
299-026 -1-

Proceedings of the IASTED International Conference
3rd Annual IASTED International Conference Software Engineering and Applications
October 6-8, 1999 - Scottsdale, Arizona, USA

ON THE IMPLEMENTATION OF FINITE STATE MACHINES

JILLES VAN GURP & JAN BOSCH
University of Karlskrona/Ronneby

Department of Software Engineering and Computer Science
Soft Center, S-372 25 Ronneby

+46 457-385000
[Jilles.van.Gurp|Jan.Bosch]@ipd.hk-r.se

http://www.ipd.hk-r.se/[jvg|bosch]

Abstract. Finite State Machines (FSM) provide a
powerful way to describe dynamic behavior of systems and
components. However, the implementation of FSMs in OO
languages, often suffers from maintenance problems. The
State pattern described in [1] that is commonly used to
implement FSMs in OO languages, also suffers from these
problems. To address this issue we present an alternative
approach. In addition to that a blackbox framework is
presented that implements this approach. In addition to
that a tool is presented that automates the configuration of
our framework. The tool effectively enables developers to
create FSMs from a specification.

Keywords. Finite State Machines, State pattern,
Implementation issues, Blackbox frameworks

1 INTRODUCTION
Finite State Machines (FSM) are used to describe reac-

tive systems [2]. A common example of such systems are
communication protocols. FSMs are also used in OO mod-
eling methods such as UML and OMT. Over the past few
years, the need for executable specifications has increased
[3]. The traditional way of implementing FSMs does not
match the FSM paradigm very much, however, thus mak-
ing executable specifications very hard. In this paper the
following definition of a State machine will be used: A
State machine consists of states, events, transitions and
actions. Each State has a (possibly empty) State-entry and
a State exit action that is executed upon State entry or State
exit respectively. A transition has a source and a target
State and is performed when the State machine is in the
source State and the event associated with the transition
occurs. For a transition t for event e between State A and
State B, executing transition t (assuming the FSM is in
State A and e occurred) would mean: (1) execute the exit
action of State A, (2) execute the action associated with t,
(3) execute the entry action of State B and (4) set State B as
the current state.

Mostly the State pattern [1] or a variant of this pattern
is used to implement FSMs in OO languages like Java and
C++. The State pattern has its limitations when it comes to
maintenance, though. Also there are two other issues
(FSM instantiation and data management) that have to be
dealt with. In this paper we examine these problems and
provide a solution that addresses these issues. Also we
present a framework that implements this solution and a
tool that allows developers to generate a FSM from a spec-
ification.

As a running example we will use a simple FSM called
WrapAText (see figure 1). The purpose of this FSM is to
insert a newline in a text after each 80 characters. To do so,
it has three states to represent a line of text. In the Empty
State, the FSM waits for characters to be put into the FSM.
Once a character is received, it moves to the Collect State
where it waits for more characters. If 80 characters have
been received it moves to the Full State. The line is printed
on the standard output and the FSM moves back to the
Empty State for the next line of text. The remainder of this
paper is organized as follows: In section 2 issues with the
State pattern are discussed. In section 3, a solution is
described for these issues and our framework, that imple-
ments the solution, is presented. A tool for configuring our
framework is presented in section 4. In section 5 assess-
ments are made about our framework. Related work is pre-
sented in section 6. And we conclude our paper in section
7.

2 THE STATE PATTERN
In procedural languages, FSMs are usually imple-

mented using case statements. Due to maintenance issues
with using case statements, however, we will not consider
this type of implementation. By using object orientation,
the use of case-statements can be avoided through the use
of dynamic binding. Usually some form of the State pat-
tern is used to model a finite State machine (FSM) [1].
Each time case statements are used in a procedural lan-
guage, the State pattern can be used to solve the same
problem in an OO language. Each case becomes a State
class and the correct case is selected by looking at the cur-
rent state-object. Each State is represented as a separate
class. All those State-classes inherit from a State-class. In
figure 3 this situation is shown for the WrapAText exam-
ple. The Context offers an API that has a method for each
event in the FSM. Instead of implementing the method the
Context delegates the method to a State class. For each
State a subclass of this State class exists. The context also
holds references to variables that need to be shared among
the different State objects. At run-time Context objects
have a reference to the current State (an instance of a State

Empty Collect

Full

FIGURE 1. WRAPATEXT

feedChar

feedChar

EOL (end of line)release

-2-

subclass). In the WrapAText example, the default State is
Empty so when the system is started Context will refer to
an object of the class EmptyState. The feedChar event is
delivered to the State machine by calling a method called
feedChar on the context. The context delegates this call to
its current State object (EmptyState). The feedChar
method in this object implements the State transition from
Empty to Collect. When it is executed it changes the cur-
rent State to CollectState in the Context.

We have studied ways of implementing FSMs in OO
languages and identified three issues that we believe
should be addressed: (1) Evolution of FSM implementa-
tions. We found that the structure of a FSM tends to change
over time and that implementing those changes is difficult
using existing FSM implementation methods. (2) FSM
instantiation. Often a FSM is used more than once in a sys-
tem. To save resources, techniques can be applied to pre-
vent unnecessary duplication of objects. (3) Data
management. Transitions have side effects (actions) that
change data in the system. This data has to be available for
all the transitions in the FSM. In other words the variables
that store the data have to be global. This poses mainte-
nance issues.

2.1 FSM EVOLUTION

Like all software, Finite State Machine implementa-
tions are subject to change. In this section, we discuss sev-
eral changes for a FSM and the impact that these changes
have on the State pattern. Typical changes may be adding
or removing states, events or transitions and changing the
behavior (i.e. the actions). Ideally an implementation of a
FSM should make it very easy to incorporate these modifi-
cations. Unfortunately, this is not the case for the State pat-
tern. To illustrate FSM-evolution we changed our running
example in the following way: we added a new State called
Checking; we changed the transition from Collect to Col-
lect in a transition from Collect to Checking: we added a
transition from Checking to Collect. This also introduced a
new event: notFull; we changed the transition from Collect
to Full in a transition from Checking to Full. The resulting
FSM is shown in figure 2.

The implementation of WrapAText using the State pat-
tern is illustrated in figure 3. To do the changes mentioned

above the following steps are necessary: First a new sub-
class of WrapATextState needs to be created for the new
State (CheckingState). The new CheckingState class inher-
its all the event methods from its superclass. Next the Col-
lectState’s feedChar method needs to be changed to set the
State to CheckingState after it finishes. To change the
source State of the transition between Collect and Full, the
contents of the EOL (end of line) method in CollectState
needs to be moved to the EOL method in CheckingState.
To create the new transition from Checking to Collect a
new method needs to be added to WrapATextState: not-
Full(). The new method is automatically inherited by all
subclasses. To let the method perform the transition its
behavior will have to be overruled in the CheckingState
class. The new method also has to be added to the Context
class (making sure it delegates to the current state).

Code for a transition can be scattered vertically in the
class hierarchy. This makes maintenance of transitions dif-
ficult since multiple classes are affected by the changes.
Another problem is that methods need to be edited to
change the target state. Editing the source State is even
more difficult since it requires that methods are moved to
another State class. Several classes need to be edited to add
an event to the FSM. First of all the Context needs to be
edited to support the new event. Second, the State super
class needs to be edited to support the new event. Finally,
in some State subclasses behavior for transitions triggered
by the new event must be added.

We believe that the main cause for these problems is
that the State pattern does not offer first-class representa-
tions for all the FSM concepts. Of all FSM concepts, the
only concept explicitly represented in the State pattern is
the State. The remainder of the concepts are implemented
as methods in the State classes (i.e. implicitly). Events are
represented as method headers, output events as method
bodies. Entry and exit actions are not represented but can
be represented as separate methods in the State class. The
responsibility for calling these methods would be in the
context where each method that delegates to the current
State would also have to call the entry and exit methods.
Since this requires some discipline of the developer it will
probably not be done correctly.

Since actions are represented as methods in State
classes, they are hard to reuse in other states. By putting
states in a State class-hierarchy, it is possible to let related
states share output events by putting them in a common
superclass. But this way, actions are still tied to the State
machine. It is very hard to use the actions in a different
FSM (with different states). The other FSM concepts
(events, transitions) are represented implicitly. Events are
simulated by letting the FSM context call methods in the
current State object. Transitions are executed by letting the
involved methods change the current State after they are
finished. The disadvantage of not having explicit represen-
tations of FSM concepts is that it makes translation
between a FSM design and its implementation much more
complex. Consequently, when the FSM design changes it
is more difficult to synchronize the implementation with
the design.

2.2 FSM INSTANTIATION

FIGURE 2. THE CHANGED WRAPATEXT FSM

Empty Collect

Full

feedChar

EOL

release

Checking

notFullfeedChar

FIGURE 3. THE STATE-PATTERN.

Empty State

feedChar(Character c)

CollectState

feedChar(Character c)
EOL()

FullState

release()

Context

feedChar(Character c)
EOL()
release()

WrapATextState

feedChar(Character c)
EOL()
release()

1

current state+is in

1

-3-

Sometimes it is necessary to have multiple instances of
the same FSM running in a system. In the TCP protocol,
for example, up to approximately 30000 connections can
exist on one system (one for each port). Each of these con-
nections has to be represented by its own FSM. The struc-
ture of the FSM is exactly the same for all those
connections. The only unique parts for each FSM instance
are the current State of each connection and the value of
the variables in the context of the connection’s FSM. It
would be inefficient to just clone the entire State machine,
each time a connection is opened. The number of objects
would explode.

Also, a system where the FSM is duplicated does not
perform very well because object creation is an expensive
operation. In the TCP example, creating a connection
requires the creation of approximately 25 objects (states,
transitions), each with their own constructor. To solve this
problem a mechanism is needed to use FSM’s without
duplicating all the State objects. The State pattern does not
support this directly. This feature can be added, however,
by combining the State pattern with the Flyweight pattern
[1]. The Flyweight pattern allows objects to be shared
between multiple contexts. This prevents that these objects
have to be created more than once. To do this, all context
specific data has to be removed from the shared objects’
classes. We will use the term FSM-instantiation for the
process of creating a context for a FSM. As a consequence,
a context can also be called a FSM instance. Multiple
instances of a FSM can exist in a system.

2.3 MANAGING DATA IN A FSM

Another issue in the implementation of FSMs is data
storage. The actions in the transitions of a State machine
perform operations on data in the system. These operations
change and add variables in the context. If the system has
to support FSM instantiation, the data has to be separated
from the transitions, since this allows each instance to have
its own data but share the transition objects with the other
instances.

The natural place to store data in the State pattern
would either be a State class or the context. The disadvan-
tage of storing data in the State objects is that the data is
only accessible if the State is also the current state. In other
words: after a State change the data becomes inaccessible
until the State is set as the current State again. Also this
requires that each instance has its own State objects. Stor-
ing the data in the Context class solves both problems.
Effectively the only class that needs to be instantiated is
the Context class. If this solution is used, all data is stored
in class variables of the Context class. Storing data in a
central place generally is not a good idea in OO program-
ming. Yet, it is the only way to make sure all transitions in
the FSM have access to the same data. So this approach
has two disadvantages: It enforces the central storage of
data and to create a FSM a subclass of Context needs to be
created (to add all the variables). This makes maintenance
hard. In addition, it makes reuse hard, because the methods
in State classes are dependent on the Context class and
cannot be reused with a different Context class.

3 AN ALTERNATIVE

Several causes can be found for the problems with the
State pattern: (1) The State pattern does not provide
explicit representations (most are integrated into the state
classes) for all the FSM concepts. This makes maintenance
hard because it is not obvious how to translate a design
change in the FSM to the implementation and a design-
change may result in multiple implementation elements
being edited. Also this makes reuse of behavior outside the
FSM hard (2) The State pattern is not blackbox. Building a
FSM requires developers to extend classes rather than to
configure them. To do so, code needs to be edited and
classes need to be extended rather than that the FSM is
composed from existing components. (3) The inheritance
hierarchy for the State classes complicates things further
because transitions (and events) can be scattered through-
out the hierarchy. Most of these causes seem to point at the
lack of structure in the State pattern (structure that exists at
the design level). This lack of structures causes developers
to put things together in one method or class that should
rather be implemented separately. The solution we will
present in this section will address the problems by provid-
ing more structure at the implementation level.

3.1 CONCEPTUAL DESIGN

To address the issues mentioned in above we modeled
the FSM concepts as objects. The implication of this is that
most of the objects in the design must be sharable between
FSM instances (to allow for FSM instantiation). Moreover,
those objects cannot store any context specific data. An
additional goal for the design was to allow blackbox con-
figuration1. The rationale behind this was that it should be
possible to separate a FSM’s structure from its behavior
(i.e. transition actions or State entry/exit actions). In figure
4 the conceptual model of our FSM framework is pre-
sented. The rounded boxes represent the different compo-
nents in the framework. The solid arrows indicate
association relations between the components and the
dashed arrows indicate how the components use each
other.

Similar to the State pattern, there is a Context compo-
nent that has a reference to the current state. The latter is
represented as a State object rather than a State subclass in
the State pattern. The key concept in the design is a transi-
tion. The transition object has a reference to the target
State and an Action object. For the latter, the Command
pattern [1] is used. This makes it possible to reuse actions

1. Blackbox frameworks provide components in addition to the white
box framework (abstract classes + interfaces). Components provide a
convenient way to use the framework. Relations between blackbox com-
ponents can be established dynamically.

aContext

aState
aStateaTransition

anEvent

anAction

sends

triggers

has a
is associated with

has a

has a

has a executes

sets state/uses context
FIGURE 4. THE FSM FRAMEWORK’S COMPONENTS.

anEvent

-4-

in multiple places in the framework. A State is associated
with a set of transitions. The FSM responds to events that
are sent to the context. The context passes the events on to
the current state. The State maintains a list of transition,
event pairs. When an event is received the corresponding
transition is located and then executed (triggered). The
transition object simply executes its associated action and
then sets the target State as the current State in the context.

To enable FSM instantiation in an efficient way, no
other objects than the context may be duplicated. All the
State objects, event objects, transition objects and action
objects are created only once. The implication of this is
that none of those objects can store any context specific
data (because they are shared among multiple contexts).
When, however, an action object is executed (usually as
the result of a transition being triggered), context specific
data may be needed. The only object that can provide
access to this data is the context. Since all events are dis-
patched to the current State by the context, a reference to
the context can be passed along. The State in its turn,
passes this reference to the transition that is triggered. The
transition finally gives the reference to the action object.
This way the Action object can have access to context spe-
cific data without being context specific itself.

A special mechanism is used to store and retrieve data
from the context. Normally, the context class would have
to be sub-classed to contain the variables needed by the
actions in the FSM. This effectively ties those actions to
the context class, which prevents reuse of those actions in
other FSMs since this makes the context subclasses FSM
specific. To resolve this issue we turned the context into an
object repository. Actions can put and get variables in the
context. Actions can share variables by referring to them
under the same name. This way the variables do not have
to be part of the context class. Initialization of the variables
can be handled by a special action object that is executed
when a new context object is created. Action objects can
also be used to model State entry and exit actions.

3.2 AN IMPLEMENTATION

We have implemented the design described in the pre-
vious section as a framework [4] in Java. We have used the
framework to implement the WrapAText example and to
perform performance assessments (also see section 5).
The core framework consists of only four classes and one

interface. In figure 5, a class diagram is shown for the
framework’s core classes. We’ll shortly describe the
classes here: (1) State. Each State has a name that can be
set as a property in this class. State also provides a method
to associate events with transitions. In addition to that, it
provides a dispatch method to trigger transitions for
incoming events. (2) FSMContext. This class maintains a
reference to the current State and functions as an object
repository for actions. Whenever a new FSMContext
object is created (FSM instantiation), the init action is exe-
cuted. This action can be used to pre-define variables for
the actions in the FSM. (3) Transition. The execute method
in is called by a State when an event is dispatched that
triggers the transition. (4) FSM. This class functions as a
central point of access to the FSM. It provides methods to
add states, events and transitions. It also provides a method
to instantiate the FSM (resulting in the creation and initial-
ization of a new FSMContext object). (5) FSMAction. This
interface has to be implemented by all actions in the FSM.
It functions as an implementation of the Command pattern
as described in [1].

4 A CONFIGURATION TOOL
In [5] a typical evolution path of frameworks is

described. According to this paper, frameworks start as
whitebox frameworks (just abstract classes and interfaces).
Gradually components are added and the framework
evolves into a black box framework. One of the later steps
in this evolution path is the creation of configuration tools.
Our FSM Framework consists of components thus creating
the possibility of making such a configuration tool. A tool
significantly eases the use of our framework. since devel-
opers only have to work with the tool instead of complex
source code. As a proof of concept, we have built a tool
that takes a FSM specification in the form of an XML doc-
ument [6] as an input.

4.1 FSMS IN XML

In figure 6 an example of an XML file is given that can
be used to create a FSM. In this file the WrapAText FSM in
figure 1 is specified. A problem in specifying FSMs using
XML is that FSMActions cannot be modeled this way. The
FSMAction interface is the only whitebox element in our
framework and as such is not suitable for configuration by
a tool. To resolve this issue we developed a mechanism
where FSMAction components are instantiated, config-

FIGURE 5. CLASS DIAGRAM FOR THE FSM FRAMEWORK

FSMContext

currentState : State
in it : FSMAction

dispatch(String eventName, Object o)
get(String name) : Object
put(String name, Object o)

Trans ition

target : State
action : FSMAction

execute(FSMContext c, Object o)

FSMAction

execute(FSMContext c, Object o)

<<Interface>>
11 +executestransitionAction

1

+exutes upon fsm instrantiation

1

init action

State

entryAction : FSMAction
exitAction : FSMAction
name : String

dispatch(FSMContext fsmc, String eventName, Object o)
addTransition(Transition t, String eventName)

1

+to

1

target state

*

+has

*

currentState

2

+executes

2
entry & exit action

FSM

createFSMInstance() : FSMContext

**

-5-

ured and saved to a file using serialization. The saved files
are referred to from the XML file as .ser files. When the
framework is configured the .ser files are deserialized and
plugged into the FSM framework. Alternatively, we could
have used the dynamic class-loading feature of Java. This
would, however, prevent the configuration of any parame-
ters the actions may contain.

4.2 CONFIGURING AND INSTANTIATING

The FSMGenerator, as our tool is called, parses a docu-
ment like the example in figure 6. After the document is
parsed, the parse tree can be accessed using the Document
Object Model API that is standardized by the World Wide
Web Consortium (W3C) [7]. After it is finished the tool
returns a FSM object that contains the FSM as specified in
the XML document. The FSM object can be used to create
FSM instances. The DOM API can also be used to create
XML. This feature would be useful if a graphical tool were
developed.

Describing the WrapAText FSM in XML is pretty
straightforward, as can be seen in figure 6. Most of the
implementation effort is required for implementing the
FSMAction objects. Once that is done, the FSM can be
generated (at run-time) and used. Five serialized FSMAc-
tion objects are pre-defined. Since the FSM framework
allows the use of entry and exit actions in states, they are
used where appropiate. The processChar action is used in
two transitions. This is where most of the work is done.
The FSMAction uses the FSMContext to retrieve two vari-
ables (a counter and the line of text that is presently cre-
ated) that are retrieved from the context. Also the
Serializable interface is implemented to indicate that this
class can be serialized.

5 ASSESSMENT
In section 2, we evaluated the implementation of finite

State machines using the State pattern. This evaluation
revealed a number of problems, based on which we devel-
oped an alternative approach. In this section we evaluate
our approach with respect to maintenance and perfor-
mance.

Maintenance. The same changes we applied in section 2.1

can be applied to the implementation of WrapAText in the
FSM framework. We’ll use the implementation as
described in section 4 to apply the changes to. All of the
changes are restricted to editing the XML document since
the behavior as defined in the FSMActions remains more
or less the same.To add the Checking state, we add a line to
the XML file:

<State name="Checking"/>

Then we change the target State of the Collect to Col-
lect transition by changing the definition in the XML file.
We do the same for the Collect to Full transition. The new
lines look like this:

<transition sourcestate="Collect" targetstate="Checking"
event="feedChar" action="processChar.ser"/>

<transition sourcestate="Checking" targetstate="Full"
event="EOL" action="skip.ser"/>

Then we add the transition from Checking to Collect:

<transition sourcestate="Checking" targetstate="Collect"
event="notFull" action="skip.ser"/>

Finally the entry action of Collect is moved to the
Checking State by setting the initaction property in Check-
ing and removing that property in Collect. Changing a
FSM implemented in this style does not require any source
editing (except for the XML file of course) unless new/dif-
ferent behavior is needed. In that case the changes are
restricted to creating/editing FSMActions.

Performance. To compare the performance of the new
approach in implementing FSMs to a traditional approach
using the State pattern, we performed a test. The perfor-
mance measurements showed that the FSM Framework
was almost as fast as the State pattern for larger State
machines but there is some overhead. The more computa-
tion is performed in the actions on the transitions that are
executed, the smaller the performance gap. To do the per-
formance measurements, the WrapAText FSM implemen-
tation was used. This is a very easy FSM to implement
since most of the actions are quite trivial. Some global data
has to be maintained: a String to collect received charac-
ters and a counter to count the characters. Two implemen-
tations of this FSM were created: one using the State
Pattern and one using our FSM Framework presented ear-
lier.

Several different measurements were performed. First,
we measured the FSM as it was implemented. This mea-
surement showed that the program spent most of its time
switching State since the actions on the transitions are
rather trivial. To make the situation more realistic loops
were inserted into the transition actions to make sure the
computation in the transitions actually took some time
(more realistic) and the measurements were performed
again. Four different measurements (see figure 7) were
done: (I) Measuring how long it takes to process
10,000,000 characters. (II) The same as (I) but now with a
100 cycle for-loop inserted in the feedChar code. Each
time a character is processed, the loop is executed. (III)
The same as (II) with a 1000 cycle loop. (IV) The same as
(II) with a 10000 cycle loop.

The loop ensures that processing a character takes
some time. This simulates a real world situation where a
transition takes some time to execute. In figure 7, a dia-

<?xml version="1.0"?>
<fsm firststate="Empty" initaction="initAction.ser">
<states>

<Statename="Empty"/>
<Statename="Collect" initaction="collectEntry.ser"/>
<Statename="Full" initaction="fullEntry.ser"/>

</states>
<events>

<event name="feedChar"/>
<event name="EOL"/>
<event name="release"/>

</events>
<transitions>

<transition sourcestate="Empty" targetstate="Collect"
event="feedChar" action="processChar.ser"/>

<transition sourcestate="Collect" targetstate="Collect"
event="feedChar" action="processChar.ser"/>

<transition sourcestate="Collect" targetstate="Full"
event="EOL" action="skip.ser"/>

<transition sourcestate="Full" targetstate="Empty"
event="release" action="reset.ser"/>

</transitions>
</fsm>

FIGURE 6. WRAPATEXT SPECIFIED IN XML

-6-

gram our measurements is shown. Each case was tested for
both the State pattern and the FSM framework. For each
test, the time to process the characters was measured. The
bars in the graph illustrate the relative performance differ-
ence. Not surprisingly the performance gap decreases if
the amount of time spent in the actions on a transition
increases. The numbers show that a State transition in the
FSM Framework (exclusive action) is about twice as
expensive as in the State Pattern implementation for sim-
ple transitions. The situation becomes better if the transi-
tions become more complex (and less trivial). The reason
for this is that the more complex the transitions are the
smaller the relative overhead of changing State is. This is
illustrated by case IV where the performance difference is
only 13%.

In general one could say that the State pattern is more
efficient if a lot of small transitions take place in a FSM.
The performance difference becomes negligible if the
actions on the transitions become more computationally
intensive. Consequently, for larger systems, the perfor-
mance difference is negligible. Moreover since this is only
a toy framework, the performance gap could be decreased
further by optimizing the implementation of our frame-
work. The main reason why State transitions take longer to
execute is that the transition object has to be looked up in a
hashtable object each time it is executed. The hashtable
object maps event names to transitions.

6 RELATED WORK
State Machines in General. FSMs have been used as a
way to model object-oriented systems. Important work in
this context is that of Harel’s Statecharts [2] and ObjChart
[8]. ObjChart is a visual formalism for modeling a system
of concurrently interacting objects and the relations
between these objects. The FSMs that this formalism
delivers are too fine-grained (single classes are modeled as
a FSM) to implement using our FSM Framework. Rather
our framework should be used for more coarse-grained
systems where the complex structure is captured by a FSM
and the details of the behavior of this machine are imple-
mented as action objects. Most of these approaches seem
to focus on modeling individual objects as FSMs rather
than larger systems.

FSM Implementation. In the GoF book [1] the State pat-
tern is introduced. In [9], Dyson and Anderson elaborate

on this pattern. One of the things they add is a pattern that
helps to reduce the number of objects in situations where a
FSM is instantiated more than once (essentially by apply-
ing the flyweight pattern). In [10], a complex variant of
the State Pattern called MOODS is introduced. In this vari-
ant, the State class hierarchy uses multiple inheritance to
model nested states as in Harel’s Statecharts [2]. In [11],
the State pattern is used to model the behavior of reactive
components in an event centered architecture. Interestingly
it is suggested that an event dispatcher class for the State
machine can be generated automatically.

In [12] an implementation technique is presented to
reuse behavior in State machines through inheritance of
other State machines. The authors also present an imple-
mentation model that is in some ways similar to the model
presented in this paper. Our approach differs from theirs in
that it factors out behavior (in the form of actions). The
remaining FSM is more flexible (it can be changed on the
fly if needed). Our approach establishes reuse using a high
level specification language for the State machine and by
using action components, that are in principle independent
of the FSM. Bosch [13] uses a different approach to mix
FSMs with the object-orientation paradigm. Rather than
translating a FSM to a OO implementation a extended OO
language that incorporates states as first class entities is
used. Yet another way of implementing FSMs in an object-
oriented way is presented in [14]. The implementation
modeled there resembles the State pattern but is a slightly
more explicit in defining events and transitions. It still suf-
fers from the problem caused by actions being integrated
with the State classes. Also data management and FSM
instantiation are not dealt with. The author also recognizes
the need for a mapping between design (a FSM) and
implementation like there is for class diagrams. This need
is also recognized in [3], where several issues in imple-
menting FSMs are discussed.

Event Dispatching. Event dispatching is rudimentary in
the current version of our framework. A better approach
can be found [15], where the Reactor pattern is introduced.
An important advantage of the way events are modeled in
our framework, however, is that they are blackbox compo-
nents. The Reactor pattern would require one to make sub-
classes of some State class. A different approach would be
to provide a number of default events as presented in [16],
where the author classifies events in different groups.

Frameworks. A great introduction to frameworks can be
found in [4]. In this thesis several issues surrounding
object-oriented frameworks are discussed. A pattern lan-
guage for developing frameworks can be found in [5]. One
of the patterns that is discussed in this paper is the Black
box Framework pattern which we used while creating our
framework. Another pattern in this article, Language
Tools, also applies to our configuration tool.

7 CONCLUSION
The existing State pattern does not provide explicit rep-

resentations for all the FSM concepts. Programs that use it
are complex and it cannot be used in a blackbox way. This
makes maintenance hard because it is not obvious how to
apply a design change to the implementation. Also support

0%

50%

100%

150%

200%

250%

FSM Framework 194% 193% 157% 113%

State Pattern 100% 100% 100% 100%

I II III IV

FIGURE 7. PERFORMANCE MEASUREMENTS

-7-

for FSM instantiation and data management is not present
by default. Our solution however, provides abstractions for
all of the FSM concepts. In addition to that it supports
FSM instantiation and provides a solution for data man-
agement that allows to decouple behavior from the FSM
structure. The latter leads to cross FSM, reusable behavior.

The State pattern is not blackbox and requires source
code to be written in order to apply it. Building a FSM
requires the developer to extend classes rather than to con-
figure them. Alternatively, our FSM Framework can be
configured (with a tool if needed) in a blackbox way. Only
FSMActions need to be implemented in our framework.
The resulting FSMAction objects can be reused in other
FSMs. This opens the possibility to make a FSMAction
component library. Our approach has several advantages
over implementing FSMs using the State pattern: States
are no longer created by inheritance but by configuration.
The same is the case for events. Also, the context can be
represented by a single component. Inheritance is only
applied where it is useful: extending behavior. Related
actions can share behavior through inheritance. Also
actions can delegate to other actions (removing the need
for events supporting more than one action). States,
actions, events and transitions now have explicit represen-
tations. This makes the mapping between a FSM design
and implementation more direct and consequently easier to
use. A tool could create all the event, State and context
objects by simply configuring them. All that would be
required from the user would be implementing the actions.
It is possible to configure FSMs in a blackbox way. This
can be automated by using a tool such as our FSMGenera-
tor.

There are also some disadvantages compared to the
original State pattern: The context repository object possi-
bly causes a performance penalty compared to directly
accessing variables, since variables need to be obtained
from a repository. However a pretty efficient hashtable
implementation is used. The measurements we performed
showed that the performance gap with the State pattern
decreases as the transitions become more complicated.
Also it could be difficult to keep track of what’s going on
in the context. The context is simply a large repository of
objects. All actions in the FSM read and write to those
objects (and possibly add new ones). This can, however, be
solved by providing tracing and debugging tools.

Future work. Our FSM framework can be extended in
many ways. An obvious extension is to add conditional
transitions. Conditional transitions are used to specify tran-
sitions that only occur if the trigger event occurs and the
condition holds true. Though this clearly is a powerful
concept, it is hard to implement it in a OO way. A possibil-
ity could be to use the Command pattern again to create
condition objects with a boolean method but that would tie
the conditions to the implementation thus they can’t be
specified at the XML level. To solve this problem a large
number of standard conditions could be provided (in the
form of components). A next step is to extend our FSM
framework to support Statechart-like FSMs. Statecharts
are normal FSMs + nesting + orthogonality + broadcasting
events [2]. These extensions would allow developers to

specify Statecharts in our configuration tool, which then
maps the statecharts to regular FSMs automatically. The
extensions require a more complex dispatching algoritm
for events. Such an extension could be used to make the
State diagrams in OO modeling methods such as UML and
OMT executable. Though performance is already quite
acceptable, much of our implementation of the framework
can be optimized. The bottlenecks seem to be the event
dispatching mechanism and the variable lookup in the con-
text. Our current implementation uses hashtables to imple-
ment these. By replacing the hashtable solution with a
faster implementation, a significant performance increase
is likely.

8 REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design
Patterns - Elements of Reusable Object Oriented
software”, Addison Wesley, 1995.
[2] D. Harel, “Statecharts: a Visual Approach to Complex
Systems(revised)“, report CS86-02 Dep. App Math’s
Weizman Inst. Science Rehovot Israel, March 1986.
[3] F. Barbier, Henri Briand, B. Dano, S. Rideau, “The
executability of Object Oriented Finite State Machines“,
Journal of Object Oriented Programming, July/August
1998.
[4] M. Mattson, “Object-Oriented Frameworks – A Survey
of Methodological Issues”, Department of computer
science, Lund University, 1996.
[5] D. Roberts, R Johnson, "Patterns for evolving
frameworks", Pattern Languages of Program Design 3
(p471-p486), Addison-Wesley, 1998.
[6] http://www.w3c.org/XML/index.html.
[7] http://www.w3c.org/index.html.
[8] D. Gangopadhyay, Subrata Mitra, “ObjChart: Tangible
Specification of Reactive Object Behavior“, Proceedings
of ECOOP ‘93, p432-457 July 1993.
[9] P. Dyson, B. Anderson, “State Patterns“, Pattern
Languages of Programming Design 3, edited by Martin/
Riehle/Buschmann Addison Wesley 1998
[10] A. Ran, “MOODS: Models for Object-Oriented
Design of State“, Pattern Languages of Program Design
2, edited by Vlissides/Coplien/Kerth. Addison Wesley,
1996
[11] A. Ran, “Patterms of Events“, Pattern Languages of
Program Design, edited by Coplien/Schmidt. Addison
Wesley, 1995
[12] A. Sane, R. Campbell, “Object Oriented State
Machines: Subclassing Composition, Delegation and
Genericity“, Proceedings of OOPSLA ‘95 p17-32, 1995.
[13] J. Bosch, “Abstracting Object State“, Object Oriented
Systems, June 1995.
[14] M. Ackroyd, “Object-oriented design of a finite State
machine“, Journal of Object Oriented Programming, June
1995.
[15] D. C. Schmidt, “Reactor: An Object Behavior Pattern
for Concurrent Event Demultiplexing and Event Handler
Dispatching“, Pattern Languages of Program Design,
p529-546 edited by Coplien/Schmidt. Addison Wesley,
1995.
[16] J. J. Odell, “Events and their specification“, Journal
of Object Oriented Programming, July/August 1994.

