Mobile Service Oriented Architectures (MOSOA)

Jilles van Gurp, Anssi Karhinen, Jan Bosch
Software and Application Technologies Laboratory
Nokia Research Center
P.O. Box 407, F1-00045 NOKIA GROUP, Finland
[jilles.vangurp|anssi.karhinen|jan.bosch]@nokia.com

Mobile services hold a promise of utilizing the phone also for other purposes
than purely communication. However, repeated attempts at realizing mobile
services in the market place have been met with limited success. This article (1)
defines the architectural drivers that drive success or failure of mobile services,
(2) analyzes three different architectural styles of realizing such a mobile
service using the example of a movie ticket selling service and (3) presents the
results of this analysis. The main result of the analysis is that a serious conflict
exists between usability and essentially all the other architectural drivers
included in our analysis, i.e. portability, deployability and scalability. This is
due to the fact that, because of the restricted state of the art technology, only
native client applications offer satisfactory usability, but these do not satisfy the
other drivers.

Introduction

Mobile services hold a promise of utilizing the phone also for other purposes than
voice and SMS communication. Turning the promise into reality has proven to be
more complex than what was anticipated in the dawn of digital mobile
communication. Offering highly usable, value adding services to consumers and
enterprise users has challenged the technology developers, business developers and
the mobile service concept developers. The mobile services field became divided into
content services and added value functional services early on. The main function of
content services is to deliver media content such as ringing tones, greeting cards and
background pictures into the mobile phone. Such services were originally built on top
of mobile messaging technology such as SMS and have achieved continuously
growing success in consumer segment. A more challenging area has turned out to be
the services that aim to provide end users with added value functionality such as, for
example, route planning, e-commerce and mobile payment. Some of these services
were originally built on top of mobile messaging technology and then later on a
browser based approach using WAP technology. However, consumer acceptance and
business model continued to be a challenge.

An example of technology that aims to deliver ready-to use services for consumers
out-of-the-box is SIM-ATK (Application ToolKit). SIM-ATK works in GSM
networks. It allows the operators to include pre-installed service menus in the SIM
card delivered with the subscription. The service menus are automatically integrated

2 Jilles van Gurp, Anssi Karhinen, Jan Bosch

with the native menus of the phone for seamless access by the end-user. These
services use the short message protocol (SMS) to implement access to server
functions. This sets some limitations for the implementation of the user experience as
the interaction between the user and the server is not synchronous. Success of mobile
service technology seems to have depended much on the level of integration into the
native phone user interface and the ease with which end users can access the
additional functionality offered by the services. An important landmark has been the
iMode technology originally launched by NTT-DoCoMo in Japan around the turn of
the millennium. iMode offers end-users seamless integration of basic services such as
email, weather forecasts, sports results, various content services, online banking,
stock trading, online gaming and ticketing services. An important factor for the
success of iMode has been the “always on” aspect of the services, which is based on
mobile packet data technology.

As the processing capability of the terminal devices has kept growing and faster
data protocols have been deployed in the mobile networks it has become feasible to
closely emulate the user experience of a PC with fast Internet access. Some of the
recent devices include HTML browsers that are capable of displaying dynamic
HTML pages with interactive scripts thus bringing the idea of “Internet in a pocket”
closer to reality.

Browser based services are evolving rapidly as the capability of the terminals is
growing. Traditional problems that plagued the early WAP/WML based solutions
where the appearance of a service had to be tightly optimized for mobile device
through custom design are slowly vanishing. To publish an existing WWW/HTML
service for WAP access typically requires either a separate implementation of the user
interface of the service or heavy automatic adaptation by a gateway which in many
cases leads results in usability problems for mobile users of the service.

Another approach to offer highly usable mobile services and applications is to open
the phone software platform for user installable native applications. This approach is
available for example on phones using Symbian platform. A user installable
application has access to all phone resources and can integrate with the native phone
UI with no restrictions. This enables the creation of mobile services through a client-
server pattern that are similar to the native functions available on a phone. A
challenge in this approach is to ensure the compatibility of the phone software
platform and installed applications. Additionally, the application installation process
itself can be more complex than in a pre-installed services or browser based
paradigms described earlier. The contribution of this paper is that it provides a
comprehensive overview of the architectural alternatives that are available for the
implementation of mobile services and analyses the different trade-offs of them.

The remainder of the paper is organized as follows. The next section presents the
problem statement, followed by a section outlining the design drivers. Subsequently,
three mobile service-oriented architectural styles are presented and analyzed. Related
work and a summary section conclude the paper.

Mobile Service Oriented Architectures (MOSOA) 3

Problem Statement

Different brands, run-time platforms, screen sizes, networks and many other factors

all contribute to the fact that there is a large variety of mobile devices on the market.

To provide the best user experience, software developers of mobile applications must

specialize their software for specific devices in order to take advantage of device

specific features or device specific implementations of common features. A number
of problems with device specific software exist:

— The number of devices that can be supported by specialized software is much
smaller than the total number of devices. Specializing software for device specific
features in any way causes the potential target market to shrink.

— Devices are sold on the market only for brief periods of time and are generally
replaced by new devices months or at most a year after their introduction on the
market.

— Developing software for a group of similar devices with a common set of specific
features requires testing the software on all those devices.

— Device specific software may be hard to port to other devices that do not support
the device specifics.

The goal of mobile services is to allow users to access these services through a mobile

device. That means that a mobile service consists of a client-side component and a

server-side component. The server-side component offers the feature, the client-side

component makes it available to the user.

Necessarily, features, and usability of those features, in the client-side component
depend strongly on the capabilities of the client device. Unfortunately, as outlined
above making the client component usable by introducing device specific feature
dependencies limits the potential market for the server.

As discussed in the introduction, the conflict between usability on one hand and
market share on the other hand underlies the limited success in the market of mobile
services so far. Solutions in the market so far have either suffered from poor usability
(e.g. WAP [16]) or had the problem that the potential group of users able to adopt the
solution was only a (small) subset of the entire group of mobile device owners

Mobile service oriented architectures need to address the following goals:

— Number of devices. The service must be provided on a wide variety of mobile
devices. The more devices it supports, the larger the market is.

— Native features. The service must make full use of native features. Native features
add value to the phone and therefore to the services provided on that phone. Native
features include both software (e.g. text input methods) and hardware features
(softkeys, camera's, display resolution). Native features relevant to the service
should preferably be used.

— Time to market. The service must have a quick time to market. It is important to
reach the market before the competition.

— Window of opportunity. The service must not miss its window of opportunity. It
is important to be able to target the devices the service is developed for as soon as
these devices become available on the market. The devices are on the market for a
relatively short period of time and the potential revenue of a service is constrained
by this period of time.

4 Jilles van Gurp, Anssi Karhinen, Jan Bosch

— Forward compatibility. The service must be forward compatible with the
successors of the devices it is targeting. Users of the service will want to continue
using the service when they purchase a new phone (assuming the service is useful
to them).

Any successful architecture solution for mobile services will need to address these

goals explicitly to the extent that is technically feasible. We have the following

reasons to believe that it is now possible to define such an architecture:

— Device performance. Moore's law [13] has gradually improved device speed,
bandwidth and capabilities. These abilities may be exploited to provide an
acceptable end user experience while meeting most of the goals outlined above.

— Consolidation. There is a growing set of common features supported across a wide
variety of devices that may be of use when implementing mobile services. This
common feature set is good enough for a wide range of applications so an
increasing number of mobile services can be implemented for a (relatively) broad
set of devices.

— Market size. Adoption of mobile devices in the market has grown exponentially.
A large part of the world population now has access to mobile technology.

The problem in mobile service oriented architectures so far has been that existing

architectures fail to reach all aforementioned goals due to the fact that they are

conflicting given the current state of the art. In this article we evaluate three
architectural alternatives against the goals outlined in this section. In the next section
we translate these goals into architectural drivers.

Architectural Drivers

In this section we look at the architectural drivers that influence the design,
development, deployment and ultimately the success of mobile services. In the next
section we will compare three architectures and analyse how they are affected by the
architectural drivers.

Usability

In order to be adopted by users, mobile services need to be usable. By usable we

mean that:

— It must be easy for the user to find and access the service.

— It must be easy for the user to make use of the service (learnability, ease of use)

— It must be convenient for the user to make use of the service (performance,
usefulness).

In practical terms this means that the service needs to be integrated with the mobile

user interface because this provides users with the fastest route to the service and the

best performance possible on the device. Access points to the service may be

embedded in menus, associated with soft keys, etc.

Experience with mobile user interfaces has shown that it is important to minimize
the number of navigation steps to particular features [12]. For example, access to the
contact list or message overview is rarely more than two button presses away on most
mobile phones. Less important features may be located deeper in the menu structure.

Mobile Service Oriented Architectures (MOSOA) 5

The second requirement benefits from integration with the mobile user interface
for several reasons:

— User input is typically best facilitated using the 'native' capabilities of the device.
For example, many phones include smart text input features that aim to minimize
the amount of button presses.

— The user presumably already understands the native user interface so using the
service through that interface is easier than through a different interface.

Portability

The potential market for mobile services is huge. World wide there are now billions
of mobile devices in use. A large and growing percentage of these devices is internet
enabled (i.e. equipped with a TCP/IP network stack, connected to a TCP network and
equipped with software components such as browsers that make use of this
capability). To capture enough market share, mobile services need to be available to
as large a subset of these users as possible.

This is technically hard because differences between devices tend to be difficult to
bridge. For example, screen size, number of supported colours as well as the number
of keys tend to vary across devices. Furthermore, there are differences in device
capabilities such as supported networks (GPRS, EDGE, UMTS, CDMA), add-ons
(e.g. GPS), camera and connectivity (infra red, Bluetooth, USB, WLAN).
Dependencies on such features need to be carefully considered because of portability.

Deployability

A potential obstacle for users of the service is the issue of client side deployment of
software components. Installing software of any kind is something few users know
how to do. Therefore, (additional) client side components of a mobile service, if
needed, should be provisioned over the network. Any kind of installation impacts the
size of the potential user population negatively. Similarly, software updates should be
totally transparent to the user.

Scalability

If successful, the mobile service may be used often by a large number of users. The

maximum for this is the amount of users that own a device that can run the client side

component of the mobile service. The architecture needs to be able to scale to this
amount of users. There are at least these factors to consider:

— Business scalability. The business model should not include human intervention
(e.g. a person answering the phone) or any other activities that are resource
intensive unless this cost can be accounted for in the total price of the mobile
service for the user.

— System scalability. The system architecture needs to be able to scale to the number
of transactions successful adoption of the mobile service in the market will cause.
If millions of users use a service several times per day, that means that the server
side component of the service will be processing tens of millions of transactions.

— Client scalability. The client side architecture needs to scale well from low-end
devices to high-end devices. Any scalability issues with the client side architecture
will affect the potential amount of users for the service negatively.

6 lJilles van Gurp, Anssi Karhinen, Jan Bosch

Three Mobile Services Oriented Architectures

To highlight the properties of different architectural approaches we use an example
mobile service realized using three alternative architectural styles. The example
service is a movie ticket purchase that enables the user to purchase tickets for him- or
her-self and a group of friends. The service also automatically generates notifications
of the time of the show and the title of the movie for each. The usage scenario with
totally seamless experience would be as follows: 1) User activates “ticket purchase”
service through the phone. 2) User selects “movie tickets”. 3) User selects the title. 4)
User selects the time of the show. 5) User selects the friends he wants to include in
the purchase from the phonebook of his/her phone. 6) User performs the purchasing
transaction and is automatically authenticated and payment information is directed to
the user’s already existing billing connection (e.g. credit card, phone bill, etc.). 7)
Friends receive a notification and an entry in their phone calendars.

MOSOA 1: Client-server with native client

Using a native client application provides the greatest flexibility for implementing the
user interface and integration with the phone features. Figure 1 presents a high level
design of the sample service using the client server pattern and a native client based
on, for example, Symbian.

Phone Metwork
Ticket @ Ticket
Purchase Purchase
application @ Service
Phoneboaok | @ Authentic ation
spplication @ & Payment
Service
Calendar e
Application
Messaging :
Application @5"

Fig. 1. A mobile service with a native client application.

The user is presented with a native ticket purchasing application that must have been
installed into the phone in advance. The ticket purchase application in the phone
knows the server part and the payment service. Steps one to four of our use case are
performed by the ticket purchase application in the phone and the corresponding
server part denoted by interaction “1” in the diagram. Ticket purchase service
manages the catalogue of available movie titles. Next step of the use case involves
interaction between different applications inside the phone. User can select the group
of friends using the native phonebook application. This is denoted by “2” in the
diagram. Authentication and payment information is managed by a service in the

Mobile Service Oriented Architectures (MOSOA) 7

network as shown by interaction “3”. Information of the completed payment

transaction is communicated to the ticket purchase service to complete the

transaction, transaction “4”. The client ticket purchase application then uses the
messaging application in the phone to convey the notification and a calendar entry to

the friends who were included in the purchase (“5” and “6”). Friends will receive a

notification message with a calendar entry that the phone can automatically insert into

the calendar (“7” and “8” respectively).

— Usability. Usability of a native client can be high since it provides the user with a
native look and feel thus lowering the learning curve of the service. Typically, the
native applications can be also tuned to effectively utilize the computing resources
of the phone thus giving shorter start-up times and faster response times in the user
interface. Integration with other native applications on the phone can also boost
usability and the value of the service as we can see in our example. For example, it
is simple for the end-user to keep one register of contacts and friends in the
phonebook and use that asset for all communication and group transactions. Other
good characteristics of native client applications include the possibility to support
off-line functionality and special attached devices and special communication
hardware like Bluetooth, IRDA and USB. Also the native client application can
integrate directly to the power management system of the phone.

— Portability. Portability is a serious problem for native client applications. Only a
small percentage of mobile phones support the installation of native applications.
For the ones that support it, there exist different software platforms such as
Symbian, PocketPC and Brew that are not compatible with each other. Also the
native client application can depend on other native components that have to be
present in the phone. This can create compatibility problems even inside one
platform as the user must ensure that his or her phone includes all required
components for the application to work.

— Deployability. Native client applications need to be installed using the native
application management functions of the phone. Most platforms support different
mechanisms to do this over the air (OTA), through USB connection or using a
memory card. Application installation typically requires some technical ability
from the end user and can thus be a major hurdle in the deployment of a new
mobile service.

— Scalability. The native client server model scales well in performance as the
resources of each client device are used partly in performing the service
transactions. Requirements for the server side components are easy to isolate as the
server transactions remain simple. Business scalability can be challenging as the
deployability of native clients is rather complex. Communication costs from the
native clients to the network services and other users, like the notification function
in our example, can prove to be a difficult issue also.

MOSOA 2: Client-server with mobile Java client

The mobile Java client technology tries to avoid the portability and maintainability
issues by providing a standard execution environment and deployment model for the
client applications in a phone. The following diagram presents a high level design of
our sample service using the client server pattern and a Java client application.

8 lJilles van Gurp, Anssi Karhinen, Jan Bosch

Phone Metwork
MIDP environrment —
Ticket : Purchase
Purchaze |+ <arvica
Application
@ (:) Authentic ation
ripe & Payment
Messaging Service
@ Buddylist
Service
Messaging .
Application » e Calendar
@ Service

Fig. 2. A mobile service with a Java client application.

The MIDP environment for mobile devices is not actually one standard configuration.
MIDP standard has two variants: the earlier MIDP 1.0 that is supported by most Java-
capable phones and the recent MIDP 2.0 that is supported by latest models. Inside
these main variants are different capabilities like messaging, full screen Ul and
encrypted communication which are only supported by certain phone models. These
issues diminish some of the benefits that MIDP and Java were supposed to bring to
the developers of mobile services.

In our example we assume that MIDP messaging functions are available to the
Java client application. Steps one to four in the example service take place between
the Java client and the ticket purchase server (“1”). Next step in the use case involves
selecting the friends from a buddy list service that is hosted in the network in our case
(“2”). The actual purchase transaction with authentication and payment happens in
similar fashion as with the native client. Ticket purchase client communicates with the
authentication and payment service which verifies the payment to the ticket purchase
service (“3” and “4”).

The Java client uses MIDP messaging to send SMS notifications to the friends
involved in the transaction (“5”, “6” and “7”). For setting a calendar reservation we
assume a network hosted calendar service which is used by all users involved in our
example case (“8”).

— Usability. A Java client application can try to support native look and feel through
the use of standard MIDP widgets but in most cases developers want to have more
control over the UI and define their own UI elements. This can make the individual
application quite usable but will make for steeper learning curve as the user has to
adapt to application specific Ul paradigms. Hosting a complete virtual execution
environment in a phone will inevitably cause some overhead in application start
delays and response times of the user interface. There are many recommended
practices to optimize Java for mobile platforms, which can yield good results.
Mobile Java makes it possible to integrate with some phone resources and native
applications but not all. This can degrade usability as the user has to maintain
contact information of his or her friends and calendar in many places like in our
example.

Mobile Service Oriented Architectures (MOSOA) 9

— Portability. Portability for mobile Java clients is better than for native applications
but is still a complex issue to tackle. Typically the developer has to balance
usability and portability tradeoffs to come up with a solution that is supported with
large enough device base and offers still well enough usability. The availability of
several different standards for mobile Java including MIDP 1.0, MIDP 2.0 and
CLDC 1.1 is a problem for portability. Many individual API standards for phone
specific resources like messaging, call functions, phone lights and vibration are
another problem area. Mobile Java offers ways to detect if a given feature is
supported by the device thus making it possible to write client applications that can
dynamically adapt to phones with different capabilities.

— Deployability. Mobile Java offers rather simple model for over the air
provisioning of client applications. The installation process can be made easy
enough for average end user to perform. Online updates can be initiated by the
client applications themselves if needed.

— Scalability. Much of the functionality in Java client model is typically in the server
side. The overall scalability of a service design thus heavily depends on the
scalability of the server side. Business scalability can be good as it is possible to
distribute and sell the client applications through WWW, mobile browsers and
SMS rapidly covering wide user base for example through TV commercials with
URLSs or SMS instructions to install the service. Communication cost from the Java
clients to the network services can be an issue depending on the underlying data
communication business model.

MOSOA 3: Client-server with mobile thin client

The browser based approach has been very successful in the Internet and PC world.
Initially the usability of services offered with browser Uls was poor and different
browsers had serious compatibility problems but the emergence of “de facto” browser
functionality and technologies like browser side scripting have improved the user
acceptance of these services greatly.

Developing browser based services for mobile clients today is in many ways facing
similar problems as developing browser based services for the PC in the nineties:
Technology just hasn’t converged yet. However, we can observe rapid advances in
mobile browsers and it appears that we might actually leap a few generations
compared to corresponding PC technology. Despite this, it is not possible to simply
apply the user interface patterns from the pc world to the mobile world. The screen
size requires different approaches to efficiently present information and allow the user
to work with the on screen information effectively [12].

The following diagram illustrates a browser based design of our example service.
Majority of the functionality of the service now resides in the network. Some native
phone applications, like the messaging in our example, can still be utilized for
services but they are integrated to the service through the network instead of locally.

10 Jilles van Gurp, Anssi Karhinen, Jan Bosch

Phone Metwark
Mobile browser with scripting @ Ticket
Ticket Purchase
Purchase Service
U1
@ Authentic ation
& Payment @
Service
@ Buddylist Calendar | J
Service Service
Messaging :
spplication Messaging
[Gateway

| @ |

Fig. 3. A mobile service with a browser based client.

A browser based implementation of the example service must rely on the network
side to provide the required service components. Integration to local phone resources
from the mobile browser is currently very limited. The overhead to start using a
browser based service is very low; it just requires the user to point the browser to the
correct link to connect to the service. This can be facilitated through e.g. operator
portal pages, SMS messages, TV commercials, etc.

For the first four steps of our use case the user interacts with the ticketing service
through the browser (“17). Selecting the friends to be included can be done from a
buddy list service (“2”) and possibly with some elementary data management within
the browser, such as copy-paste through a clipboard (if that is supported in the
device).

The actual purchasing transaction would follow the same general pattern as the
earlier architectures (“3” and “4”). However, the next step has to be radically different
from the client-server architectures. The ticket purchase service must be able to
generate notifications and calendar entries to the list of friends (57, “6” and “7”). All
of the service components and data resources must reside in the network in contrast to
the client-server models of previous examples. The user can still receive notifications
using the native messaging application of the phone but it is not integrated to the user
interface of ticket purchasing application thus degrading the user experience.

— Usability. Usability of an individual browser based service can be reasonably good
for suitable applications. Typically, applications where the interaction between the
user and the application is based on a forms paradigm fit well to the browser client
architecture. Highly graphical user interfaces using direct manipulation paradigms
are difficult to implement within a browser but emerging technologies like the
AJAX will offer some level of support for it in the future. The main problem with
browser based mobile service architecture is that it cannot use or integrate with the
native applications and resources on the phone device. In practice the service
components and resources used by an application must reside in the network. They
can sometimes be integrated in the browser but the majority of the integration task
must take place in the network. Another drawback of reliance on server-side
components is that off-line operation is impossible: in order for the user to use the
service the server resources must be accessible by the browser.

Mobile Service Oriented Architectures (MOSOA) 11

— Portability. Good portability is one of the strong points of a browser based
architecture. Even so, the architect of a browser based mobile service is forced to
select between many alternative technology stacks that are largely incompatible
with each other. WAP/WML is the pioneer technology of mobile browser based
services. In practice, it is currently being phased out due to the emerging of
HTTP/HTML capable device generations. The actual capabilities of mobile
browsers still vary considerably, however, and there is not yet a consensus on the
basic capabilities similar to that in the PC world. New technologies like browser
side scripting; AJAX (Asynchronous JavaScript And XML); XForms and HTML
5.0 are promising more interactive browser applications in the future but are rarely
supported (even on PC based browsers) so far.

— Deployability. In principle the deployability of a browser based mobile service is
as simple as it gets. It includes the normal deployment and configuration of the
server side components and communicating the link (URL) of the service to the
user population. Any user with a phone equipped with a browser that is compatible
with the service can start using the service immediately. Any registration and
authentication functions can be taken care of inside the browser session.
Deployment can get more complex if a particular browser technology, like
XForms, that is not pre-installed in the user’s phone, is used. In this case the
deployment phase is similar to client-server architectures.

— Scalability. The scalability in capacity of browser based architectures can be
controlled by the traditional design solutions of the server side. This involves two
main areas: the scalability of access to the service and the scalability of the
communication between the service components in the network. The phone
generally does not have much impact on the scalability of a browser based
architecture except in special cases like when the amount of data sent to the
browser exceeds its capacity (it does however restrict the amount of information
that can be presented in a usable way [12]). The business scalability of a browser
based architecture is very good. One can start with a low capacity server solution
and increase the capacity gradually as the service becomes more popular.

Related Work

The notion of software architecture was popularized during the nineties. Perry & Wolf
[15] in their article first identified the relevant concepts. Standardization efforts by the
IEEE resulted in a recommended practice which has been widely adopted in the
software industry [6]. Since the mid nineties, the notion of web service architectures
has been popularized. The architectural style that underlies most web services, i.e.
representational state transfer (REST), is a crucial ingredient of the hypertext transfer
protocol which is also the transport of choice (though not the only one) for service
oriented protocols such as SOAP or XMLRPC. In his doctoral thesis on REST [3],
Fielding outlines the architectural principles that underlie the HTTP specification (of
which he is a co-author) [7] and how these principles are crucial to providing
scalability.

12 Jilles van Gurp, Anssi Karhinen, Jan Bosch

The World Wide Web consortium maintains a somewhat more narrow definition of
what comprises a web definition. Their WS-Arch document [1], defines a web service
as "a software system designed to support interoperable machine-to-machine
interaction over a network". The definition is further constrained by specifying that
the interfaces should be specified in a machine readable format (i.e. WSDL) and that
other systems interact with the web service using SOAP messages.

For mobile services, this definition may very well be too narrow since handling
SOAP on mobile devices is impractical due to the limited memory and processing
capacity. However, REST principles as outlined by Fielding still apply to mobile
service architectures. Scalability in the mobile world is of even more importance than
scalability in the internet world because, especially in third world countries, there are
vastly more people owning a mobile phone than there are people with access to PCs.
The notion of local state is arguably of even more importance due to the inherently
more unreliable network conditions (roaming between networks, areas not covered by
any network).

A key difference between web service architectures and mobile service
architectures is the client side. For web services, client side capabilities have a much
higher degree of commonalities than is the case in mobile devices. The issues we
outline in our problem statement mostly relate to the client side.

Some earlier work on mobile service architectures includes Hodes et al. [5], who
propose an architecture for discovering and working, with local services. However,
their work predates most of the internet services that have since emerged and
consequently does not take these into account. Another article from this era by Jones
et al. [10] analyzes WAP services from a usability angle. These articles are illustrative
of the thinking on mobile web services in the late nineties. As described in our
introduction, the approaches from this time (especially WAP) mostly failed in the
market.

More recent work tends to focus on agents or semantic networks (e.g. [2]).
However, such techniques are as experimental in the mobile internet as they are in the
regular internet. While promising, we don't believe these approaches make explicit the
requirements and challenges of mobile service architectures as we do in this article
since they do not address all of the goals we outline in our problem statement section.

Some work has been done on evaluating conventional web service technology in
mobile devices. For example, in [11], the authors evaluate the performance of SOAP
over various protocols. This work suggests that the overhead of XML parsing is a
major obstacle as is network speed. Additionally, some research has been done into
using asynchronous messaging in mobile service architectures (e.g. [14]).
Interestingly, recent developments in conventional web services also push towards an
asynchronous style of working.

Additionally there has been a lot of effort evaluating usability of mobile user
interfaces. For example in [16] the usability failure of WAP technology is analyzed.
Our Nokia colleagues have written a comprehensive overview of usability issues in
mobile user interfaces [12].

Mobile Service Oriented Architectures (MOSOA) 13

Summary & Conclusions

Table 1 summarizes the discussion from the previous section. The only quality
attribute the native client scores best on is usability. This is probably the main reason
why services with a native client (e.g. the ones discussed in the introduction) have
more or less failed in the market. These services provided good usability on the
devices where the client actually worked but at the cost of the other quality attributes
in this table. Consequently lack of market share and the associated high cost of fixing
that problem prevented the widespread adoption of such services.

Native client Java client Browser
Usability + +/- -
Portability - +/- +
Deployability - +/- +
Business Scalability - +/- +
TCO - +/- +

Table 1. Summary of architectural alternatives

As the table suggests, non-native clients are the solution to the problem.
Unfortunately, this comes at the expense of usability. However, we also observe that
this is increasingly less a problem as for example more Java MIDP APIs are
standardized and deployed. Both the Java virtual machine and the browser are
implemented as native application. In theory this means that they can provide the
same level of usability as a native client. Features such as power management, user
interface, input methods can all be put to use in the implementation of a browser.

Unfortunately, the above requires standardization of the way such features are
exposed to the service application developers. Currently, there exist many
standardized MIDP APIs for a wide range of mobile phone specific features. A
continuing problem is that most of these APIs are optional so depending on such APIs
is almost as bad as depending on native features directly.

Based on our experience with mobile device technology, we are convinced that a
consensus on mobile device features is emerging and that consequently it will become
easier to abstract from such features using e.g. MIDP APIs. The same has happened
on the PC desktop where applications tend to be much more portable across different
desktop platforms than is common on mobile platforms.

We have identified a clear trend that what we call a browser in this article will in
the future evolve towards a standards based application container. In principle, given
that proper standards emerge, this means that applications inside such a container can
rely on features similar to those exposed in high end MIDP containers today. There
are multiple ways of realizing such integration. An obvious way to this is through
plug-ins. Additionally, features may be exposed through custom URL schemes like
for example the tel://<phonenumber> [8] or the sms:// <phonenumber> [9] type
schemes.

A second trend we have identified is that in future service application containers
like outlined above, the notion of local device access will be of less importance than it
is today. Resources will become themselves services. For example, there is no
technical reason to have features such as contacts and SMS messages client side other

14 Jilles van Gurp, Anssi Karhinen, Jan Bosch

than optimizing access to these resources and ensuring that these resources are
available when the phone is offline.

Ultimately, there will be this convergence of applications and services where the
particular client used to access the service depends on the user context. For example
the same list of contacts may be manipulated from an office environment on a laptop
and from a contact list service application on a phone.

Technically, the service components would be hosted on a heterogeneous grid-like
environment where resource allocation and provisioning of client components is
automatically managed without user intervention.

References

[1] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris
Ferris, David Orchard. "Web Services Architecture", Web Services Architecture Working
Group, http://www.w3.org/TR/ws-arch/, February 2004.

[2] P. Buhler and J. M. Vidal, "Semantic Web Services as Agent Behaviors," in Agentcities:
Challenges in Open Agent Environments, LNCS/LNAI, B. Burg, J. Dale, et al., Eds. Berlin:
Springer-Verlag, 2003.

[3] R. T. Fielding, " Architectural Styles and the Design of Network-based Software
Architectures", Ph. D. thesis, University of California, Irvine, 2000.

[4] M. Baker. "lan Foster on Recent Changes in the Grid Community", IEEE Distributed
Systems Online, 5(2), February 2004.

[5] T. D. Hodes, R. H. Katz, E. Servan-Schreiber, L. Rowe, "Composable Ad-hoc Mobile
Services for Universal Interaction", Proceedings of the 3rd ACM International Conference
on Mobile Computing and Networking, pp. 1-12, 1997.

[6] IEEE Std 1471-2000 IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems,
http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html

[7] IETF RFC 2616, "Hypertext Transfer Protocol -- HTTP/1.1",
http://www.ietf.org/rfc/rfc2616.txt

[8]IETF RFC 2806, "URLSs for Telephone Calls", http://www.ietf.org/rfc/rfc2806.txt.

[9] IETF draft RFC, "SMS URI Scheme", http://www.ietf.org/internet-drafts/draft-wilde-sms-
uri-11.txt.

[10] M. Jones, G. Buchanan, G. Marsden, M. Pazzani, Improving Mobile Internet Usability.
Proceedings WWW'10, Hong Kong. 2001.

[11] J. Kangasharju, Sasu Tarkoma, Kimmo Raatikainen, " Comparing SOAP Performance for
Various Encodings, Protocols, and Connections", LNCS Lecture Notes in Computer
Science, Volume 2775 / 2003, pp. 397 - 406, 2003.

[12] Christian Lindholm, Turkka Keinonen, "Mobile Usability: How Nokia Changed the Face
of the Mobile Phone", McGraw-Hill Professional, 2003.

[13] G. E. Moore, Cramming more components onto integrated circuits, Electronics Magazine,
38(8), pp. 114-117, April 1965.

[14] M. Musolesi, C. Mascolo, S. Hailes. Adapting asynchronous messaging middleware to ad
hoc networking. In Proceedings of the 2nd Workshop on Middleware For Pervasive and Ad-
Hoc Computing, pp. 121-126, ACM Press, New York, NY, 2004.

[15] D. E. Perry, A. L. Wolf, Foundations for the study of software architecture, ACM
SIGSOFT Software Engineering Notes 17(4), pp. 40-52, October 1992.

[16] M. Ramsey and J. Nielsen. The WAP Usability Report. Neilsen Norman Group, 2000.

