
1

1 Introduction
Traditionally the development of software is orga-
nized into different phases. The phases usually occur
in a linear fashion (the waterfall model). Often the
phases of this model are repeated in an iterative
fashion. This is especially true for Object Oriented
systems. During the requirement specification phase
both functional and non-functional requirements are
collected. Based on these requirements the design is
conceived. After the design phase, the design is im-
plemented. Then the implementation is tested. This
test is also the final verification that the product
meets the requirements. After that the product is de-
ployed. After the product deployment the product
has to be maintained. Maintenance can be bug fixing
(corrective maintenance) but can also involve opti-
mizations (perfective maintenance) and adaptations
(adaptive maintenance) [18].

At any phase in the process, the process can shift
back to an earlier phase. If, for instance, during test-
ing a design flaw is discovered, the design phase and
consequently also the implementation phase need to
be repeated. It is also possible that developers dis-
cover during implementation that meeting a certain
requirement is not feasible (for instance because it is
too expensive) in which case requirements need to
be renegotiated. This type of setback in the software
development process can be costly, especially if rad-
ical changes in the earlier phases (triggering even
more radical changes in consequent phases) are
needed. We have found that non-functional require-
ments or quality requirements often cause these type

of setbacks. The reason for this is that testing wheth-
er the product meets the quality requirements does
not occur until the testing phase.

To assess whether a system meets certain quality re-
quirements, there are several assessment tech-
niques. Most of these techniques are quantitative in
nature. I.e. they measure properties of the system.
Quantitative assessment techniques are not very well
suited for use early in the development process,
however. The reason for this is that incomplete
products like design documents and requirement
specifications provide not enough quantifiable infor-
mation to perform the assessments. Instead develop-
ers resort to qualitative assessment techniques. A
frequently used technique is, for instance, the peer
review where design and or requirement specifica-
tion documents are reviewed by a group of experts.
Though these techniques are very useful in finding
the weak spots in a system, many flaws go unnoticed
until the system is fully implemented. Fixing the ar-
chitecture in this stage can be very expensive be-
cause by then the system has become complicated.

Qualitative assessment techniques, like the peer re-
view, rely on qualitative knowledge. This knowl-
edge resides mostly in the heads of developers and
may consist of solutions for certain types of prob-
lems (patterns [2][6]), statistical knowledge (60% of
the total system cost is spent on maintenance), like-
ly causes for certain types of problems (“our choice
for the broker architecture explains weak perfor-
mance“), aesthetics (“this architecture may work but
it just doesn’t feel right“), etc. A problem is that this

Using Bayesian Belief Networks in Assessing
Software Architectures

Jilles van Gurp & Jan Bosch
[Jilles.van.Gurp|Jan.Bosch]@ipd.hk-r.se

University of Karlskrona/Ronneby
Department of Software Engineering and Computer Science

Soft Center, S-372 25 Ronneby
http://www.ipd.hk-r.se/[jvg|bosch]

Abstract. Quantitative techniques have traditionally been used to assess software architectures.
We have found that early in the development process there is often insufficient quantitative
information to perform such assessments. So far the only way to make assessments about an
architecture, is to use qualitative assessment techniques like for instance a peer review. The
problem with this type of assessment techniques is that they depend on the knowledge of the
expert designers who use them. In this paper we introduce a technique that automates making
qualitative assessments of software architectures.

2

type of knowledge is inexplicit and very hard to doc-
ument. Consequently, qualitative knowledge is high-
ly fragmented and largely undocumented in most
organizations. There are only a handful known ways
to handle qualitative knowledge:

• Assign experienced designers to a project. Experi-
enced designers have a lot of knowledge about
how to engineer systems. Experienced designers
are scarce, though, and when an experienced
designer resigns from the organization he was
working for, his knowledge will be lost for the
organization.

• Knowledge engineering. Here organizations try to
capture the knowledge they have in documents.
This method is especially popular in large organi-
zations since they have to deal with the problem of
getting the right information in the right spot in the
organization. A major obstacle is that it is very
hard to capture qualitative knowledge as discussed
above.

• Artificial Intelligence (AI). In this approach quali-
tative knowledge is used to built intelligent tools
that can assist personnel in doing their jobs. Gen-
erally, such tools can’t replace experts but they
may help to do their work faster. Because of this
less experts are needed.

In this paper we present a way for representing and
using qualitative knowledge in the development pro-
cess. The technique we use for representing qualita-
tive knowledge, Bayesian Belief Networks,
originates from the AI community. We have found
that this technique is really good at modeling and
manipulating the type of knowledge described
above. Bayesian Belief Networks are currently used
in many organizations. Examples of such organiza-
tions are NASA, HP, Boeing, Siemens [8]. BBNs
are also applied in Microsoft’s Office suite where
they are used to power the infamous paperclip [13].

We created a Bayesian Belief Network, called
SAABNet (Software Architecture Assessment Be-
lief Network), that enables us to feed information
about the characteristics of an architecture to SAAB-
Net. Based on this information, the system is able to
give feedback about other system characteristics.
The SAABNet BBN consists of variables that repre-
sent abstract quality variables such as can be found
in MC Call’s quality factor model [12] (i.e. main-
tainability, flexibility, etc.) but also less abstract
variables from the domain of software architectures
like for instance inheritance depth and program-
ming language. The variables are organized in such
a way that abstract variables decompose into less ab-
stract variables.

In section 2 we give a short introduction to BBNs. In

section 3 we introduce a belief network for process-
ing qualitative information. In section 4 we validate
this network using a few cases. Related work is pre-
sented in section 5 and we conclude our paper in
section 6.

2 An introduction to Bayesian Belief
Networks
A BBN is a directed acyclic graph. The nodes in the
graph represent probability variables and the arrows
represent dependencies (not causal relations!). If
two nodes are not directly connected by an arrow,
this means they are independent given the nodes in
between.

Each node can contain a number of states. A condi-
tional probability is associated with each of these
states for each combination of states of their direct
predecessors (see figure 1 for an example). By us-
ing a smart algorithm, the conditional chances for all
of the variables in the network can be calculated,
something that would take exponential amounts of
processing power using conventional math (it’s a NP
complete problem). A BBN can be used by entering
evidence (i.e. setting probabilities of variables to a
certain value). The chances for the states of the other
variables are then recalculated. How this is done is
beyond the scope of this paper, however (for an in-
troduction to BBNs we refer to [16]). Instead we
will focus on how to build and use these networks
for qualitative assessment of software architectures.
A BBN consists of both a qualitative and a quantita-
tive specification. The qualitative specification is the
graph of all the nodes. The quantitative specifica-
tion is the collection of all conditional chances asso-
ciated with the states in each node.

In figure 1 an example of a very small BBN is given
that we will use to explain the concepts of a BBN. In
this figure there are four variables. Each variable in
our example has only two states (true and false). To
the left, a qualitative version of the network is
drawn, to the right all the probabilities that are need-
ed for the quantitative part of the network are given.
Each node in a BBN has to specify the conditional
probabilities for each of its states given a combina-
tion of its direct parent states. In our example A and
B don’t have any parents so there only are two prob-
abilities. C has both A and B as a parent and thus has
to specify 8 different probabilities. The figure only
lists four but the remaining four (C=false) can be de-
rived from these (since the probabilities for both
states have to add up to 1). The same goes for vari-
able D. Note that variable D does not depend on
variable A. Variable D is called conditionally inde-
pendent of variable A given variable C. Because of
this concept it is possible to create very large net-

3

works without the calculations getting too complex.
With modern computers it is possible to calculate
networks with hundreds of nodes.

With this network and the algorithms that are used
in BBNs it is possible to calculate probabilities like
P(D=false|C=false,B=true) with variable A un-
known or P(A=true|B=true) with variable C and D
unknown. This can be done by entering the probabil-
ity information behind the bar into the network. The
BBN algorithm will than calculate the probabilities.
Feeding probability information to the network is
usually referred to as entering evidence. In the ex-
ample above, entering the evidence P(C=false)=1
and P(B=true)=1 enables the algorithm to calculate
the probabilities for the states in all the other vari-
ables given these two variables. This is called propa-
gating evidence through the network.

A BBN is typically used by entering information
that is known. I.e. the chances for states of variables
are set to a value. The value can be 1 if the knowl-
edge is 100% certain but may also be set to other
values. The BBN then uses the conditional probabil-
ities in the quantitative specification to recalculate
all the probabilities of other variables’ states. These
recalculated probabilities form the output of the net-
work. The more evidence is fed to the network, the
more accurate the output.

2.1 What type of knowledge can be put in a
BBN?

The nature of human knowledge is that it is unstruc-
tured, incomplete and fragmented. These properties
make that it is very hard to make a structured, com-
plete and unfragmented mathematical model of this
knowledge. The strength of BBNs is that it enables
us to reason with uncertain and incomplete knowl-
edge. The problem of fragmentation still exists for
this way of modeling knowledge, though.

To build a BBN, knowledge from many different
sources has to be collected. In our case the knowl-
edge resides in the heads of developers but there
may also be some knowledge in the form of books
and documentation. Examples of sources for knowl-

edge are:

• Patterns. The pattern community provides us with
a rich source of solutions for certain problems.
Part of a pattern is a context description where the
author of a pattern describes the context in which a
certain problem can occur and what solutions are
applicable. This part of a pattern is the most useful
in modeling a BBN because this matches the para-
digm of dependencies between variables.

• Experiences. Experienced designers can indicate
whether certain aspects in a software architecture
depend on each other or not, based on their experi-
ence.

• Statistics. These can be used to reveal or confirm
dependencies between variables.

2.2 Construction of BBNs

Constructing a BBN generally involves the follow-
ing steps:

• Identify relevant variables in the domain
• Define/identify the probabilistic dependencies and

conditional independencies between the variables.
(this should lead to a qualitative specification of
the BBN)

• Assess the conditional probabilities (this should
lead to a quantitative specification of the BBN)

• Test the network to verify that the output of the
network is correct.

We have found that the last two steps need to be iter-
ated many times and sometimes enhancements in the
qualitative specification are needed.

Basically the only way to establish whether a BBN
is reliable is to do casestudies. Doing such case stud-
ies means feeding evidence of a number of selected
cases to the network and verifying whether the out-
put of the network corresponds with the data avail-
able from the case studies. The network can be
relied upon to deliver mathematical correct probabil-
ities given correct qualitative and quantitative speci-
fications of the BBN. If a BBN doesn’t give correct
output, that may be an indication that the probabilis-
tic information in the network is wrong or that there

FIGURE 1. A small BBN

A B

C

P(A=true) = 0.75
P(A=false) = 0.25

P(B=true) = 0.21
P(B=false) = 0.79

P(C=true|A=true,B=true) = 0.97
P(C=true|A=true,B=false) = 0.67
P(C=true|A=false,B=true) = 0. 71
P(C=true|A=false,B=false) = 0.43

D

P(D=true|C=true,B=true) = 0.31
P(D=true|C=true,B=false) = 0.48
P(D=true|C=false,B=true) = 0.65
P(D=true|C=false,B=false) 0.84

4

is something wrong with the qualitative specifica-
tion of the network.

Problems with the qualitative specification may be
missing variables (over simplification) or incorrect
dependency relations between variables (missing ar-
rows or to many arrows). Problems with the quanti-
tative specification are caused by incorrect
conditional probabilities. Estimating probabilities is
something that human beings are not good at so it is
not unlikely that the quantitative specification has
errors in it. Most of these errors only manifest them
in very specific situation, however. Therefore a net-
work has to be tested very thoroughly to make sure
the output of it correct.

2.3 Interpreting the output of a BBN

It is important to realize that any model is a simplifi-
cation of reality. Therefore, the output of a BBN is
also a simplification of reality. When we designed
our SAABNet network, we aimed to get realistic
output. I.e. output that stresses good points and bad
points of the architecture.

The output of a BBN consists of probabilities for
each state in each variable. The idea is that a user
enters chances for some of the variables (for in-
stance P(implementation_language=Java)=1.0). This
information is then used together with the quantita-
tive specification of the network to calculate all the
other chances. Since also chances other than 1.0 can
be entered, the user is able to enter information that
is uncertain.

Though the output of the network in it self is quanti-
tative, the user can use this output to make qualita-
tive statements about the architecture (“if we choose
the broker architecture there is a risk that the system
will have poor performance and higher complexi-
ty“) based on the quantitative output.

Sometimes the output of a BBN contradicts with
what one expects from the given input. Contradict-
ing output always has a cause:

• The model is wrong. This means that either there’s
something wrong with the qualitative model. I.e.
some variables are not taken into account that
really are of importance. Or the quantitative model
is wrong. I.e. the influence of some variables is
overrated/underrated. Either error can be fixed by
adapting the network.

• There is not enough input for the model to come
up with a reliable estimation. In this case more
evidence needs to be added.

• The entered evidence does not match reality. In
this case the BBN cannot be expected to come up
with reasonable estimates.

• The perceived definition of a term does not match
the BBNs definition. This is a matter of under-
standing our BBN. Maybe the BBN needs to be
changed to reflect the perceived definition or
maybe some additional documentation may
resolve the misunderstanding.

• The user is wrong. If none of the above is the
cause of the contradiction, the user is wrong.
Maybe the user has a different understanding of
the variables in the network. Maybe the user
knows something that was not entered into the net-
work. Maybe the user assumes a causal connection
that is not there.

In many cases the BBN will give neutral output. I.e.
the probabilities for each state in a certain variable
are more or less equal. Possible causes for this are:

• There is not enough information available to favor
any of the states of this variable.

• The variable has no incoming arrows. This vari-
able might be intended as an input variable. Espe-
cially when the number of outgoing arrows is low,
it is unlikely that this variable is affected by the
rest of the model very much.

If all of the above things are solved, the BBN may
give high probabilities for some variable states. If
this happens (assuming it does not conflict with real-
ity), the network has provided useful output. It may
confirm what had already been suspected in which
case proper argumentation can be found for this sus-
picion by examining the rest of the network. It may
also provide new information in which case it is cer-
tainly recommended to find out why the BBN gives
a high probability.

3 SAABNet
Based on a number of cases we have created a BBN
for assessing software architectures called SAAB-
Net (Software Architecture Assessment Belief Net-
work). The aim of SAABNet is help developers
perform qualitative assessments. Its primary aim is
to support the architecture design process. Conse-
quently, it does not support later phases of the soft-
ware development process.

3.1 Overall structure of SAABNet

The variables in SAABNet can be divided into three
categories:

• Architecture attributes
• Quality Criteria
• Quality Factors

This categorization was inspired by Mc Call’s quali-
ty requirement framework [12]. In this framework,

5

abstract quality factors, representing quality require-
ments, are decomposed in less abstract quality crite-
ria. We have added an additional decomposition
layer, called architecture attributes, that is even less
abstract. Architecture attributes represent concrete,
observable artifacts of an architecture.

Though this suggests a nicely layered tree for our
BBN, this is not the case. SAABNet has many ar-
rows and it is impossible to give a nicely layered
view of this network. However, this layered struc-
ture does reflect the fact that variables with no out-
going arrows are more abstract than variables with
no incoming arrows.

SAABNet is capable of finding non trivial argumen-
tation (by following the arrows in the graph in the
reverse direction) for the state of variables in the
model. This argumentation nicely matches the argu-
mentation that would otherwise be provided by an
expert designer.

3.2 Qualitative specification

In this section we discuss the qualitative specifica-
tion of SAABNet. In figure 2, a qualitative represen-
tation of our network is given (i.e. a directed acyclic
graph). Though at first sight our network may seem
rather complicated, it is really not that complex.
While designing we carefully avoided having to
many incoming arrows for each variable. In fact
there are no variables with more than three incoming
arrows. The reason that we did this was to keep the

quantitative specification simple. The more incom-
ing arrows, the higher the number of combinations
of states of the predecessors. The cleverness of a
BBN is that it organizes the variables in such a way
that there are few dependencies (otherwise the num-
ber of conditional probabilities becomes exponen-
tially large). Without a BBN, all combinations of all
variable states would have to be considered (nearly
impossible to do in practice because the number ris-
es exponentially). In addition to limiting the number
of incoming arrows we also limited the number of
states the variables can be in. Most of the variables
in our network only have two states (i.e. good and
bad or high and low etc.). We may add more states
later on to provide greater accuracy.

We will give a short description of the variables (in
alphabetical order) in our network and indicate how
they depend on other variables. We have organized
them into three groups corresponding with the dif-
ferent types of variables we discussed in 3.1.

3.2.1 Architecture Attributes

arch_style (pipesfilters/broker/layers/blackboard).

This is the only variable with more than two states.
The styles they represent correspond with architec-
tual styles discussed in [2]. This variable has no in-
coming arrows so all the states have the same
default probability.

class_inheritance_depth (deep/not deep). Dependen-

implementation_langauge dynamic_binding nr_of_threads context_switchesarch_style

multiple_inheritance class_inheritance comp_granularity interface_granularity comp_interdependencies exception_handling responsiveness throughput scalability

vertical_complexity

complexitydocumentation horizontal_complexity

reusability coupling
fault_tolerance

understandabilitytestability configurability

modifieability

maintainability

flexibility

correctness

usability safety security

reliability

memory_usage

performance

FIGURE 2. Qualitative specification of SAABNet

6

cies: implementation_language, comp_granularity.
This variable indicates the inheritance depth. Studies
have shown that inheritance hierarchies, deeper than
approximately three, are more difficult to compre-
hend [3]. It is important to note that this variable is
not meant to be interpreted this exactly. I.e. if the in-
heritance hierarchy depth stays below three mostly
and only incidentally is deeper than three, the archi-
tecture should have high probability for not so deep
inheritance. Whether an inheritance hierarchy is
deep or not is partly a design decision but it is also
influenced by the programming language used.
Nearly all OO languages come with some sort of
framework that offers default functionality. The way
this framework is structured is reflected in applica-
tions created with the language. Furthermore also
the size of components is important. Large, coarse-
grained components do not rely on inheritance so
much so the inheritance depth is not likely to be as
deep as with fine-grained components.

comp_granularity (fine-grained/coarse-grained). De-
pendencies: implementation_language, arch_style.
This variable acts as an indicator of component size.
A component, in our view, can be anything from a
single class up to a large number of classes [5]. In
the first case we speak of fine-grained component
granularity and in the other case we speak of coarse-
grained granularity. Creating coarse-grained or
fine-grained components is largely a design deci-
sion. Developers have a natural tendency to concen-
trate functionality in groups which leads to coarse-
grained components. Creating smaller components
usually is the result of careful designing. This can be
influenced by the implementation language (some
languages provide more mechanisms to support this
than others) and the architectual style which is a
dominant factor in the whole architecture.

comp_interdependencies (many/few). Dependencies:
arch_style, dynamic_binding. This indicates the
number of dependencies between components. De-
pendencies can be any sort of reference to other
components: it can be a hardcoded reference or it
can be of a more dynamic form (for instance through
an event mechanism). The type and number of de-
pendencies are partially influenced by the architec-
tural style. Some styles, for instance the broker style,
explicitly use dynamic binding to link components
together. The involved components thus have very
few interdependencies. Other styles like the layers
style are more performance oriented and avoid the
use of (slow) dynamic binding. This leads to a more
static architecture with more dependencies between
the components.

context_switches (many/few). Dependencies: cou-

pling, nr_of_threads. A context switch can occur in
multi threaded systems when data currently owned
by a particular thread is needed by another thread.
Especially on distributed architectures this can be
the cause of performance hits. But also on smaller
architectures context switches can be bad for perfor-
mance.

coupling (static/loose). Dependencies: interface_
granularity, comp_interdependencies. Dependen-
cies can have several forms. This variable acts as an
indicator of which type of dependency is used most-
ly. With static coupling, components are linked to
each other with hard references while loose coupling
indicates that the references are more dynamic (for
instance because an event mechanism is used or be-
cause the reference to components is obtained dy-
namically). Interfaces are often used to add typing to
loose coupled component relations while compo-
nents with many interdependencies are likely to be
coupled in a static way.

documentation (good/bad). This is an input variable,
if no evidence is entered a probability of 0.7 is as-
signed to the ‘bad’ state (this reflects the situation
that in most organizations documentation is not en-
tirely adequate).

dynamic_binding (high/low). Dependencies: implem-
entation_language, interface_granularity. Modern
languages such as C++ and Java support dynamic
binding (i.e. the decision what code to execute is de-
layed until runtime). If static binding (i.e. the rela-
tions between executable code pieces are fixed at
compiletime) is used the architecture will be less
flexible. The presence of interfaces and or abstract
classes is usually an indicator that dynamic binding
is used. Client components can than use references
with the involved interface/abstract class as a type.
In C++ dynamic binding has a performance impact
that discourages users to apply it. Java on the other
hand encourages dynamic binding by making it the
default way of binding.

exception_handling (yes/no). Dependencies: implem-
entation_language. Exception handling is a mecha-
nism that helps to capture fault states in a program.
This variable can have the states ‘yes’ (exception
handling is used in the architecture) and ‘no’ (excep-
tion handling is not used). Some languages (like
Java [6]) support this natively while in other lan-
guages no default mechanism is available to do ex-
ception handling. For this reason it is less likely (not
impossible) that a system using such a language will
have exception handling because it is more trouble-
some to implement.

implementation_language (java/c++). We have only

7

included two languages (Java and C++) for this in-
put variable in the current network. Adding more
languages is not so difficult if the qualitative net-
work is left intact. Only the quantitative part will
have to be edited (all the conditional probabilities
for the states in the variables on the outgoing arrows
of this variable).

interface_granularity (coarse-grained/fine-grained).

Dependencies: comp_granularity, implementation_-
language. In [5] we introduced a conceptual model
of how to model a framework. One of the aspects of
this model is to use small interfaces that implement
a role as opposed to the traditional method of putting
many things in a single interface. We refer to these
small interfaces as fine-grained interfaces and to the
larger ones as coarse-grained interfaces. This vari-
able is an indication of whether fine-grained or
coarse-grained interfaces are used in the architec-
ture. Coarse-grained components are likely to have
coarse-grained interfaces. Furthermore, some pro-
gramming languages promote the use of small
grained interfaces more than others.

multiple_inheritance (yes/no). Dependencies: imple-
mentation_language. Indicates whether multiple in-
heritance is used in an architecture. Some languages
do not support multiple inheritance and even if it is
supported, it is not always used. Just like a deep in-
heritance tree, use of multiple inheritance is bad for
understandability.

nr_of_threads (high/low). Dependencies: arch_style.
Indicates whether there are many threads or not.
Some architectual styles make it easy to split a sys-
tem into threads while with other styles this is more
difficult.

3.2.2 Quality Criteria

complexity (high/low). Dependencies: vertical_com-
plexity, horizontal_complexity. This variable indi-
cates whether an architecture is perceived as com-
plex. Vertical and horizontal complexity are
explained in more detail below.

fault_tolerance (tolerant/intolerant). Dependencies:
implementation_language, exception_handling. A
fault tolerant architecture recovers nicely (in a well
defined way) from run time errors. Some languages
are safer than others in that they provide mecha-
nisms to prevent certain types of fault situations. Ex-
ception handling in addition helps solve fault
situations should they arrive. Of course there are
other mechanisms for fault tolerance which in the
current version of our network are not taken into ac-
count. If such mechanisms are used, this variable

will have to be set to the appropriate value manually.

horizontal_complexity (high/low). Dependencies:
coupling, comp_granularity. We split up complexi-
ty into two variables (horizontal and vertical com-
plexity). The reason for this was that with just one
complexity variable there would be many incoming
arrows in the qualitative network. With horizontal
complexity we mean the complexity of the relations
between the components. Vertical complexity on the
other hand refers to the complexity of inheritance re-
lations (and ‘implements’ relations in Java). Hori-
zontal complexity is usually the result of many,
hardwired relations between components. This typi-
cally is the case if there are many small components
that are linked together in a static way.

memory_usage (high/low). Dependencies: comp-
_granularity. Indicates whether an architecture is
likely to use much memory or not. Large compo-
nents are usually more memory efficient than a large
cluster of small components.

responsiveness (good/bad). Dependencies: arch_style.
Indicates whether the application is responsive
enough. This factor is influenced by the architectual
style. Some styles limit the responsetime while oth-
ers don’t have these limitations.

security (secure/unsecure). The system is secure if it
protects itself from malicious users and prevents us-
ers from causing fault situations.

testability (good/bad). Dependencies: understandabil-
ity. This variable gives an indication of whether the
resulting system can easily be tested or not. At this
moment in time it is only dependable of understand-
ability but additional variables may be added later.

throughput (good/bad). Dependencies: context_swit-
ches, arch_style. Indicates whether implementations
of the architecture process enough data. Context
switches take time and are therefore bad for the
throughput. The architectual style is another impor-
tant factor since that determines how the data will
flow through the system.

understandability (good/bad). Dependencies: com-
plexity, documentation. This variable is influenced
by documentation and complexity. In other words: a
complex system that has poor documentation can-
not be understood easily whereas a well document-
ed system with low complexity can be understood
easily.

vertical_complexity (high/low). Dependencies: multi-
ple-_inheritance, class_inheritance_depth, interface-
_granularity. Also see horizontal complexity. As op-
posed to horizontal complexity this variable gives an

8

indication of the complexity of the vertical inherit-
ance relations. Vertical complexity can be caused by
deep inheritance trees but may also be the result of
using multiple inheritance. Also the use of fine-
grained interfaces may make the hierarchy compli-
cated.

3.2.3 Quality Factors

configurability (good/bad). Dependencies: coupling,
understandability. This indicates the ability to con-
figure the architecture at runtime (for compile time
configurability see the variable modifiability). There
are two types of configurability: parameter modifi-
cation and component rearranging. Both types of
configuration become easier if the architecture can
be easily understood. If, in addition, coupling is
loose, the second type of configuration becomes
more like the first type (i.e. components can be rear-
ranged by setting certain parameters).

correctness (good/bad). Dependencies: maintainabili-
ty, understandability. This variable indicates wheth-
er implementations of the architecture are likely to
behave correctly. I.e. whether they will always give
correct output. An architecture that is well under-
stood and easy to fix is more likely to be correct than
an architecture that isn’t understood or easy to
maintain.

flexibility (good/bad). Dependencies: modifiability,
reusability, configurability. Flexibility is the ability
to adapt to new situations. A flexible architecture
can easily be tuned to new requirements and to
changes in its environment. These three variables all
represent a way of adapting to a new situation. The
easier this is, the more flexible the architecture.

maintainability (good/bad). Dependencies: config-
urability, modifiability. In our network the variable
maintainability depends on two other variables:
modifiability and configurability. This suggests a
nice definition for maintainability: the ability to
change the system either by configuring it or by
modifying parts of the code in order to meet new re-
quirements. This definition can also be mapped to
the decomposition of maintainability into perfec-
tive, corrective and adaptive maintenance [18]. Per-
fective and corrective maintenance are covered by
modifiability (they both require source code chang-
es) while adaptive maintenance is covered by con-
figurability (no source code changes are required).
Maintenance is all about performing changes in the
architecture. If this is made easy (either by improv-
ing modifiability or by improving configurability),
an architecture can be called maintainable.

modifiability (good/bad). Dependencies: understand-

ability, coupling. The ability to modify an architec-
ture. Modification can be either perfective or
corrective maintenance. In order to be able to per-
form modifications to an architecture, the architec-
ture has to be understood well. Loosely coupled
code is easier to change because the changes have
less impact on the other code.

performance (good/bad). Dependencies: throughput,
responsiveness. Indicates whether the system will
perform well. A well performing system has a high
throughput and a good repsonsetime. Any problems
in this area are reflected as bad performance in our
network.

reliability (reliable/unreliable). Dependencies: safe-
ty, security. Reliability depends on security and
safety in our model. So the definition of a reliable
architecture we use here, is that architectures have to
be both safe (functions correctly and does no harm
to its environment) and secure (it can’t be abused by
users) in order to be reliable.

reusability (good/bad). Dependencies: understand-
ability, comp_granularity, coupling. An architecture
supports reuse if people are able to understand it, if
the components sufficiently large enough to imple-
ment enough functionality but not so big they are in-
flexible and if the components are loosely coupled
(i.e. reusing one component doesn’t require the use
of all other components).

safety (safe/not safe). Dependencies: fault_tolerance,
correctness. Safety is all about not affecting the en-
vironment in a negative way. For software architec-
tures this means that faults need to be taken care of
in a well defined way (exception handling) and that
the system gives correct output if there’s is no fault
situation (correctness).

scalability (good/bad). Dependencies: memory_us-
age, context_switches, nr_of_threads. With scalabil-
ity we refer to performance scalability. I.e. the sys-
tem is scalable if performance goes up if better
hardware is used. While this may seem trivial, this is
not true for all systems. in fact there are systems that
are known to perform worse when more processors
are used (the performance hit of context switching
outweighs the benefit of extra processing power). To
be able to use multiple processors, a system has to
be multithreaded. The more threads, the easier it is
to distribute them. A limiting factor is the number of
context switches. If there are many contextswitches
between the threads, the cost of performing them
will outweigh the benefit of extra processing power.
The memory consumption of the system can also be
a limiting factor.

9

usability (good/bad). Dependencies: performance,
configurability, reliability. There are a number of
factors influencing the usability of an architecture:
performance, configurability and reliability. These
are all important factors from a user’s point of view.

3.3 Quantitative Specification

Since quantitative information about the attributes
we are modeling here is scarce, our main method for
finding the right probabilities was mostly through
trial and error. Since our assessment did not provide
us with detailed information, we provided the net-
work with estimates of the conditional probabilities.
Since the goal of this network is to provide qualita-
tive rather than quantitative information., this is not
necessarily a problem.

A complete quantitative specification of our network
is beyond the scope of this paper. A reason for this
is that there are simply too many relations to list
here. Our network contains 30+ variables that are
linked together in all sorts of ways. A complete
quantitative specification would have to list close to
200 probabilities. As an illustration we will show the
conditional probabilities of the configurability vari-
able in SAABNet.

Configurability depends on understandability and
coupling. In table 1 the conditional probabilities for
the the two states of this variable (good and bad) are
listed. Since there are 2 predecessors with each two
states, there are 2 times 2 makes 4 combinations of
states for each state in configurability. Since we
have two states that is 8 probabilities for this vari-
able alone. Note that the sum of each column is 1.

The precision of our model is not very high. we used
one decimal for the probabilities, so any output the
BBN gives can’t be more accurate than that. Instead
of using the exact probabilities we prefer to inter-
pret the figures as trends which can be either strong
if the differences between the probabilities are high
or weak if the probabilities do not differ much in
value.

Possible uses of our model:

• Assistance in selecting system properties based on
quality requirements. I.e. we want a flexible,
highly configurable system without taking a per-
formance penalty. Our network will suggest what
states the other variables need to be in to make this

likely. This does not automatically mean that other
values of these variables won’t give this result, it
just means that it is not as likely to happen.

• Verifying of choosing certain properties for the
variables indeed has the wanted effect on other
variables. This is useful to provide argumentation
for decisions early in the design process.

• Identifying variables that will need special atten-
tion during the development process. I.e. the BBN
indicates that there will be a problem with one of
the variables. Avoiding the causes for this prob-
lem may improve the situation.

Our BBN provides

• Arguments for existing ideas about the architec-
ture

• Early warning for problem areas in the architec-
ture

• Argumentation for taking design decisions

The BBN we discuss in this paper is a first version
primarily intended to study the feasibility and use-
fulness of doing qualitative assessments using
BBNs. If successful, SAABNet will have to go
through a number of evolution cycles in which more
variables are added and in which the conditional
probabilities are enhanced.

4 Validation
As a proof of concept, we implemented SAABNet
using Hugin [7] and used it with some cases. This
tool makes it possible to draw the network and enter
the conditional probabilities. It can also run in the so
called compiled mode where evidence can be en-
tered and the conditional probabilities for each vari-
able’s states are recalculated (for a complete
specification of SAABNet in the form of a Hugin
file, please contact the first author). The primary aim
for the validation was to show that even with a sim-
ple model as SAABNet, it is possible to get useful
qualitative assessments.

The evaluation method we used consists of the fol-
lowing steps

• Take an existing architecture
• Use assessment techniques and interviews to

unveil different properties of the architecture
• Feed this information to the network and verify

the findings of the network in the real architecture
• OR partially feed the information to the network

and check how much of the other information is
deduced by the network

For validation of the output we relied on the same
sources that provided us with the input for the cas-
es. In most cases this was system documentation.

understandability good bad

coupling loose static loose static

good 0.9 0.2 0.7 0.1

bad 0.1 0.8 0.3 0.9
TABLE 1. Conditional probabilities configurability

10

We conducted a number of tests based on real archi-
tectures. The results of these tests are listed in table
2 till table 5. Each case is discussed in more detail in
the sections after this. All tests were conducted with
the same version of the network. For the output vari-
ables we picked a subset of the variables for each
case. The reason for this selection is that not every
variable is worth consideration in every case. Also
often the network does not provide a clear prefer-
ence for a variable state indicating a lack of evi-
dence. For clarity we left these variables out. We did
include variables with either confirming or conflict-
ing values. In the discussion of the results below,
conflicts with reality are discussed and clarified.

4.1 Case 1: An embedded system
Architecture

For our first case we evaluated the architecture of
aswedish company that specializes in producing em-
bedded software for hardware. The devices in-
volved, run on proprietary hardware and software.
We were allowed to examine this company’s inter-
nal documents for our cases.

The software, originally written in C, has been port-
ed to C++ over the past years. Most of the architec-
ture is implemented in C++ nowadays. The current
version of the architecture has recently been evaluat-
ed in what could be interpreted as a peer review. The
main goal of this evaluation was to identify weak
spots in the architecture and come up with solutions
for the found problems. The findings of this evalua-
tion are very suitable to serve as a testcase for our
BBN. We were allowed access to internal docu-
ments for this purpose.

4.1.1 Status Quo

The current architecture has a number of problems
(which were identified in the evaluation project). In
this case we test whether our network comes to the
same conclusions and whether it will find additional

problems.

Facts/evidence. We know several things about the ar-
chitecture that can be fed to our network:

• C++ is used as an implementation language
• The documentation is incomplete and usually is

not up to date
• Because of the use of frameworks, the class inher-

itance depth is deep.
• Components are coarse-grained
• There are many dependencies between the mod-

ules and the components
• The whole architecture is large and complicated. It

consists of hundreds of modules adding up to hun-
dreds of thousands lines of code.

• Interfaces are only present in the form of header
files and abstract classes form the frameworks

• There are very few context switches (this has been
a design goal to increase performance)

Based on this knowledge we can enter the evidence
listed in table 2.

Output of the network. In table 2 some of the output
variables are shown. The results clearly show that
there is a maintainability problem. There is a depen-
dency between configurability and maintainability
and a dependency between modifiability and main-
tainability in figure 2. So, not surprisingly, modifi-
ability and configurability are also bad in the results.
Reusability (depends on understandability,
comp_granularity and coupling) is also bad since all
the predecessors in the network also score negative-
ly. The latter, however, conflicts with the company’s
claims of having a high level of reuse.

In section 3.2 we described the reusability variable
in an implicit way. We merely listed the prerequi-
sites for reusability (i.e. understandability, compo-
nent granularity and coupling). Clearly the
architecture scores bad on these prerequisites (poor
understandability, coarse-grained components and

Entered evidence Output of the network

documentation bad arch_style layers (0.47)

class_inheritance_depth deep configurability bad (0.76)

comp_granularity coarse_grained coupling static (0.76)

comp_interdependencies many horizontal_complexity high (0.66)

complexity high maintainability bad (0.71)

context_switches few multiple_inheritance yes (0.77)

implementation_language C++ vertical_complexity high (0.87)

interface_granularity coarse_grained modifiability bad (0.90)

reusability bad (0.68)

understandability bad (1.0)
TABLE 2. Status Quo

11

static coupling) so the conclusion of the network can
be explained. The network only considers binary
component reuse. This is not how they reuses their
code. Instead, when reusing code, they take existing
modules, which are then tailored to the new situa-
tion. Another reason why their claim of having reuse
in their organization legitimate despite the output of
SAABNet is that they have a lot of expert program-
mers who know a great deal about the system. This
makes the process of adapting code to new situa-
tions a bit easier than would normally be the case.

The network also gives the layers architectural style
the highest probability (out of four different styles).
This is indeed the architectual style that is used by
them. As can be deduced from the many outgoing
arrows of this variable in our network, this is an im-
portant variable. Choosing an architectural style in-
fluences a lot of other variables. It is therefore not
surprising that it picks the right style based on the
evidence we entered.

4.1.2 Planned Changes

To address the problems mentioned, the company
plans to modify their architecture in a number of
ways. The most important architectural change is to
move from a layers based architecture to an archi-
tecture that still has a layers structure but also incor-
porates elements of the broker architecture. A broker
architecture will make it easier to plug in compo-
nents to the architecture. In addition, this will im-
prove the runtime configurability.

Apart from architectural changes, also changes to
the development process have been suggested.
These changes should lead to more accurate docu-
mentation and better test procedures. Also modular-
ization is to be actively promoted during the
development process.

Facts/evidence.

• C++ is still used as a primary programming lan-
guage.

• Documentation will be better than it used to be
because of the process changes.

• The inheritance depth will probably not change
since the frameworks will continue to be used.

• The component granularity will still be coarse-
grained.

• The component interfaces will remain coarse-
grained since the frameworks are not affected by
the changes.

• There are still very few context switches.
• The architecture is now a broker architecture.

Output of the network. A key question is whether
our network predicts the expected result of doing the
suggested changes. One of the reasons the broker ar-
chitecture has been suggested was that it would re-
duce the number of interdependencies. Our network
confirms this with a high probability for few compo-
nent interdependencies. However, the network does
not give such a high probability for loose coupling
(as could be expected from applying a broker archi-
tecture). The reason for this is that the involved
components are coarse-grained. While the relations
between those components are probably loose, the
relations between the classes inside the components
are still static.

A second reason for using the broker architecture
was to increase configurability. In particular, it
should be possible to link together components at
runtime instead of statically linking them at compi-
letime. The low score for good configurability is a
bit add odds with this. It is an improvement of the
high probability for bad configurability in the previ-
ous case, though. The reason that it doesn’t score
very high yet is that the influencing factors, under-
standability and coupling, don’t score high probabil-
ities for good and loose. The improved
documentation did of course have a positive effect
on understandability but it was not enough to com-
pensate for the probability on high complexity.

Entered evidence Output of the network

arch_style broker configurability good (0.52)

class_inhertance_depth deep maintainability good (0.64)

comp_granularity coarse_grained modifiability good (0.66)

interface_granularity coarse_grained reusability bad (0.65)

context_switches few understandability good (0.64)

documentation good coupling loose (0.54)

implementation_language C++ correctness good (0.75)

comp_interdependencies few (0.79)
TABLE 3. Planned changes

12

4.2 Case 2: Epoc32

Epoc32 is an operating system for PDAs (personal
digital assistants) and mobile phones. It is devel-
oped by Symbian. The Epoc32 architecture is de-
signed to make it easy for developers to create
applications for these devices and too make it easy
to port these applications to the different hardware
platforms EPOC 32 runs on. Its framework provides
GUI constructs, support for embedded objects, ac-
cess to communication abilities of the devices, etc.

Since devices like PDAs and mobile phones have
very strict requirements on stability and memory us-
age, the architecture provides mechanisms to make
it easy to meet those requirements. The Epoc32 op-
erating system was programmed in C++, which is
also the main language to develop the applications
in. When programming for the Epoc32 there are
some restrictions on the usage of C++. Multiple in-
heritance, for instance, is restricted to one imple-
mentation class and possibly more than one abstract
class.

To learn about the EPOC 32 architecture we exam-
ined Symbian’s online documentation [17]. This
documentation consisted of programming guide-
lines, detailed information on how C++ is used in
the architecture and an overview of the important
components in the system.

4.2.1 Architecture properties predict design goals

In this case we examine whether the design goals of
the EPOC 32 architecture are predicted by our mod-
el given the properties we know about it. The de-
sign goals of the EPOC 32 architecture can be
summarized as follows:

• It has to perform well on limited hardware
• It has to be small to be able to fit in the generally

small memory of the target hardware

• It must be able to recover from errors since EPOC
programs are expected to run for months or even
years

• The software has to be modular so that the system
can be tailored for different hardware platforms

• The software must be reliable, crashes are not
acceptable

Facts/evidence. We assessed some architectual prop-
erties using the online EPOC documentation [17].
From this documentation we learned that:

• A special mechanism to allocate and deallocate
objects is used

• Multiple inheritance is not allowed except for
abstract classes with no implementation (the func-
tional equivalent of the interface construct in
Java).

• The depth of the inheritance tree can be quite
deep. There is a convention of putting very little
behavior in virtual methods, though. This causes
the majority of the code to be located in the leafs
of the tree.

• A special exception handling mechanism is used.
C++ default exception handling mechanism uses
too much memory so the EPOC 32 OS comes with
its own macro based exception handling mecha-
nism.

• Since the system has to operate in devices with
limited memory capacity, the system uses very lit-
tle memory. In several places memory usage was a
motivation to choose an otherwise less than opti-
mal solution (exception handling, the way DLLs
are linked)

• Components are medium sized. I.e. large compo-
nents are pointless because they don’t provide
enough modularity. Small components on the
other hand have too much overhead to run effi-
ciently. Components come in the form of one or
more DLLs or an executable. The general rule is

Entered evidence Output of the network

class_inheritance_depth deep complexity low (0.62)

comp_granularity coarse-grained configurability high (0.55)

comp_interdendencies few correctness good (0.73)

exception_handling yes fault_tolerance tolerant (0.70)

implementation_language c++ flexibility good (0.55)

interface_granularity coarse-grained maintainability good (0.65)

memory_usage low modifiability good (0.66)

multiple_inheritance no reliability reliable (0.74)

reusability bad (0.64)

usability good (0.65)

understandability good (0.52)
TABLE 4. EPOC 32: Prediction of design goals by architectual properties

13

that components contain a group of related
classes. The presence of unrelated classes in a
components may cause the component to be split
into two components.

• There are few dependencies between components.
In particular circular dependencies are not
allowed.

• Generally components can be replaced with binary
compatible replacements which indicates that the
components are loosely coupled.

Output of the network.

The output of the network confirms that the right
choices have been made in the design of the EPOC
32 operating system. Our network predicts that low
complexity is probable, high reliability is also prob-
able. Furthermore the system is fault tolerant (which
partially explains reliability.). The system also
scores well on maintainability and flexibility. A sur-
prise is the low score on reusability. Unlike the pre-
vious case, the EPOC 32 features so called binary
components. What obstructs their reuse is the fact
that the components are rather large and the fact that
the interfaces are also coarse-grained. Also of influ-
ence is the fifty fifty score on understandability
(good understandability is essential for reuse). The
latter is probably the cause of a lack of evidence, not
because of an error in the network. The available ev-
idence is insufficient to make meaningful assump-
tions about understandability.

4.2.2 Design goals predict architecture properties

Though its certainly interesting to see that the archi-
tectural properties predict the design goals, it is also
interesting to verify whether the design goals pre-
dict the architectual properties.

Facts/evidence. In this case we entered properties
that were presumably wanted features of the EPOC
architecture:

• Fault tolerance and reliability are both important
for EPOC since EPOC systems are expected to run
for long periods of time. System crashes are not

acceptable and the system is expected to recover
from application errors.

• Since the system has to operate on relatively small
hardware, performance and low memory usage are
important

• Since the system has to run on a wide variety of
hardware (varying in processor, memory size, dis-
play size), the system must be tailorable (i.e. con-
figurability and modifiability should be easy)

Output of the network. It is unreasonable to expect
our network to come up with all the properties of the
EPOC 32 OS based on this input. The output howev-
er once again confirms that design choices for
EPOC 32 make sense. One of the interesting things
is that our network suggests a high probability on
Java as a programming language. While EPOC 32
was programmed in C++, its designers tried to mim-
ic many of Java’s features (also see [17]). In particu-
lar they mimicked the way Java uses interfaces to
expose API’s (using abstract classes with virtual
methods), they used an exception handling mecha-
nism, they created a mechanism for allocating and
deallocating memory which is safer than the regular
C++ way of doing so. Considering this, it is under-
standable that our network picked the wrong lan-
guage.

Our network also predicts coarse-grained compo-
nents which is correct. In addition to that it gives a
high probability for the presence of exception han-
dling which is also correct. The net work is also cor-
rect in predicting no multiple inheritance and few
component interdependencies. It is wrong, howev-
er, in predicting an low inheritance depth and pre-
dicting fine-grained interfaces. The latter two errors
can easily be explained since they would only help
achieving the goals that were set for the EPOC 32
architecture.

4.3 Evaluation of SAABNet

Our evaluation clearly shows that even with a sim-
ple model, as presented in this paper, it is possible to
make qualitative assessments about an architecture
that can rival with expert assessments. Especially in

Entered evidence Output of the network

configurability good class_inheritance_depth not deep (0.52)

fault_tolerance tolerant comp_granularity coarse-grained (0.83)

memory_usage low comp_interdendencies few (0.75)

modifiability good exception_handling yes (0.80)

performance good implementation_language java (0.66)

reliability reliable interface_granularity fine-grained (0.58)

multiple_inheritance no (0.77)
TABLE 5. EPOC 32: Prediction of architectual properties by design goals

14

situations where little information is available (the
second EPOC case for instance), useful output is
given. We have been able to give a logical explana-
tion for all incorrect output of the network. In all
cases the explanation either pointed out that there
was a lack of evidence or that given the input the
output was generally true. The latter stresses the fact
that our network gives probabilities as output. This
means that sometimes reality is simply unlikely but
not impossible given the limited set of facts fed to
the network.

5 Related work
Important work in the field of BBNs is that of Judea
Perl [16]. In this book the concept of belief networks
is introduced and algorithms to perform calculations
on BBNs are presented. Other important work in this
area is that of Drudzel & Van der Gaag [4] where
methodology for quantification of a BBN is dis-
cussed.

We were not the first to apply belief networks to
software engineering. In [14] and [15], BBNs are
used to assess system dependability and other quali-
ty attributes. Contrary to our work, their work focus-
es on dependability and safety aspects of software
systems.

The qualitative network we created could be per-
ceived as a complex quality requirement framework
as the one presented by Mc Call [12]. Apart from
our model being more complex, there are some
structural differences with Mc Call. In our model ab-
stract attributes like flexibility and understandabili-
ty are decomposed into less abstract attributes
(follow the arrows in reverse direction). Mc Call’s
decomposition is far more simple than ours is: it
only has three layers and there are no connections
within one layer. We think that his decomposition is
too simplistic for our goal which is to make useful
qualitative assessments about software architecture
using a BBN. Mc Call’s decomposition does not
model independencies very well (which essential for
a BBN). Many criteria like “modularity“ show up in
the decomposition of nearly every quality factor. In
a BBN that would lead to many incoming arrows.
We feel that our model may be a better decomposi-
tion because it tries to find minimal decompositions
and groups simple quality criteria into more abstract
ones. An example of this is our decomposition of
complexity into vertical and horizontal complexity.
However, continued validation is required to prove
our position.

Lundberg et al. provide another decomposition of a
limited number of quality attributes [9] . Like Mc
Call’s decomposition. Their decomposition is a hier-

archical decomposition. We adopted and enhanced
their decomposition of performance into throughput
and responsiveness. However, we did not use their
decomposition of modifiability into maintainability
and configurability as we needed a more detailed de-
composition. Rather we adopted Swanson’s decom-
position of maintenance into perfective, adaptive
and corrective maintenance. We mapped the notion
of perfective and corrective maintenance onto modi-
fiability while adaptive maintenance is mapped onto
configurability. A reason for this difference in de-
composition is that we prefer to think of modifiabili-
ty as code modifications and of configurability as
run time modifications.

The SAABNet technique, we created, would fit in
nicely with existing development methods such as
the method presented in [1] which was developed in
our research group. In this design method, an archi-
tecture is developed in cycles. After each cycle, the
architecture is evaluated and weaknesses are identi-
fied. In the next cycle the weaknesses are addressed
by applying transformations to the architecture. Our
technique could be used to detect weak spots earlier
so that they can be addressed while it is still cheap to
transform the architecture.

SAABNet could also be used in spiral development
methods, like ATAM (Architecture Tradeoff Analy-
sis Method) [10], that also rely on assessments. It is
however not intended to replace methods like
SAAM [11] which generally require an architecture
description since SAABNet does not require such a
description. Rather SAABNet could be used in an
earlier phase of software development.

6 Conclusion
In this paper we presented a method to automate rea-
soning with qualitative knowledge in the software
development process. As we have pointed out, this
techique should not be seen as a replacement for ex-
pert designers but rather as a assisting technique that
allows a designer to work more efficiently.

Despite the small size of our belief network, we
were able to get meaningful output from it in the
cases we tested. In both cases, SAABNet identified
both problems and positive things in the architec-
ture. There were a few deviations from our cases
though but those could be explained by either exam-
ining the network more closely or by pointing out
that there was a subtle difference in perception of
terminology used in SAABNet and used in the cas-
es.

All this gives us reason to believe that a larger net-
work based on the knowledge of experienced devel-
opers would provide us with a very powerful tool.

15

6.1 Future Work

The SAABNet presented in this paper represents a
first version and considerable research efforts are re-
quired to mature this work. There’s a lot of research
being done in the field of Bayesian belief networks.
Results from this research may be applicable to the
domain discussed in this paper. Right now there are
two developments in this field that may be applica-
ble: object oriented BBNs and influence diagrams.
OO BBNs may enhance our ability to model qualita-
tive knowledge even better and influence diagrams
may be used to support the decision process in soft-
ware development. An upcoming version of Hugin
[7] will have support for these enhancements. The
current version has limited support for influence dia-
grams.

As a proof of concept, our model can be called a
success, though it has to be noted that it is only a
first attempt at modeling qualitative design knowl-
edge. To make it more useful, more knowledge will
have to be added to the network and the quantitative
part of the network will have to be refined. Existing
literature on BBNs suggest that this a very compli-
cated task to perform.

7 References
[1] J. Bosch, P. Molin, “Software Architecture Design:
Evaluation and Transformation“, in Proceedings of the
1999 IEEE Coneference on Engineering of Computer
Based Systems. December 1998

[2] F. Buschmann, C. Jäkel, R. Meunier, H. Rohnert,
M. Stahl, “Pattern-Oriented Software Architecture - A
System of Patterns“, John Wiley & Sons, 1996

[3] J. Daly, A. Brooks, J. Miller, M. Roper, M. Wood,
“The effect of inheritance on the maintainability of object
oriented software: an empirical study“, Proceedings of the
international conference on software maintenance, pp. 20-
29, IEEE computer Society Press, Los Alamitos, CA,
USA, 1995

[4] M. J. Drudzel, L. C. van der Gaag, “Elicitation for
Belief Networks: Combining Qualitative and Quantitative
Information“, Proceedings of the 11th Annual Conference
on Uncertainty in Artificial Intelligence (UAI-95), pp.
141-148, Montreal August 1995

[5] J. van Gurp, J. Bosch, “Design, Implementation and
Evolution of Object Oriented Frameworks: Concepts &
Guidelines“, submitted July 1999

[6] J. Gosling, B. Joy, G. Steele, “The Java Language
Specification“, Addison Wesley, 1996. Gamma, R. Helm,
R. Johnson, J. Vlissides, “Design Patterns - Elements of
Reusable Object Oriented software”, Addison-Wesley,
1995

[7] Hugin “Hugin Expert A/S - Homepage”, http://
www.hugin.dk

[8] Hugin, “General Information”, http://
www.hugin.dk/gen-inf.html

[9] L. Lundberg, J. Bosch, D. Häggander, P. O.
Bengtsson, “Quality Attributes in Software Architecture
Design“, Accepted for the IASTED 3rd International
Conference on Software Engineering and Applications,
July 1999

[10] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H.
Lipson, J. Carriere, “The architecture Tradeoff Analysis
Method“, Proceedings of ICECCS, August 1998,
Monterey, CA

[11] R. Kazman, L. Bass, G. Abowd, M. Webb,
“SAAM: A Method for Analyzing the Properties
Software Architectures”, pp. 81-90, Proceedings of ICSE
16, May 1994

[12] J. A. McCall, “Quality Factors“, encyclopedia of
Software Engineering, vol 2 O-Z pp. 958-969, John
Wiley & Sons New York 1994

[13] Microsoft Research, “Machine Learning and
Applied Statistics“, http://research.microsoft.com/
research/mlas/

[14] M. Neil, B. Littlewood, N. Fenton, “Applying
Bayesian Belief Networks to Systems Dependability
Assessment“, Proceedings of Safety Critical Systems
Club Symposium, Leeds, Springer-Verlag February
1996

[15] M. Neil, N. Fenton, “Predicting Software Quality
using Bayesian Belief Networks“, Proceedings of 21st
Annual Software Engineering Workshop, 1996

[16] J. Pearl, “Probabilistic Reasoning in Intelligent
Systems“, Morgan Kaufmann Publishers, Inc. San Mateo
1988

[17] Symbian, “EPOC World Library”, http://
developer.epocworld.com/EPOClibrary/
EPOClibrary.html

[18] E. B. Swanson, “The dimensions of maintenance“,
proceedings of the 2nd international conference on
software engineering, pp. 492-497, IEEE Computer
Society Press, Los Alamitos 1976

