
Automating Software 

Architecture Assessment

Jilles van Gurp & Jan Bosch1

University of Karlskrona/Ronneby

Abstract. In this paper we present SAABNet (Software Architecture As-
sessment Belief network), an approach to automating the process of perform-
ing software architecture assessment. We have found that SAABNet is espe-
cially useful early in the development process when measurable assets are
scarce. In this stage of development software architects have little more than
their own experience to rely on. SAABNet tries to capture this experience
and use it to help architects perform assessments.

Introduction

Traditionally the software development is organized into different phases (require-
ments, design, implementation, testing and maintenance). The phases usually occur in
a linear fashion (the waterfall model). The phases of this model are often repeated in an
iterative fashion. This is especially true for the development of OO systems. 

At any phase in the development process, the process can shift back to an earlier phase.
If, for instance, during testing a design flaw is discovered, the design phase and conse-
quently also the phases after that, need to be repeated. These types of setbacks in the
software development process can be costly, especially if radical changes in the earlier
phases (triggering even more radical changes in consequent phases) are needed. We
have found that non-functional requirements or quality requirements often cause these
type of setbacks. The reason for this is that testing whether the product meets the quality
requirements generally does not take place until the testing phase [1].

To assess whether a system meets certain quality requirements, several assessment
techniques can be used. Most of these techniques are quantitative in nature. I.e. they
measure properties of the system. Quantitative assessment techniques are not very well
suited for use early in the development process because incomplete products like design
documents and requirement specifications do not provide enough quantifiable informa-
tion to perform the assessments. Instead developers resort to qualitative assessment
techniques. A frequently used technique, for instance, is the peer review where design
and or requirement specification documents are reviewed by a group of experts. Though
these techniques are very useful in finding the weak spots in a system, many flaws go

1. [Jilles.van.Gurp|Jan.Bosch]@ipd.hk-r.se, University of Karlskrona/Ronneby, Depart-
ment of Software Engineering and Computer Science, Soft Center, S-372 25 Ronneby, 
Sweden, http://www.ipd.hk-r.se/[jvg|bosch]



unnoticed until the system is fully implemented. Fixing the architecture in a later stage
can be very expensive because the system gets more complex as the development proc-
ess is progressing.

Qualitative assessment techniques, like the peer review, rely on qualitative knowledge.
This knowledge resides mostly in the heads of developers and may consist of solutions
for certain types of problems (patterns [2][3]), statistical knowledge (60% of the total
system cost is spent on maintenance), likely causes for certain types of problems (“our
choice for the broker architecture explains weak performance“), aesthetics (“this archi-
tecture may work but it just doesn’t feel right“), etc. A problem is that this type of
knowledge is inexplicit and very hard to document. Consequently, qualitative knowl-
edge is highly fragmented and largely undocumented in most organizations. There are
only a handful known ways to deal with this problem:

• Assign experienced designers to a project. Experienced designers have a lot of
knowledge about how to engineer systems. Experienced designers are scarce,
though, and when an experienced designer resigns from the organization he was
working for, his knowledge will be lost for the organization.

• Knowledge engineering. Here organizations try to capture the knowledge they
have in documents. This method is especially popular in large organizations since
they have to deal with the problem of getting the right information at the right per-
sons in the organization. A major obstacle is that it is very hard to capture quali-
tative knowledge as discussed above.

• Artificial Intelligence (AI). In this approach qualitative knowledge is used to
build intelligent tools that can assist personnel in doing their jobs. Generally, such
tools can’t replace experts but they may help to do their work faster. Because of
this less experts can work more efficiently.

We followed the latter approach and used the Bayesian Belief Network (BBN) tech-
nique to create SAABNet (Software Architecture Assessment Belief Network). SAAB-
Net enables us to feed information about the characteristics of an architecture to the pro-
gram. Based on this information, the system is able to give feedback about other system
characteristics. The SAABNet BBN consists of variables that represent abstract quality
variables such as can be found in McCall’s quality factor model [4] (i.e. maintainability,
flexibility, etc.) but also less abstract variables from the domain of software architec-
tures like for instance inheritance depth and programming language. The variables are
organized in such a way that abstract variables decompose into less abstract variables.

We have published a more extensive study of SAABNet in [6]. In that paper we provide
a description of the specification of SAABNet as well as a validation of SAABNet. In
this paper we briefly summarize the essentials of SAABNet and demonstrate its use. We
were not the first to apply belief networks to software engineering. In [12] and [13],
BBNs are used to assess system dependability and other quality attributes. Contrary to
our work, their work focuses on dependability and safety aspects of software systems.



Bayesian Belief Networks

A Bayesian Belief Network is a directed acyclic graph. The nodes in the graph represent
probability variables and the arrows represent conditional dependencies (not causal re-
lations!). A conditional dependency of variable C on A and B in the example in figure
1 means that if the probabilities for A and B are known, the probability for C is known.
If two nodes are not directly connected by an arrow, this means they are independent
given the nodes in between (D is conditionally independent of A). Each node can con-
tain a number of states. A conditional probability is associated with each of these states
for each combination of states of their direct predecessors (see figure 1 for an example). 

A BBN consists of both a qualitative and a quantitative specification. The qualitative
specification is the graph of all the nodes. The quantitative specification is the collection
of all conditional chances associated with the states in each node. In figure 1 a qualita-
tive specification is given and a quantitative specification is given in figure 1.

By using a sophisticated algorithm, the a priori probabilities (i.e. the probability for a
variable given the probabilities of all the other variables in the network) for all of the
variables in the network can be calculated using the conditional probabilities in the
quantitative. This would take exponential amounts of processing power using conven-
tional mathematical solutions (Bayes’ theorem) since it’s a NP complete problem. A
BBN can be used by entering evidence (i.e. setting probabilities of variables to a certain
value). The a priori probabilities for the states of the other variables are then recalculat-
ed. How this is done is beyond the scope of this paper. For an introduction to BBNs we
refer to [5].

SAABNet

SAABNet was developed as a proof of concept to verify whether a technique such as
bayesian belief networks would be of use to assist in software architectures. The main
reasons that caused us to believe that such a technique could be of use were:

• Architecture assessment in early phases of the development of a system is diffi-
cult due to a lack of measurable assets. BBNs don’t need complete information to
deliver usable results.

P(A=true) = 0.75
P(A=false) = 0.25

P(B=true) = 0.21
P(B=false) = 0.79

P(C=true|A=true,B=true) = 0.97
P(C=true|A=true,B=false) = 0.67
P(C=true|A=false,B=true) = 0. 71
P(C=true|A=false,B=false) = 0.43

P(D=true|C=true,B=true) = 0.31
P(D=true|C=true,B=false) = 0.48
P(D=true|C=false,B=true) = 0.65
P(D=true|C=false,B=false) 0.84

A B

C

D

Figure 1   A BBN: qualitative  and quantitative specification.



• Qualitative architecture assessment is generally done by architecture experts who
have to deal with a wide range of inherently uncertain knowledge. BBNs are able
to work with uncertain knowledge.

• Important design decisions are made early in the development process and errors
made in this stage are hard to correct later on. BBNs can be applied earlier than
conventional quantitative assessment techniques because they don’t require com-
plete and certain information.

We believe that a non-metrics based approach is the only feasible way of doing archi-
tecture assessment early in the development of an architecture. All metrics-based ap-
proaches are essentially useless early on since there is a lack of measurable products and
the value of the metrics that are available is limited. There is however a wealth of qual-
itative knowledge that can and should be used when assessing architectures. 

While we cannot claim to be expert software designers we do have general insights in
what constitutes good design [7], the law of Demeter [8], design & architecture patterns
[2][3], and many other sources to provide us with criteria needed to construct a BBN.
The qualitative part of SAABNet uses these general insights to arrange a set of approx-
imately 30 variables in a graph. The graph captures such notions as “multiple inherit-
ance affects complexity negatively” or “small components are good for flexibility”. We
have organized these variables into three categories:

• Architecture Attributes: these are basic properties of an architecture (e.g. depth of
the inheritance tree, the programming language, etc.). Architecture Attributes are
also suitable for incorporating metrics. However we did not use this in SAABNet.

• Quality Criteria: these are more abstract than Architecture Attributes and may in-
clude such things as complexity, coupling, etc.

• Quality Factors: These are on an even more abstract level. Quality factors are
very general properties of a system (e.g. performance, maintainability and scala-
bility). In SAABNet, quality factors can be found at the bottom of the graph. This
means they are decomposed into less abstract quality criteria which in turn are de-
composed into other criteria or into architecture attributes.

This categorization was inspired by McCall’s quality requirement framework [4],
though at several points we deviated from this model. In this model, abstract quality fac-
tors, representing quality requirements, are decomposed in less abstract quality criteria.
We have added an additional decomposition layer (not found in McCall’s model),
called architecture attributes, that is even less abstract. The reason for this was that we
needed a way to incorporate basic knowledge of the system into the assessment. Archi-
tecture attributes represent concrete, observable artifacts of an architecture and make it
possible to include this type of knowledge.

A full specification of SAABNet is beyond the scope of this paper. Instead we refer to
[6] for a more detailed description. In figure 2 an overview of the qualitative specifica-
tion of SAABNet is presented. The quantitative specification of SAABNet adds some
numbers to the general notions captured in the qualitative specification. While the qual-
itative specification can easily be associated with general knowledge about software ar-
chitecture, this is not easily done with the quantitative specification. We have found that
estimating probabilities for all the relations between the variables is a hard and error



prone process. Existing research on BBN technology [11] suggests that this is a general
problem in designing a BBN. In SAABNet we configured the network by running a
number of cases and adjusting the initially guessed probabilities accordingly. We have
to admit that at this point the network is not trained optimally. Such training would re-
quire input from more architecture experts and more test cases.

Usage

Currently SAABNet is implemented as a network specification for Hugin [9]. Hugin is
a tool for designing and testing bayesian belief networks. It allows developers to draw
the network with some simple tools. In addition it makes it easy to insert the quantitative
data into the network. By running Hugin in the compiled mode, it is possible to interact
with the network and test whether it works properly. In this mode, Hugin calculates a
priori probabilities for each state in each node of the network based on the quantitative
specification of the network. Evidence can be entered to the network by manually set-
ting probabilities in the network. Each time evidence is entered, all the probabilities are
recalculated. In BBN terminology this is called propagation of evidence through the
network.

While Hugin makes it easy to read the output of the network by providing a graphical
representation of the probabilities of each node as a bar graph, interpreting and explain-
ing the output is the responsibility of the user. The general strategy of using a BBN is
very simple: enter evidence for some variables, observe the effect of the evidence on
other variables and try to explain the new probabilities. The structure of the network can
be helpfull in this last step since the arrows in the graph express a causal relation. One
has to keep in mind though that entered evidence propagates in both directions, even
though the graph is directed.

Figure 2   Qualitative specification of SAABNet

implementation_langauge dynamic_binding nr_of_threads context_switchesarch_style

multiple_inheritance class_inheritance comp_granularity interface_granularity comp_interdependencies exception_handling responsivenessthroughput scalability

vertical_complexity

complexitydocumentation horizontal_complexity

reusability coupling

fault_tolerance

understandabilitytestability configurability

modifieability

maintainability

flexibility

correctness

usability safety security

reliability

memory_usage

performance



In some cases the output of a BBN will conflict with what the user expects. Especially
in those cases it is essential that the user understands why the BBN gives this output.
Maybe the user had the wrong assumptions about the situation, maybe not enough evi-
dence was entered (or too much), maybe the network is right or maybe there’s a small
error in the network (either in the qualitative or in the quantitative specification). 

In figure 3 a typical example of an interaction with Hugin is given. In the three screen-
shots, variable editing windows are projected on the variables in the SAABNet graph.
We only display three nodes of the graph here but normally the rest of the graph is also
visible.  In figure 3a no information has been entered to the network. In figure 3b the
depth of the inheritance tree is set to low (indicated by a red bar). This has some con-
cequences in the two other displayed variables. In figure 3c the effect of setting the in-
heritance tree depth to a high value is shown. This simple example clearly shows how
evidence propagates through the network along the arrows in the graph.

Though interacting with Hugin directly is a very powerful way of using the network, it
is not really suitable for end users since Hugin is intended as a tool for BBN developers.
End users cannot be expected to understand and appreciate all the details about a BBN.
They need to be protected from its complexity. By using the Hugin API it is possible to
write applications that interact with a Bayesian Belief Network. This API could be used
to write SAABNet applications that help a user assess a software architecture. Such an
application could for instance be integrated with design tools such as Rational Rose
[10]. In our vision a standalone tool would be of little use to a designer since that would
almost certainly require a developer to enter the same information in multiple places.
An additional advantage would be that integration allows for automatic acquiring of in-
formation.

Figure 3   Hugin in action
a b c



We have experimented with the Hugin API and found it easy to use. We created a sim-
ple GUI for SAABNet that allows one to enter data and read out the results. We also
created a simple explain function built in the tool since we feel that one of the advan-
tages of using a BBN is exploiting its structure to understand the output. Our efforts
however did not result in a usable tool. We don’t think a BBN should be used as a black-
box since usually it is more important to understand why certain output occurs than the
mere fact that it occurs. In the case of SAABNet, the intention is that software architects
enter some data, read out the results and try to link those results to their own opinion.
Explaining anomalies between the two helps understanding the architecture better. 

Though SAABNet’s output is quantitative (a priori probabilities), the main goal of
SAABNet is not to be exact but to help understand how the variables interact. The gen-
eral strategy is to enter information that is known or that needs verification and observe
the recalculated variables. We identified four different strategies:

• Diagnostic use. One of the uses of SAABNet is that as a diagnostic tool. When
using SAABNet in this way, the user is trying to find possible causes for problems
in an architecture. Usually some architecture attributes are known and possibly
also some quality criteria are known. In addition there are one or more Quality
Factors which represent the actual problem. If, for instance, the implementation
of an architecture has bad performance, the performance variable should be set to
“bad“.

• Impact analysis. Another way to use SAABNet is to evaluate the consequences
of a future change in the architecture on the quality factors. To do so, the archi-
tecture attributes of the future architecture have to be entered as evidence. The
network then calculates the quality criteria and the quality factors that are likely
for such architecture attributes.

• Quality attribute prediction. In this type of use, as much information as possible
is collected and put in the SAABNet. From this information, the SAABNet can
calculate all the variables that have not been entered. This is ideal for discovering
potential problem areas in the architecture early on but can also be used to get an
impression of the quality attributes of a future architecture

• Quality attribute fulfillment. The first three approaches all required an architec-
ture design. Early in the design process when the design is still incomplete, these
approaches may not be an option. In this stage SAABNet can be used to help
choose the architecture attributes. This can be done by entering information about
the quality factors into SAABNet. The probabilities for all the architecture at-
tributes are then calculated. This information can be used to make decisions dur-
ing the design process. If, for instance, the architecture has to be highly maintain-
able, SAABNet will probably give a high probability on single inheritance since
multiple inheritance affects maintenance negatively. Based on this probability,
the design team may decide against the use of multiple inheritance or use it only
when there’s no other possibility. 

These four strategies can be used simultaneously. The results of a diagnosed problem
might for instance be used to do an impact analysis on a possible solution to these prob-
lems. 



Conclusion

In this paper we presented SAABNet. We reflected on some problems with the tradi-
tional way of performing architecture assessment and argued that traditional methods
fail early on in the development process due to a lack of measurable assets. We then pre-
sented a solution for this problem that does not rely on measurements but exploits qual-
itative knowledge. For future work we think that improving and extending SAABNet
should have priority. Also building a user interface for end users may increase its usa-
bility. Furthermore we think that further validation (either in the form of an experiment
involving end users or a larger case) is needed to prove our claims.

References

[1] J. Bosch, P. Molin, “Software Architecture Design: Evaluation and Transforma-
tion“, in Proceedings of the 1999 IEEE Conference on Engineering of Computer Based 
Systems. March 1999.

[2] F. Buschmann, C. Jäkel, R. Meunier, H. Rohnert, M. Stahl, “Pattern-Oriented Software 
Architecture - A System of Patterns“, John Wiley & Sons, 1996.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns - Elements of Reusa-
ble Object Oriented software”, Addison-Wesley, 1995.

[4] J. A. McCall, “Quality Factors“, encyclopedia of Software Engineering, vol 2 O-Z pp. 
958-969, John Wiley & Sons New York 1994.

[5] J. Pearl, “Probabilistic Reasoning in Intelligent Systems“, Morgan Kaufmann Pub-
lishers, Inc. San Mateo 1988.

[6] J. van Gurp, J. Bosch, “SAABNet: Managing Qualitative Knowledge in Software 
Architecture Assessment“, Proceedings of the 2000 IEEE Conference on Engineering 
of Computer Based Systems, p. 45-53, March 2000.

[7] S. R. Chidamber C. F Kemerer, “A Metrics Suite for Object Oriented Design“, IEEE 
Transactions on Software Enfineering, Vol. 20 no. 6, June 1994, pp476-493

[8] K. Lieberherr, I. Holland, A. Riel, “Object-Oriented Programming: An Objective 
Sense of Style“, in Proceedings of the 1988 OOPSLA Conference, San Diego, California, 
September 1988, pp. 323–334

[9] Hugin “Hugin Expert A/S - Homepage”, http://www.hugin.dk.

[10] Rational, “Rational Software“, http://www.rational.com/

[11] M. J. Drudzel, L. C. van der Gaag, “Elicitation for Belief Networks: Combining 
Qualitative and Quantitative Information“, Proceedings of the 11th Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI-95), pp. 141-148, Montreal August 
1995.

[12] M. Neil, B. Littlewood, N. Fenton, “Applying Bayesian Belief Networks to Systems 
Dependability Assessment“, Proceedings of Safety Critical Systems Club Symposium, 
Leeds,  Springer-Verlag  February 1996.

[13] M. Neil, N. Fenton, “Predicting Software Quality using Bayesian Belief Networks“, Pro-
ceedings of 21st Annual Software Engineering Workshop, 1996.


	Automating Software Architecture Assessment

