers or a set of components for media playing. An
architecture slice also defines its external dependencies on other components or
subsystems. An architecture slice is not complete without these external dependencies
and must describe its relation to these external subsystem. In other words, architecture
slices include assumptions about how other subsystems relate to it.

3.3 Architecture Slices and Integration Testing
As argued earlier, an essential part of the compositional approach is the integration
testing of architecture slices. For this, a major issue is that the dependencies to external
components need to be addressed. In order to test a component or a architecture slice, a
developer will need to provide an environment that fulfills these dependencies. Using the
resulting architecture slice configurations, simple applications may be implemented that
test various aspects of the component functionality. In the case where the intended use is
extension by another component, creating such extensions is the preferred way to test.

The dependencies to external components can be categorized in two groups:

• Uses dependencies. The component likely depends on other components. This
may either be specific versions of specific components or, as is increasingly
common in the Java world, implementations of a specific standard API.

• Usage dependencies. These dependencies indicate other components that depend
on this component or must at least work correctly with the component.

The dependency relations may also coupled so that e.g. using component A implies also
using component B. Such relations should of course be documented.

The process of integration testing is normally done as part of product development.
However, as indicated earlier, this is generally too late to address any component issues.
Consequently, integration testing needs to be done earlier at the component and
architecture slice level. While it is impossible to realize complete products as a part of the
component testing process, it is feasible to provide the environment used for testing
representative of known or anticipated uses of the component in actual products:

• For the uses dependencies a selection of components may be used that is likely to
be used by product developers. If compatibility is important, various
configurations of the architecture slice with different components may be created
to e.g. test various versions of the same component or different implementations
of the same API. In the situation that a component extends another one, the
relation to the extended component can be characterized as a uses relation as well.
In that case, selection is easy because it is always the same component that is
being extended.

• The usage dependencies may be more difficult. In some cases it may be possible
to test using a complete product configuration. However, when developing a new
version of the component (and particularly when API changes are involved), it is
not likely that existing components are compatible. In that case, usage
dependencies may need to be simulated using mock implementations.

14

Additionally, in the case of commercial products, the full product software may
not be available to the component developer.

3.4 Component Dependencies
While in general it is not possible to test all combinations of all dependencies, it is
possible to determine combinations of components that are known to work as expected.
This information can be provided in documentation.

This practice is quite common in the software industry. For example, the release notes of
Apache's Jakarta Commons Logging component (version 1.1.0) state that: "All core
classes were compiled with a 1.2.x JDK. JCL may work on some augmented 1.1 series
JREs but it is recommended that those wish to run on 1.1 JREs download the source and
create a custom implementation". This is a nice example of a dependency that might
work but is not recommended because the component developers did not include it in
their testing procedure. The recommendation clearly indicates that users are discouraged
from using a 1.1 JRE but that it may be possible to do so if needed. This is also an
example where product development may choose to create their own versions of
components at their own responsibility.

This practice of documenting working and recommended combinations of components is
quite common. Many component vendors will certify that their software works in
combination with certain other components and will be able to provide more extensive
support to users if they use the recommended components in combination with
component releases they produce. This certification and support model is the basis for
most open source product companies like MySQL and JBoss.

In practice this causes product developers to (strongly) prefer release quality components
over development releases (if available) and to satisfy any dependencies those
components have using the recommended components. Doing so allows them to rely on
the test work that has been done already by the component developers and focus more on
testing the product specifics.
A second consequence is that this makes fulfilling the dependencies a decision process
that is preferably completed early in the product development process. Generally, in a
new product, most dependencies will be fulfilled during the product architecture design
phase. Upgrades to new versions may of course occur but it is not likely that product
managers will want to risk having to be part of the component integration testing process.
These two practices are markedly different from the practice of co-evolving components
and products in a software product line. During the integration phase, components are
continuously integrated with development versions of the other components. Likewise,
product developers will end up using modified versions of the components thus negating
some of the earlier integration testing effort. The practices outlined above, strongly
discourage this from happening and allow product developers to build on a well tested
foundation.

15

3.5 Examples
In this section we have characterized how component developers can do integration level
without building a full product based on their component. This is important for creating
compositions of components because it allows product developers to rely on the
integration testing already done, rather than having to do this themselves.

A convincing example of this is the Debian linux distribution. The Debian linux
distribution is a collection of thousands of open source software packages running on
linux. The stated goal of the Debian foundation is to provide a stable, fully tested and
integrated distribution. Essentially, most of their work consists of integrating the
thousands of packages into their distribution. While there is some Debian specific
development, most of it consists of Debian specific infrastructure and gluecode.
Additionally the integration testing feedback is propagated to the dependent open source
packages, often along with patches for the problem.

In [Amor-Iglesias et al. 2005] some impressive statistics are presented regarding the size
of this distribution: release 3.1 (a.k,a, Sarge) was measured to consist of 230 million lines
of code (MLOC). The 3.0 release only three years earlier was measured at 105 MLOC
and the 2.1 release (according to [Wheeler 2002]) was 55 MLOC. In other words the
distribution has quadrupled in size in roughly five years. According to Wheeler, who has
applied the COCOMO model to these metrics, this corresponds to multiple billions of
dollars worth of investment; requiring thousands of software engineers to work together
in a timeframe that exceeds the actual time spent delivering these versions of Debian,
which is governed by a small foundation funded by donations from industry and
individuals. In other words, the fully integrated approach that COCOMO models would
not be good enough to produce a software system comparable in size to Debian.

An interesting development in recent years is the emergence of open source projects
where software is co-developed by developers working for or financed by competing
organization. This trend is motivated by the above metrics: it is the only cost effective
way to develop large software packages with many software engineers in a short time
frame. If the software is not differentiating the core products, continuing under an open
source license may actually make them more differentiating.

The natural tendency of companies to protect investments and intellectual property is in
direct conflict with this and poses an organizational and strategic challenge. A good
example of a company that has overcome this reluctance, is IBM. Five years ago they
released the popular java development environment eclipse under an open source license.
Later they even transferred development and ownership of this product to an independent
foundation. Doing so had benefits for them that outweighed the lost sales of their visual
age product. First of all many of their competitors have since contributed to the projects
and the resulting development environment is now the industry standard development
platform. Because IBM is heavily associated with the eclipse product that means that
other companies have lost differentiating power while IBM gained some. Additionally,
while IBM continues to invest much resources in eclipse, much of the investment is now
shared with their competitors. So either they cut some cost here or they managed to

16

improve and innovate at a lower cost (compared to doing everything in house). Also
some things that IBM was not interested in were financed by others and are now also of
use to IBM customers. Finally, their strong involvement in this product makes IBM an
interesting partner for related products and services such as the middleware, hardware
and consultancy services IBM provides. Arguments along the same line may be found in
the Cathedral and the Bazaar [Stallman 1999].

4 Research Challenges of the Compositional Approach
The compositional approach represents a potential improvement for organizations
currently using a software product line approach for developing their software. However,
there are many challenges that will need to be addressed. In this section, we aim to
provide an overview of these challenges.

4.1 Decentralized Requirements Management
A consequence of using a compositional approach is that requirements of the integrated
products are managed separately from those of the individual components that are used in
the system.
In the integration-oriented software product line development, requirements are managed
centrally. When developing a new product based on the product line software, the
product architect identifies which requirements are product specific and which are
fulfilled by the product line. The product line evolution in turn is centrally governed and
driven by common requirements across products and other requirements that are believed
to be useful for future products. Development of individual components in the product
line is driven by these centrally managed requirements.
Characteristic of the compositional approach is that there is no central management of
requirements and features. Product developers select components and architecture slices
based on how well they support the product requirements but may also consider other
factors such as, for example:

• Ability to influence component requirements. Even if the requirements do not
match 100%, the ability to influence the roadmap of the component may be
decisive.

• Component roadmap. The advertised component roadmap may include items that
are currently not relevant for the product but might become relevant in the future

• Reputation. The component may have an established reputation with respect to
important quality attributes.

• Openness. While often advertised as black boxes, many components require a
level of understanding of the internal component design that effectively makes
them white boxes. Arguably, this is an important reason for the apparent lack of
success of COTSs. Additionally, it is an important factor in the success of open
source components in the current software industry.

A successful component will be used by many products that may have little in common
aside from the fact that they somehow depend on the component. Component
requirements may be driven by a number of factors:

17

• Feedback on potential improvements from existing component consumers. In case
of a commercial relation between producer and consumer there may also be some
contractual terms (e.g. in the context of a support contract).

• Market analysis of product requirements of products that currently do not use the
component. Evolving the component to support those requirements presents an
opportunity to grow market share.

• External factors such as standards. Component requirements may be (partially)
based on standardized or de-facto specifications. When such specifications
evolve, supporting the evolved specification can become a requirement.

• Internal factors, such as improving quality factors that are important to the
component developers such as e.g. maintainability. Other factors may include the
personal interest of the developers that are involved to explore design alternatives
or realize small improvements.

This approach results in a more bottom up approach where instead of being tailored to a
specific set of products (i.e. top down approach) there tends to be an organic bottom up
process where more or less independently components are selected and put together to
fulfill products requirements. In this way, potential conflicts between independently
developed components are eventually resolved by the component selection and
integration process.

4.2 Quality Management & Architecture
A characteristic of the compositional approach is that there is no central architecture.
Instead, product and architecture slices each have their own architectures. This poses a
number of interesting research challenges with respect to e.g. applying quality
assessments methodologies, which mostly assume having a centrally managed
architecture and full control over the assets governed by this architecture.

The intention of applying quality assessment methods is to verify conformance to
centrally managed quality requirements (which do exist in a compositional approach) and
to improve product quality by addressing any identified quality issues. However,
performing conventional architecture assessment at the product level makes relatively
little sense due to the lack of control over the composed components.

• Consequently, quality assessment and improvements needs to happen at the
component or possibly architecture slice level. However, given the lack of central
quality requirement managed and the lack of control over depending and
dependent components, this means that guaranteeing system level quality with
respect to quality requirements such as real-time constraints, throughput, security,
etc. is difficult. Component developers need to anticipate quality requirements of
their potential customers and convert this anticipated demand into component
improvements.

• A second issue is that architecture assessment methods mostly require an already
integrated system. In a compositional approach, one would like to consider impact
on quality before the components are integrated. Any identified problems might
lead to component improvements but might also lead to the selection of
alternative components.

18

A second goal of having explicit software architecture is to enforce architectural style and
design rules. The reason for this is that this ensures that the architectural components fit
together. A problem with commercial of the shelf components (COTS) has been finding
components with matching interfaces. The absence of a centrally governed architecture
does not mean that there are no guiding architectural principles. Necessarily, components
that are going to be used together must share common architecture. At least a significant
level of compatibility is required. Small differences can be bridged using glue code.
However, it is not very desirable to create significant amounts of glue code when creating
products. Consequently, the compositionality poses a number of interesting new
challenges:

• How to document architectural properties of components and architecture slices?
• How to optimize product architecture such that is optimal for the components it

will be composed off?
• How to design components such that they do not impose too many constraints.

4.3 Software Component Technology
Component oriented programming and later web services have been advocated as a major
step forward in building large software systems [Stal 00]. This has been largely due to
providing standardized component infrastructures with well defined APIs and services as
well as interoperability support. While this has been significant progress, it does not
address the issues of variability and architecture as in software product lines.

In software product lines as well as many tools for configuration management,
dependencies between components are managed. Managed dependencies are clearly a
basic ingredient for our compositional approach. Yet, this covers only the management of
syntactic code dependencies, e.g. regarding versions and API compatibility. The
information in such systems can also include tested configurations and can hence be used
to describe architecture slices.

Interesting in this context is also the work presented in [Ommering 02]. Van Ommering
is a proponent of so called populations of product lines and introduces component
technology that supports this. His approach is very similar to ours but focuses more on
the technical aspects of composing components rather than the other aspects that we
discuss in this chapter.

For our target of compositional software products lines, we need components which can
also work in unforeseen use cases and environments. This for instance means more
robustness and awareness of dependencies and interactions with other components. More
specifically, the two main challenges we discuss here are semantic dependencies which
must be managed more explicitly and, secondly, that components are designed in a more
robust way.

Semantic interaction between components means that the component behavior has to be
adapted when composing with others. This goes well beyond the syntactic compatibility

19

of APIs and has been examined extensively in the context of feature interaction research
[Calder 00]. These interactions can be positive or negative:

• Positive interaction require additional functionality to be added. E.g. if we have
an email client on a mobile phone and a picture viewer, it should be possible to
email pictures from the viewer.

• Negative interaction require to disallow some cases or removal of ambiguities.
Typically, two components or features contradict in their behavior or compete for
resources which are limited. For instance, the silence mode of a phone should not
disable the alarm clock.

In fact, some dependencies occur only when several components are combined and
cannot be observed for two features at a time [Prehofer 01]. Negative feature interaction
related problems can be very hard to find and are also not likely to be identified in the
decentralized integration testing approach outlined earlier.

4.4 Process and Organizational issues
As discussed in [Bosch 02], there are several ways to organize software product line
organizations. Adopting a compositional approach makes it both possible and necessary
to organize differently. As argued in earlier sections, a key characteristic of a
compositional approach is that there is less central management of requirements,
architecture and implementation. Essentially development and evolution of components
happens in a decentralized fashion. Decoupling of product and component development
is an explicit goal of a compositional approach because it allows decision making that
affects products to be separate from decision making that affects components.
Doing this in one organization introduces a contradiction in the sense that an organization
typically has goals, targets and a mission. All activity conducted by the organization
(including component and product development) follows (or should follow from) this
overall mission. This implies that product and component development are not
independent at all. Consequently, introducing a compositional approach in a product line
organization introduces a number of challenges:

• How to organize such that product development teams have the freedom to select
external components or initiate development of new components rather than using
the internally developed component. The business decision of a product team to
not use the in house developed component has negative consequences for the
component team. The best technical solution may not be the best for the
organization as a whole. Balancing such difficult and conflicting interests is a key
challenge that needs to be addressed.

• Allowing component teams to take responsibility for their own roadmap and
architecture may lead to a situation that resources are spent on feature
development that is not going to be used by any of the product teams. Balancing
innovation of component teams and product development is required to keep
development cost under control.

• An issue in any organization is the distribution of resources (money, people, time,
etc) over the organizational units. Essentially product teams and component teams
are all competing for the same resources. However, product teams are typically
the only organizational units directly contributing to revenue, which leads to a
bias in their favor. Adopting a compositional approach therefore needs to create

20

an internal value chain or market mechanism to distribute the internal
development resources.

• While initially, components may be used only by product teams, components may
themselves become products that are potentially interesting for other software
developing organizations. Where this does not conflict with product
differentiation, it would be desirable to market such components as separate
components or share the burden of developing such components with other
companies, even if these companies are competitors. Productizing or open
sourcing internally components is a natural side effect of a fully implemented
compositional approach but may also introduce new requirements that are well
outside the scope of product development.

For all these organizational challenges a careful balance needs to be made between the
conflicting interests of component and product teams and the overall corporate mission.
However, it should be noted that this is also true for a de-compositional approach. The
reason for converting from a software product line based development approach to a
compositional one is that central management of all these decisions becomes harder as
development grows in scale and as the software product line scope widens.

5 SUMMARY
Software product families have found broad adoption in the embedded systems industry,
as well as in other domains. Due to their success, product families at several companies
experience a significant broadening of the scope of the family. We have discussed several
key issues which can arise from this and also from other trends like external or open
source software which is outside the control of one organization.

For product families which aim primarily to be open and cover a wide range of products,
we have proposed the concept of compositional product families. This approach relies on
a decentralized organization that gives the product creation more flexibility and
responsibility. Also it gives similar freedom to internal component developers.
Instead of a fully integrated platform, we rely on the new concept of architecture slices to
ensure integration and testing beyond component level testing. Furthermore, we have
shown that this compositional approach must include all aspects of software development
in order to be successful. Additionally have identified several key research challenges of
this new approach with respect to requirements, quality management, software
component technologies as well as processes and split of responsibility within an
organization.
A topic that interests us at Nokia, where development depends mostly on integration
oriented approaches, is that of cross-cutting behavior and non-functional requirements
such as performance and power consumption. This has proven to be extremely hard
already in the integration oriented approach we depend on currently.

REFERENCES

21

[Bosch 00] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving
a Product Line Approach, Pearson Education (Addison-Wesley & ACM
Press), ISBN 0-201-67494-7, May 2000.

[Bosch 02] J. Bosch, Maturity and Evolution in Software Product Lines: Approaches,
Artefacts and Organization, Proceedings of the Second Conference Software
Product Line Conference (SPLC2), pp. 257-271, August 2002.

[Bosch 06] Jan Bosch, Expanding the Scope of Software Product Families: Problems and
Alternative Approaches, Proceedings of the 2nd International Conference on
the Quality of Software Architectures (QoSA 2006) , June 2006.

[Ommering & Bosch 02] R. van Ommering, J. Bosch, Widening the Scope of Software
Product Lines - From Variation to Composition, Proceedings of the Second
Software Product Line Conference (SPLC2), pp. 328-347, August 2002.

[Ommering 02] R. van Ommering, Building product populations with software
components, Proceedings of the 24th International Conference on Software
Engineering, pp. 255 – 265, 2002.

[Pree 00] Wolfgang Pree, Kai Koskimies Framelets—small and loosely coupled
frameworks, ACM Computing Surveys, Volume 32 , 2000

[Kim 99] T Kim, YT Song, L Chung, DT Huynh Dynamic Software Architecture
Slicing, - COMPSAC, 1999

[van Gurp 02] Jilles van Gurp, Rein Smedinga, Jan Bosch, Architectural Design Support
for Composition and Superimposition, proceedings of HICCS 2002.

[Stal 00] Michael Stal, Web services: beyond component-based computing,
Communications of the ACM, Volume 45 , Issue 10 (October 2002)

[Calder 00] M Calder, M Kolberg, EH Magill, S Reiff-Marganiec, Feature interaction: a
critical review and considered forecast, Computer Networks, 2003, Elsevier

[van Gurp 06] Jilles van Gurp, OSS Product Family Engineering, First International
Workshop on Open Source Software and Product Lines at SPLC 2006.
Available from http://www.sei.cmu.edu/splc2006/

[Prehofer 01] Christian Prehofer, „Feature-Oriented Programming: A New Way of
Object Composition“, Concurrency and Computation, Vol. 13, 2001.

 [Szyperski 1997]. C. Szyperski, Component Software - Beyond Object Oriented
Programming. Addison-Wesley 1997.

[IEEE1471 2000] IEEE Std P1471-2000, Recommended Practice for Architectural
Description of Software-Intensive Systems, IEEE, 2000.

[Wheeler 2002] David Wheeler, More Than a Gigabuck: Estimating GNU/Linux's Size,
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html, 2002.

[Amor-Iglesias et al. 2005] Juan-José Amor-Iglesias, Jesús M. González-Barahona,
Gregorio Robles-Martínez, and Israel Herráiz-Tabernero, Measuring Libre
Software Using Debian 3.1 (Sarge) as A Case Study: Preliminary Results,
Upgrade: the european journal for the informatics årofessionals, vol 6(3),
June 2005.

[Dikel et al. 97]. D. Dikel, D. Kane, S. Ornburn, W. Loftus, J. Wilson, ‘Applying
Software Product-Line Architecture,’ IEEE Computer, pp. 49-55, August
1997.

[Macala et al. 96]. R.R. Macala, L.D. Stuckey, D.C. Gross, ‘Managing Domain-Specific
Product-Line Development,’ IEEE Software, pp. 57-67, 1996.

22

[Bass et al. 97]. L. Bass, P. Clements, S. Cohen, L. Northrop, J. Withey, ‘Product Line
Practice Workshop Report, Technical Report CMU/SEI-97-TR-003, Software
Engineering Institute, June 1997.

[Stallman 1999] Eric S. Raymond, The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O'Reilly & Associates 1999

