
OSS Product Family Engineering

Jilles van Gurp
Nokia Research Center, Software and Application Technology Lab

jilles.vangurp AT nokia.com

Abstract

Open source projects have a characteristic set of
development practices that is, in many cases, very
different from the way many Software Product
Families are developed. Yet the problems these
practices are tailored for are very similar. This paper
examines what these practices are and how they might
be integrated into Software Product Family
development.

1. Introduction
The notion of software reuse has been studied and
practiced for decades. Over time, the attention in the
technological dimension has shifted from subroutines
to modules, frameworks and finally Software Product
Families. In the organizational domain, focus has
grown from code reuse by the author of the code to
code reuse by others than the author of the code
working on the same software, working in the same
organization and finally between organizations.
Software Product Family engineering is very much
about intra-organizational reuse.
The open source movement was born out of a
pragmatic need to share code among individuals. This
need arose in the late sixties and early seventies when
researchers started to share code for common assets
such as compilers, system libraries and later operating
systems such as UNIX. During the eighties, the practice
of code sharing was given a legal framework in the
form of license agreements such as the BSD license
and the GNU public license. Finally, during the late
nineties, when Linux emerged as a mainstream
operating system, the term open source started to be
used to refer to this practice of collaborative
development, licensing and distribution of software.
Currently a wide variety of programs, components and
frameworks is available under an open source license.
Many software companies now depend on open source
components for their core business. For example, the
Gnu Compiler is widely used across the industry and
crucial for many embedded system companies.
Similarly, the Linux operating system kernel is used by
many embedded systems companies. Even Microsoft is

known to use BSD licensed components in e.g. their
network stack.
Open source components form a rapidly growing,
shared repository from which, depending on the
specific license, anybody can just take what they need
and use it. Open source is very much about inter-
organizational reuse.
It turns out that, as the scale of development is
growing, inter-organizational reuse is increasingly
important. Few organizations can afford to develop
everything in house. For some years, COTS have been
pushed as the solution for this problem. However, lack
of source code, support, perfectly matching feature
sets, and other factors have prevented the widespread
adoption of COTS.
However, many organizations are now replacing their
non-diversifying, in house developed components with
open source, or even making their entire software
available as open source (e.g. Sun). Open source is
succeeding where COTS has failed.
Open source software is enabling interested parties to
share code under a legal umbrella that sufficiently
protects the rights of the using and producing parties.
The use and production of OSS in the context of
Software Product Families is both an obvious and
inevitable solution to the problem that in house
developed software is an increasingly smaller (relative,
not absolute) portion of the total amount of software
required. Eliminating non value adding development in
Software Product Family development is key to
reducing cost.
Arguably, open source development and Software
Product Family development can claim to represent the
two most successful strategies for reusing software.
This position paper explores several of the practices
common in open source communities with examples
from three major open source projects (Eclipse,
Mozilla, and Linux). Additionally some discussion is
presented on how these practices may be applied to
Software Product Family development.
1.1 Remainder of this paper
The rest of this paper consists of three parts. First
(section 2) we characterize more precisely what we

understand the OSS development practice to be. Then
we illustrate this with three open source projects:
Eclipse, Mozilla, and Linux. Finally, we reflect in
section 4 on how the identified practices could be
integrated into Software Product Family development
and we conclude our paper in section 5.

2. OSS development practice
Open source in the narrow definition refers only to the
license used to make the software available. As such,
the use of open source is completely orthogonal to the
use of Software Product Family development practices
(i.e. one could develop a Software Product Family
using the conventional methods for doing so and then
make the resulting software available as open source).
However, in its wider definition it may also be
understood to include a set of development practices
and a certain style of development that is very different
from the way Software Product Families are developed
by many organizations. In this section, several of these
practices are discussed.
2.1 Communication
Many open source projects are developed by people
that are geographically distributed, may be in different
time-zones and work for different organizations.
Consequently, many forms of communication that are
common in enterprises such as phone calls, face to face
meetings are impractical. Additionally, the practice of
one individual (a.k.a. the boss) telling other individuals
what to do is not that common. Decisions are based
primarily on consensus rather than authority.
In the open source community, email and IRC are the
primary means of communication rather than face to
face meetings. Technical discussions are preferably
conducted on mailing lists which are generally archived
for future reference. IRC or similar instant messaging
tools are used for a more direct style of
communication. These conversations tend to be less
formal and they are generally not archived. Cases are
known of OSS developers sending each other emails
while sitting at the same table for the purpose of
archiving the discussion or simply conducting it in
public.
2.2 Tool centric development
A key characteristic of open source development is that
open source projects are organized around a set of
enabling tools. Generally, these tools (in addition to the
usual development tools such as compilers and IDE's)
include:
• A version management system. CVS is historically

popular in open source projects but is now rapidly
being replaced by the much more modern
Subversion (e.g. the Apache Foundation and
Sourceforge use Subversion nowadays).

• A bug tracking system. Bug tracking systems are
commonly used both for tracking bugs,
requirements and even project planning. Many
open source projects require any change
committed to the version management system to be
related to a bug or issue in the bug tracking
system.

• WIKI's are increasingly popular for document
management. Particularly end user documentation,
development documentation and project
documentation (e.g. roadmaps) tend to be
maintained in WIKI's.

• Build and integration tools (e.g. maven, ant,
Make). Many open source projects depend on
automated builds, integration and testing tools for
receiving feedback about project progress and
status.

Open source development is necessarily tool centric
because its developers are generally distributed
geographically. The tools are effectively their only
interface to the project. Consequently, development
practices that are incompatible with this interface are
rarely found in open source projects. It therefore is
quite common for OSS projects to not have explicit
design documentation; use case diagrams or even an
architecture design phase. However, that does not mean
that such projects do not have architecture, design and
requirements.
Instead, these assets, insofar deemed relevant by the
developers, exist in the tools. Use cases are rare but
detailed requirements and requirements change
requests are managed through the bug tracking system.
Architecture documentation is generally lacking but
then the audience for such documentation is not
necessarily the developers either in organizations that
do write architecture documentation.
2.3 Strong code ownership
Though the source code of an OSS project may
(legally) be modified and redistributed by anyone the
actual occurrence of someone taking open source
software, modifying it and distributing it independently
from he original (a practice known as forking) is quite
rare. Generally, open source projects have strong
ownership with a small group of developers
coordinating and guarding the development.
Source code ownership is governed through version
repository access rights. Typically, a limited set of
individuals has the right to make changes to particular
directories in the version management system. It is also
quite common that approval of key individuals is
needed to make any kind of change. The strong
ownership enforces code reviews take place and that
changes are tested properly.

2.4 Technical roadmap
Unlike commercial software development where
managers, customers and other stakeholders determine
what is developed, the evolution of open source
software projects is primarily determined by:
• Developer interest. Developers generally prioritize

features that they are personally interested in.
• Corporate funding. Most large open source

projects are developed by developers who are paid
to work on the project. Of course, the reason they
are paid is that their companies have a strategic
interest in the project and presumably want to
influence the direction of the project.

• Project organization. Many open source projects
are led by a small group of, more or less,
independently operating individuals whose
personal vision strongly influences technical
decisions made in the project.

In order to prioritize features or make major technical
changes to the software, interested parties need to work
in this structure. They need to convince whatever
individual is in charge that the suggested change is a
good one; generate interest among developers to
actually get the change implemented and maybe
arrange some funding to allow developers to work on
the change.
2.5 Quality management
A consequence of developers being in charge of the
technical roadmap is that generally developers
prioritize quality attributes that interest them. For
example, the open BSD project has a strong security
focus. The open BSD lead developers all have strong
engineering backgrounds in security related matters. Its
products are generally considered to be of exceptional
quality in this regard (e.g. open SSH or the open BSD
kernel). Additionally, any issues related security are
handled swiftly once the developers are notified of
them. Other quality issues outside the scope of the
developer's interest receive much less attention (for
example, usability is often sacrificed in favor of
configurability).
Similar to the technical roadmap, the quality
management can be influenced through funding,
argumentation, etc.
2.6 Release Management
Release management is the process of converting
source code in the version management into a stable,
well tested software package that can be distributed to
end users. Many open source projects have well
defined processes for producing a release. Generally,
there are a few differences with comparable processes
in commercial projects:

• The software is released when it is 'done'. This
moment is generally agreed on either by leading
individuals in the process or by consensus. Despite
this, many open source projects try to follow date
driven roadmaps where milestones and releases are
planned to occur. In commercial projects, such
deadlines tend to be much harder and inflexible,
however.

• The software release is preceded by a series of
public alpha, beta and release candidate
milestones. During this period, interested third
parties not taking part in the development test the
software and provide feedback. Though
technically it is possible for them to use so-called
nightly builds straight from the version
management repository, few people outside the
developer community are actually willing to take
the risk.

• Because the eventual release is scrutinized in
public, quality tends to be high (in so far of interest
to the involved users and developers).

Especially for large open source projects, the release
process tends to be well defined.

3. Examples
To illustrate the claims made in the previous section,
we present three case studies which highlight all of the
practices mentioned in three large open source projects
with solid reputations in the software industry.
3.1 Eclipse
The Eclipse foundation is responsible for the
development of the Eclipse IDE and a rapidly growing
number of associated software packages (plugins).
Originally, the Eclipse source code was contributed by
IBM who still provides a significant amount of
funding. However, the Eclipse foundation is now an
independent organization that oversees the
development. In addition, other companies, including
competitors of IBM, now contribute funding and
development resources to the foundation.
Communication. Communication happens primarily
through email, IRC, the Bugzilla bug tracking system,
the WIKI website, mailing lists and the Eclipse.org
website. Eclipse developers are distributed across the
globe and mostly employed by (competing)
corporations (e.g. BEA and IBM).
Tooling. Eclipse source code is maintained in a CVS
repository, Bugzilla is used as the bug tracking system
and project documentation is divided between the
Eclipse.org website and the Eclipse WIKI.
Additionally there are several mailing lists both for end
users and developers.
Code ownership. The Eclipse foundation restricts
write access to their code repository. Generally, the

process for contributors involves contacting a so-called
committer for making a particular change. Typically,
components have an owner and multiple committers.
The role of the owner is to coordinate the work on that
component. When receiving an external contribution,
the committer either commits the change or (limited)
commit rights are given to the new contributor [2]. A
key element in the process is assuring that the
contribution conforms to the legal framework which
involves topics as copyrights, the license, patents and
export rules concerning cryptography technology [1].
All contributions must be traceable and accountable.
Procedures like this are common to many open source
projects.
Technical roadmap. The Eclipse project strongly
depends on development resources contributed by
various software companies. Those companies have a
strong influence on what is developed. A good example
is the web tools project, a massive undertaking by
IBM, BEA and several other companies to create a set
of J2EE development plugins for the Eclipse IDE. Over
the course of 1.5 year, this project went through a set of
planned milestones with specified sets of features and
managed to release a feature complete 0.7 release for
the Eclipse IDE 3.1 release, a more mature 1.0 release
half a year later and recently a 1.5 release. The input
for the project was a set of contributed development
tools from various vendors and a number of (public)
J2EE specifications that these companies wanted to
have support for.
Quality management. The core Eclipse project has
seen many changes related to improving performance
and memory usage in its recent versions. To
accomplish this, the automated test suites that are run
on nightly builds of the Eclipse software have been
extended with tests to measure specific scenarios.
Furthermore, target performance numbers have been
defined and cases where performance targets are not
met are treated as bugs. The test reports for the nightly
builds and release candidates of the Eclipse 3.2 release
list performance numbers relative to the 3.1 release.
Each case where performance decreases is treated as a
regression. Aside from performance, the nightly builds
also include a large number of unit tests (thousands).
Specific quality issues either identified automatically or
through testing, are reported in the bug tracking tool.
Release management. The Eclipse project has well
defined release cycles which are beyond the scope of
this article to discuss in full. The key philosophy of the
Eclipse release process is to be automation centric. The
release practice is outlined in a FAQ [3] that provides
answers on mostly technical topics such as how to set
up the test suite; how to integrate components into the

build process, etc. Effectively, the build infrastructure
implements and enforces a sophisticated system of
checks and balances that ensures that produced releases
meet predefined criteria.
In addition to the technical constraints, the release
process is complemented by communication and
coordination from project leads through the mailing list
on such topics as roadmaps, schedules, code freezes,
test plans, etc.
3.2 Mozilla
The Mozilla foundation which oversees the
development of Firefox browser, the Thunderbird mail
client and a number of related software projects has a
similar history to the Eclipse foundation. Originally,
the Mozilla browser was contributed by Netscape. The
company Netscape has since been absorbed into AOL
and was eventually liquidated. During this process, the
Mozilla foundation was created which still employs
some former Netscape employees but also a growing
number of new employees. Similar to Eclipse, the
Mozilla foundation receives corporate funding from a
number of companies that have an interest in the
continued existence of the Mozilla technology.
Communication. Similar to the Eclipse developers, the
Mozilla developers are also distributed globally. In
addition, they use similar communication tools.
Tooling. Similar to Eclipse, Mozilla development is
very tool centric. In addition, Mozilla is famous for
inventing its own tools. For example, Bugzilla is one of
the software projects that is maintained by the Mozilla
foundation. Other tools created by Mozilla include
Bonsai for examining the CVS history, LXR for
browsing the cross referenced source code through a
web site, Tinderbox for monitoring the build process
and Litmus for managing and running automated tests
on Firefox. Many of these tools, most notably Bonsai
and Bugzilla, have been adopted by other projects and
have even been integrated into commercial tools.
Code ownership. The Mozilla project features strong
code ownership. In practice, this means that every
patch must be reviewed and approved by a component
owner before being committed [4]. Component owners
are generally either Mozilla foundation employees or
individuals with a long history in the project employed
by one of the high profile donating corporations (e.g.
The Firefox project leader Ben Goodger is a Google
employee).
Technical roadmap. Firefox development takes place
in the context of a roadmap which is updated at regular
intervals (once or twice per year). The roadmap
features milestones and releases with a list of features
and corresponding Bugzilla ids. While the foundation
strives to release according to the roadmap, the Mozilla

release policy in practice appears to be much less rigid
then e.g. the Eclipse project. Often releases are delayed
for weeks or even months (as long as is needed). Also
new milestones may be inserted into the roadmap.
Finally, the roadmap acts mostly as a guide rather than
a complete functional specification. It contains what
the project leaders believe are relevant features to work
on. Input for this comes from the mailing lists, the
WIKI and IRC discussions.
Quality management. The Mozilla project has a
number of quality attributes that are explicitly
managed:
• Code quality. As part of the commit process, each

patch is attached to a bugreport in Bugzilla that
describes the problem and solution(s). Before
being committed, the patch is reviewed and super
reviewed.

• Correctness. The Firefox browser implements a
large number of open standards. In addition to that
it supports poorly defined incorrect interpretations
of these standards (a.k.a. the quirks mode) of other
browsers. Testing for compliance therefore is an
extremely complicated affair that is supported by
manual testing, half automated tests (a.k.a. smoke
tests) and fully automated tests (e.g. using the
Litmus tool).

• Performance. Similar to correctness, performance
is explicitly managed through testing (automated
and manually).

• Security. Browser security is of extreme
importance to end users. In addition, it is a
sensitive topic. Therefore, the Mozilla project has
well defined procedures for reporting, solving and
publicizing security issues. Additionally, recent
versions of the Firefox browser include an auto
update feature to stimulate rapid deployment of
security related bug fixes.

Release management. The Mozilla foundation
manages and oversees the release process. Generally
the process involves a number of alpha release
milestones followed by more or less feature complete
beta releases (typically two) and finally followed by a
series of release candidates (as many as is needed).
During this process, the rules for committing changes
become stronger. During the release process, no
changes are committed before being extensively
discussed by project leads. Additionally each of the
milestone and beta releases has a mini release process
which involves a few days of testing candidate builds
and restricting commit access to the CVS repository.
3.3 Linux
The Linux kernel development is overseen by its
inventor Linus Torvalds. The style in which he

manages the project is very different from Mozilla and
Eclipse though still tool centric. Unlike the former two
projects, Linux development is traditionally much more
fragmented among thousands of developers and
hundreds of contributing companies. In a recent
interview, Torvalds estimates that there are around 50
developers he communicates with directly and he
estimates that through them he is in contact with
approximately 5000 kernel developers [5].
Communication. Linux kernel developers rely very
much on mailing lists and private mail exchanges (or
IRC conversations). Linus Torvalds style of leadership
has often been referred to as that of a benevolent
dictator: ultimately, he is the one who takes important
decisions though in practice this responsibility is
delegated to trusted individuals.
Tooling. The central leadership is also reflected in how
the tooling works. The Linux project recently switched
from using Bitkeeper to its own developed tool Git.
Both are so-called distributed version management
tools. Rather than pushing changes to a central
repository, the lead kernel developers pull changes into
their private repositories either by accepting patches
from a mailinglist or by updating from somebody else's
repository. The repositories available at kernel.org are
read only for most developers. They are merely the
places where lead developers publish their approved
change sets from their private repositories. Other tools
used in Linux development include Bugzilla and
various news groups. However, email remains the most
important tool.
The use of a distributed version management system on
a large scale is a recent innovation that no doubt will be
followed up by adoption in other projects as well. It has
proven to be an effective way to orchestrate the
development on a large software system with many
active developers.
Code ownership. As the central leadership suggests,
code ownership is very strong in the Linux project. To
get a change committed in the Linux kernel the
associated patch needs to be communicated by email to
the relevant people that have the right to approve the
change. Eventually the change will find its way to
Linus Torvalds, who, after assuring that everything has
been properly reviewed, approved and tested may or
may not include the change at his discretion.
Technical roadmap. Linux development tends to be
more anarchistic than Mozilla or Eclipse development.
Essentially, there is no centrally maintained roadmap.
Development consists of many subgroups working on
e.g. drivers, new memory management routines, etc.
Major versions of the kernel usually include some re-
architecting as well. E.g., the current 2.6 version

included features to allow the kernel to scale better on
distributed systems.
Quality management. Stability, performance, security,
modularity are all important themes in the development
of the Linux kernel. Linux is used on many mission
critical servers, mainframes and desktops. Additionally
it is embedded in devices. Therefore, all these quality
attributes are critical. Despite this, there are few quality
management tools or processes in the Linux
development. Code review and testing by users seems
to be the main way of controlling quality. The reason
for this is that the Linux development and user
community is extremely diverse. There are thousands
of developers working on or depending on the latest
kernel sources. Testing happens in a distributed fashion
on a wide variety of devices by a wide variety of
parties with a wide variety of interests (device drivers,
processor architectures, file system development, real
time behavior, ...). The testers include: individual
desktop users, hardware vendors, Linux distribution
vendors, and the developers themselves.
Release management. In principle, Linus Torvalds is
the one who declares a release. His principle over the
years has always been that "it's done when it's done and
not sooner". Despite this, the process seems to involve
a number of stages spanning several months during
which progressively less changes are accepted and
testing efforts are increased.

4. Improving SPF development practice
Open source development as outlined above represent
the state of the art in the way software developers
believe software should be developed. If left to their
own devices, this is how they self organize.
In many respects that is very similar to how
development takes place (or should take place) in
traditional closed source environments. However, there
are some differences. In this section, we examine how
the practices discussed above may be integrated into
Software Product Family development practice.
4.1 Communication
Software Product Family developers are faced with
similar communication challenges as open source
developers. Often development teams are large, may be
geographically distributed and composed of different
organizational entities. Additionally, a growing need
for accountability (e.g. for legal reasons) makes it
obvious that the solution to this communication
challenge also needs to be similar (see e.g. [1] for the
process for accepting contributions in the Eclipse
project).
Additionally, many multinational companies are so
large that the challenge of getting their developers to
work together on projects requires a more or less

similar communication infrastructure to the OSS style
of communicating. Email remains an important tool
across such organizations. Consequently, many of the
open source communication tools are already finding
their way into the corporate world (e.g. WIKI's, bug
tracking tools and instant messaging tools).
A problem remains that, in general, only the
developing part of such companies uses such tools.
Senior managers, sales departments and other parts of
the organization are not using the same tools for
communicating. This creates a conceptual gap between
the development reality on the work floor and the
management reality. The alternate management reality
is an appealing ground to make important decisions
that have major effect on the development reality:
especially for people who should not be making those
decisions.
The term slideware refers to software entities that only
exist in PowerPoint slides and not in the relevant
development tools [6]. The problem with slideware is
that it doesn't have any corresponding representation in
the development communication infrastructure. Once it
does, it ceases to be slideware. Until it does, it does not
exist. Problems arise when slideware fails to
materialize in a timely fashion.
In open source projects, slideware does not exist. New
requirements for features become WIKI documents.
WIKI documents become bug reports. Bug reports are
commented on and eventually are closed with either a
reference to a patch or CVS commit or a message as to
why the particular feature is no longer relevant.
4.2 Tooling
In a corporate setting tooling tends to be better (e.g. the
use of commercial version management or document
management tools is common; additionally expensive
modeling tools, IDE's and other tools may be used).
However, over the years, the open source community
has produced its own set of tools that meets its
requirements. Such tools include everything from the,
now, industry standard GCC compiler, Bugzilla, the
Mozilla tool chain outlined above to sophisticated
distributed version management systems (e.g.
Subversion and GIT). Many commercial development
tools are simply based on open source components and
either add value through support or by adding specific
features.
A key feature of tools in the open source development
community is that they are developer centric. Their
primary objective is to make the developer's work (i.e.
developing software) easier. Many tools used in
Software Product Family development on the other
hand are not developer centric (or even developer
friendly). For example, many variability management

tools are aimed at requirements engineers or even sales
departments; many architecture modeling tools are
used by senior architects to communicate to their
managers; UML modeling tools are used to document
already developed software; model driven architecture
tools are aimed at the consumers of the software (i.e.
the people that design products) rather than the
developers of the composed software. Often
bureaucracy in the form of heavy processes is needed
to enforce the proper use of such tools.
A key lesson that may be drawn from the open source
style of tooling is that in order to be effective, tools
need to integrate into other tools. The set of tools
create their own reality in which the developer is
active. Anything outside this reality integrates poorly
into the communication structure used and quickly
becomes irrelevant (for the developers). OSS
developers seem to have little or no need for such tools
and yet manage to scale development to impressive
levels of scale, speed and quality.
A good example of an integrated tool from the OSS
community is Bugzilla. In both the Mozilla and Eclipse
projects (and in many other places) this tool is not only
used for bug tracking but also for requirements
engineering, release management and even process
improvement. The imposed reality in these projects is
that any change to anything is communicated through
and documented in Bugzilla. Bugzilla in turn is
integrated with email (notifications) and version
management systems.
Many Software Product Family tools are plagued by a
lack of integration. Design documentation tends to be
incomplete (or non existent) because the document
management system is not part of the development
environment, variability management tools depend on
extensive manual updates to stay in sync with source
code level changes; requirement specifications need to
be continuously validated and verified. Successful
examples do exist however. For example, KOALA, the
architecture description language used by Philips
integrates with the build system and design [7]. The
COVAMOF variability management tool proposed by
Sinnema et al. integrates into visual studio [8].
A second problem with such tools is that they are not
general purpose. This poses problems when product
families become product populations and different sets
of incompatible tools become obstacles that need to be
bridged. A key driver for growth in the OSS
communities is that everybody uses the same or similar
tools. This lowers the barrier of entry for new
contributors. The fact that the tools are comparatively
primitive is compensated by the fact that everybody
knows how to work with them. Similar consolidation in

SPF development tools is required as SPF are
increasingly complemented with third party provided
software components (open source and closed source).
4.3 Code ownership
While corporate interest in many OSS projects is huge
(also financially), OSS projects tend to be self
organizing in the sense that all important decisions are
made by developers rather than managers. The
relevance of opinions of individual developers is
strongly related to their level of (technical) contribution
to the project (within the Eclipse project this is called a
meritocracy).
A key issue in Software Product Family developing
companies, which are generally not organized as
meritocracies, is that decisions are made based on
authority, rank and status in the company. Especially
when difficult technical decisions are taken, this may
not be the most optimal strategy since it is not common
that the person with the most authority also has the
most technical competence. At best, he or she has the
wit to trust the judgment of the competent subordinates
who should be making the decision. In other words,
important technical decisions are routinely taken by the
wrong people; influenced by the wrong motives (e.g.
short term market interests vs. quality) and misguided
by a lack of relevant knowledge of domain, technology
and software design.
To counter this problem, many organizations organize
their Software Product Family development as a
separate organizational entity to shield it from the short
term interests that are present in depending
organizational units that develop the products [9].
Despite this, influence of the other organizational units
remains high through e.g. funding, upper management
etc.
The conflict between the long term technical roadmap
(development), the short term market interests (sales)
and the long term market perspective (marketing) poses
a risk to the long term technical health of the software.
Open source projects solve this by being autonomous.
That does not mean they are not affected by the market.
Through funding, donations and man power companies
exert influence over the technical roadmap, short term
interests etc. For example, IBM maintains a strong
influence in the Eclipse project (and in fact many other
open source projects that are of strategic interest to
them). While they cannot dictate their changes, they
have a very strong influence on the technical direction
of their project simply by funding development of
features and components that are of interest to them.
4.4 Technical Roadmap
Software Product Families are a key investment for the
companies that own them. Naturally, these companies

wish to have a strong influence on the roadmap of their
product lines. As outlined above under code ownership,
this can easily lead to a situation where decisions are
made by the wrong people. A real problem is that these
roadmaps tend to focus on functional requirements only
(because that is what is marketable to customers).
For example refactoring is unlikely to feature in a SPF
roadmap. Yet, when looking at OSS projects,
refactoring is often a driving force for major new
releases. For example, the Eclipse project was
refactored extensively between version 2 and 3. In
addition, the subsequent 3.1 and upcoming 3.2 have
seen additional refactoring work done. This has lead to
major improvements in performance, usability and
flexibility (which was the main reason for the
refactoring). Additionally, it has enabled the
development of new features. The Linux kernel has
seen large portions of its code being rewritten several
times in its 1.0, 1.2, 2.0, 2.2, 2.4 and 2.6 incarnations.
Firefox started out as an attempt by a small group of
individual Mozilla developers to refactor/rewrite the
Mozilla user interface, against the explicit wishes of
their AOL peers at the time. Firefox has since replaced
Mozilla as the flagship product of the Mozilla
foundation.
Refactoring is a good example of an activity that
developers will put on a roadmap and companies will
likely not until the need becomes obvious. Refactoring
almost always conflicts with commercial product
roadmaps and short term interests of companies.
A problem with OSS roadmaps is that they reflect what
the developers would like to see done, which is not
necessarily as important for end users or relevant for
the companies financing the development. Clearly, this
model is not applicable to commercial software
development on Software Product Families. On the
other hand, there is a much better understanding of the
technical feasibility of requirements at the developer
level than there is elsewhere in an organization. An
SPF roadmap should be realistic in the sense that its
requirements are technically feasible, desirable and in
the sense that important development activities needed
for maintaining or improving quality are covered.
4.5 Quality Management
Open source development relies on three powerful
quality management tools: large scale testing by end
users, code reviews and automated tests. Testing on a
large scale may be impractical for some software
product families. But both other approaches are not
unique to the open source community and can and
should be implemented in software product family
development methodology (in so far that is not the case
already).

What make code reviews particularly effective in open
source communities is that they can block the commit
of a change until the component owner decides that the
quality of the commit is good enough. This aspect of
code reviews is hard to duplicate in companies where
the code reviewer generally has limited authority to
block changes (especially if they address urgent issues
through a quick hack). Automated tests and test driven
development are also increasingly popular. For
example, in earlier research we reported on the
successful use of automated tests in improving quality
in Baan ERP. Test driven development is a cornerstone
of extreme programming [10].
4.6 Release Management
Depending on the number of customers for a particular
piece of software, the release process can become quite
sophisticated. For example releasing a new version of
the Mozilla Firefox browser is a process that spans
multiple months and involves exposing alpha, beta and
release candidate versions to large groups of users and
processing any feedback that comes back from these
users. In Software Product Family development, the
number of users is typically small. Despite this, it may
be productive to have some form of release process in
place. It also depends on the organizational model. If,
as outlined above, the product family development is
developed by a more or less independent organizational
entity, it makes sense that the rest of the organization
does not access the version repository directly and
instead relies on properly packaged and tested releases
provided by the product family developers. However,
having no feedback from real users (i.e. the product
developers) until after the release is likely to cause
issues with respect to implemented requirements and
faults that are discovered after the release.
The author's experience as the (ex) release manager of
a Dutch content management Software Product Family
suggests that a good strategy may be to expose
increasingly large groups of internal developers to
increasingly mature versions of the product. Combined
with a transition period with e.g. bi weekly releases this
ensures that feedback and development stability (for
the product developers) are balanced. This is similar to
the beta stage of many open source projects where
typically third parties (at their own risk) get involved
into testing the beta and release candidate releases.

5. Conclusion
This position paper looks at open source development
practice and makes some observations as to how this
practice is different from Software Product Family
development practice and how improvements could be
made to the latter.

This article does not, and cannot possibly tell Software
Product Family owners how to develop their software.
Instead, it merely suggests to them that there is this set
of practices that may be found in many open source
projects that is known to work well at least in that
context. In so far these practices are not already
integrated into the Software Product Family
development practice, it is further outlined how that
might be accomplished and what the tradeoffs are.
The key vision underlying this paper is that from the
point of view of the experts, i.e. the developers, the
open source style of working is the best practice in the
context of large software projects that are worked on
by many geographically distributed developers.
A key difference between open source projects and
most Software Product Families is that in open source
projects the developers are in charge. This works out
surprisingly well for all the aspects discussed above.
All of the three cited projects are performing excellent
in terms of quality, features and development speed.
Therefore, the key recommendation of this paper to
Software Product Family owners is to carefully
(re)consider the balance between product family
developers and management. Empowering developers
allows them to work in a way that they consider best
(and who are we to disagree). At the same time, of
course the point of Software Product Families is
directly aligned with the owning company's core
business.

6. References
[1] Eclipse Foundation Process for accepting
contributions,
http://www.Eclipse.org/legal/EclipseLegalProcessPoste
r-v1.2.4.pdf
[2] The Eclipse development process.
http://www.Eclipse.org/Eclipse/Eclipse-charter.html.
[3] Eclipse Release Engineering FAQ.
http://WIKI.Eclipse.org/index.php/Platform-releng-faq.
[4] Hacking Mozilla,
http://www.Mozilla.org/hacking/life-cycle.html
[5] Interview with Linus Torvalds
http://edition.cnn.com/2006/BUSINESS/05/18/global.o
ffice.linustorvalds/
[6] Slideware definition,
http://en.WIKIpedia.org/WIKI/Slideware, 2005-05-31
[7] R. van Ommering, Building product populations
with software components, proceedings of the 24rd
International Conference on Software Engineering, pp.
255-265, 2002.
[8] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, Jan
Bosch: Modeling Dependencies in Product Families
with COVAMOF. ECBS 2006: 299-307.

[9] Jan Bosch, Maturity and Evolution in Software
Product Familys: Approaches, Artefacts and
Organization. SPLC 2002: 257-271.
[10] Kent Beck, "Test Driven Development", Addison
Wesley, 2002.

