OSS Product Family Engineering

Jilles van Gurp
Nokia Research Center, Software and Application Technology Lab
jilles.vangurp AT nokia.com

Abstract known to use BSD licensed components in e.g. their
Open source projects have a characteristic set of network stack.

development practices that is, in many cases, very Open source components form a rapidly growing,
different from the way many Software Product shared repository from which, depending on the
Families are developed. Yet the problems these specific license, anybody can just take what thegdn
practices are tailored for are very similar. This paper and use it. Open source is very much about inter-
examines what these practices are and how they might organizational reuse.
be integrated into Software Product Family It turns out that, as the scale of development is
development. growing, inter-organizational reuse is increasingly
1. Introduction important. Few organizations can afford to develop

The notion of software reuse has been studied andeverything in house._ For SOME years, COTS have been
practiced for decades. Over time, the attentiothin pushed as the solution for this problem. Howewrk|

technological dimension has shifted from subrowtine oftsourcde ;?de’f stjpporr]t, perfectly trr:jatt%hlng_d:;ture
to modules, frameworks and finally Software Product SELs, and other Taclors have prevented the widespre

Families. In the organizational domain, focus has adoption of COTS. o . .
grown from code reuse by the author of the code to However, many organizations are now replacing their

code reuse by others than the author of the COdenon-diversifying, in house developed components wit

working on the same software, working in the same 0pe_r|1 bslource, or even making tShe|r egtlre software_
organization and finally between organizations. available as open source (e.g. Sun). Open source is

Software Product Family engineering is very much succeeding where COT_S has fa_|led._ .
about intra-organizational reuse. Open source software is enabling interested patties

The open source movement was born out of ashare code under a legal umbrella that sufficiently

pragmatic need to share code among individualss Thi protects the rights of t_he using and _producingi@art
need arose in the late sixties and early seventies Th]?t use inddpr(:d:cthp of_OSbSth N thebc_ontext Oc];
researchers started to share code for common asseéo _’;’al;? rol l:_c ?m't'ﬁs IS b(l) a:;] (t) ylour? an
such as compilers, system libraries and later dipgra inévitable ~solution 1o the problem that in nouse

systems such as UNIX. During the eighties, thetprac developed softwar_e is an increasingly smaller fuaia
of code sharing was given a legal framework in the not absolute) portion of the total amount of sofeva

form of license agreements such as the BSD Iicenserequ"ed' Eliminating non value adding developmant

and the GNU public license. Finally, during theelat S%ftwgre Product Family development is key to
nineties, when Linux emerged as a mainstream "€ducing cost.

operating system, the term open source starteceto bé\rggab![yl,: oplen d SOTrce d?veloprlne_nt tand S;);vza;re
used to refer to this practice of collaborative roguct mamily development can claim to repre

development, licensing and distribution of software two most successful strategies for reusing software

Currently a wide variety of programs, componentd an This Pos“_ion paper explores Se"e_r?" of _the prastic
frameworks is available under an open source leens comm(t)r? In-Open source communltles_wrih e)léarlnples
Many software companies now depend on open sourcefrom_ ree -major ~Open Source projects (-Clipse,
components for their core business. For exampke, th Mozilla, and Linux). Add|t|0nally some d'SCUSS'OS.' !
Gnu Compiler is widely used across the industry and gref?entedpond h(:vl\i the_lsed pra::tlces rtnay be applied to
crucial for many embedded system companies. oftware Froduct Family development.

Similarly, the Linux operating system kernel is dissy 1.1 Remainder of this paper

many embedded systems companies. Even Microsoft is! '€ rest of this paper consists of three partsstFir
(section 2) we characterize more precisely what we

understand the OSS development practice to ben The «
we illustrate this with three open source projects:
Eclipse, Mozilla, and Linux. Finally, we reflect in
section 4 on how the identified practices could be
integrated into Software Product Family development
and we conclude our paper in section 5.

2. OSS development practice

Open source in the narrow definition refers onlyte *
license used to make the software available. A&,suc
the use of open source is completely orthogon#heo

use of Software Product Family development prastice
(i.e. one could develop a Software Product Family
using the conventional methods for doing so and the ¢
make the resulting software available as open sjurc
However, in its wider definition it may also be
understood to include a set of development pragtice
and a certain style of development that is verfedst

A bug tracking system. Bug tracking systems are
commonly used both for tracking bugs,

requirements and even project planning. Many
open source projects require any change
committed to the version management system to be
related to a bug or issue in the bug tracking
system.

WIKI's are increasingly popular for document

management. Particularly end user documentation,
development documentation and project
documentation (e.g. roadmaps) tend to be
maintained in WIKI's.

Build and integration tools (e.g. maven, ant,

Make). Many open source projects depend on
automated builds, integration and testing tools for
receiving feedback about project progress and
status.

from the way Software Product Families are devedope Open source development is necessarily tool centric
by many organizations. In this section, severahete because its developers are generally distributed
practices are discussed. geographically. The tools are effectively their yonl
2.1 Communication interface to the project. Consequently, development
Many open source projects are developed by peop|epractices that are incompatible with this interface

that are geographically distributed, may be inesight ~ rarely found in open source projects. It therefare
time-zones and work for different organizations. quite common for OSS projects to not have explicit
Consequently, many forms of communication that are design documentation; use case diagrams or even an
common in enterprises such as phone calls, fatacto architecture design phase. However, that does aahm
meetings are impractical. Additionally, the praetiof that such projects do not have architecture, desigh

one individual (a.k.a. the boss) telling other widials requirements. _
what to do is not that common. Decisions are basedInstead, these assets, insofar deemed relevanheby t

primarily on consensus rather than authority. developers, exist in the tools. Use cases are lrare

In the open source community, email and IRC are thedetailed requirements and requirements change

primary means of communication rather than face to requests are managed through the bug trackingnsyste

face meetings. Technical discussions are preferablyArchitecture documentation is generally lacking but

conducted on mailing lists which are generally areth then the audience for such documentation is not

for future reference. IRC or similar instant messgg hecessarily the developers either in organizatibas

tools are used for a more direct style of do write architecture documentation.

communication. These conversations tend to be less2.3 Strong code owner ship

formal and they are generally not archived. Cases a Though the source code of an OSS project may

known of OSS developers sending each other emails(legally) be modified and redistributed by anyohe t

while sitting at the same table for the purpose of actual occurrence of someone taking open source

archiving the discussion or simply conducting it in software, modifying it and distributing it indepesdly

public. from he original (a practice known as forking) isitq

2.2 Tool centric development rare. Generally, open source projects have strong

A key characteristic of open source developmettias ~ ownership with a small group of developers

open source projects are organized around a set ofoordinating and guarding the development.

enabling tools. Generally, these tools (in additothe ~ Source code ownership is governed through version

usual development tools such as compilers and)DE's repository access rights. Typically, a limited st

include: individuals has the right to make changes to palgic

« A version management system. CVS is historically directories in the version management system.atsis
popular in open source projects but is now rapidly duite common that approval of key individuals is
being replaced by the much more modern N€eded to make any kind of change. The strong
Subversion (e.g. the Apache Foundation and ownership enforces code reviews take place and that

Sourceforge use Subversion nowadays). changes are tested properly.

2.4 Technical roadmap .

Unlike commercial

software development where

managers, customers and other stakeholders degrmin
what is developed, the evolution of open source
software projects is primarily determined by:

Developer interest. Developers generally prioritize
features that they are personally interested in.
Corporate funding. Most large open source
projects are developed by developers who are paid®
to work on the project. Of course, the reason they
are paid is that their companies have a strategic
interest in the project and presumably want to
influence the direction of the project.

Project organization. Many open source projects
are led by a small group of, more or less,
independently operating individuals whose
personal vision strongly influences technical
decisions made in the project.

In order to prioritize features or make major techh .

changes to the software, interested parties neewto

The software is released when it is 'done'. This
moment is generally agreed on either by leading
individuals in the process or by consensus. Despite
this, many open source projects try to follow date
driven roadmaps where milestones and releases are
planned to occur. In commercial projects, such
deadlines tend to be much harder and inflexible,
however.

The software release is preceded by a series of
public alpha, beta and release candidate
milestones. During this period, interested third
parties not taking part in the development test the
software and provide feedback. Though
technically it is possible for them to use so-adhlle
nightly builds straight from the version
management repository, few people outside the
developer community are actually willing to take
the risk.

Because the eventual release is scrutinized in
public, quality tends to be high (in so far of st

in this structure. They need to convince whatever to the involved users and developers).
individual is in charge that the suggested chasga i Especially for large open source projects, theasse
good one; generate interest among developers toprocess tends to be well defined.
actually get the change implemented and maybe3. Examples
arrange some funding to allow developers to work on To illustrate the claims made in the previous segti
the change. we present three case studies which highlight fathe
2.5 Quality management practices mentioned in three large open sourcegt®]
A consequence of developers being in charge of thewith solid reputations in the software industry.
technical roadmap is that generally developers 3.1 Eclipse
prioritize quality attributes that interest themorF The Eclipse foundation is responsible for the
example, the open BSD project has a strong securitydevelopment of the Eclipse IDE and a rapidly grawin
focus. The open BSD lead developers all have strongnumber of associated software packages (plugins).
engineering backgrounds in security related matteys Originally, the Eclipse source code was contribuigd
products are generally considered to be of excegtio IBM who still provides a significant amount of
quality in this regard (e.g. open SSH or the op&DB funding. However, the Eclipse foundation is now an
kernel). Additionally, any issues related secusie independent organization that oversees the
handled swiftly once the developers are notified of development. In addition, other companies, inclgdin
them. Other quality issues outside the scope of thecompetitors of IBM, now contribute funding and
developer's interest receive much less attention (f development resources to the foundation.
example, usability is often sacrificed in favor of Communication. Communication happens primarily
configurability). through email, IRC, the Bugzilla bug tracking syste
Similar to the technical roadmap, the quality the WIKI website, mailing lists and the Eclipse.org
management can be influenced through funding, website. Eclipse developers are distributed actoss
argumentation, etc. globe and mostly employed by (competing)
2.6 Release Management corporations (e.g. BEA and IBM).
Release management is the process of convertinglooling. Eclipse source code is maintained in a CVS
source code in the version management into a stablerepository, Bugzilla is used as the bug trackinstean
well tested software package that can be distribtde = and project documentation is divided between the
end users. Many open source projects have wellEclipse.org website and the Eclipse WIKI.
defined processes for producing a release. Geperall Additionally there are several mailing lists both &nd
there are a few differences with comparable praess users and developers.
in commercial projects: Code ownership. The Eclipse foundation restricts
write access to their code repository. Generalig t

process for contributors involves contacting a alted build process, etc. Effectively, the build infrastiure
committer for making a particular change. Typically implements and enforces a sophisticated system of
components have an owner and multiple committers.checks and balances that ensures that producedesle
The role of the owner is to coordinate the worktteat meet predefined criteria.

component. When receiving an external contribution, In addition to the technical constraints, the reéea
the committer either commits the change or (limited process is complemented by communication and
commit rights are given to the new contributor [2]. coordination from project leads through the mailiisg

key element in the process is assuring that theon such topics as roadmaps, schedules, code freezes
contribution conforms to the legal framework which test plans, etc.

involves topics as copyrights, the license, patamis 3.2 Mozlla

export rules concerning cryptography technology. [1] The Mozilla foundation which oversees the
All contributions must be traceable and accountable development of Firefox browser, the ThunderbirdImai
Procedures like this are common to many open sourceclient and a number of related software projects da
projects. similar history to the Eclipse foundation. Origilyal
Technical roadmap. The Eclipse project strongly the Mozilla browser was contributed by Netscapee Th
depends on development resources contributed bycompany Netscape has since been absorbed into AOL
various software companies. Those companies have and was eventually liquidated. During this procéiss,
strong influence on what is developed. A good eXxamp Mozilla foundation was created which still employs
is the web tools project, a massive undertaking by some former Netscape employees but also a growing
IBM, BEA and several other companies to createta se number of new employees. Similar to Eclipse, the
of J2EE development plugins for the Eclipse IDEeOv Mozilla foundation receives corporate funding fram
the course of 1.5 year, this project went througkteof number of companies that have an interest in the
planned milestones with specified sets of featames continued existence of the Mozilla technology.
managed to release a feature complete 0.7 release f Communication. Similar to the Eclipse developers, the
the Eclipse IDE 3.1 release, a more mature 1.@sele Mozilla developers are also distributed globallp. |
half a year later and recently a 1.5 release. Tibati addition, they use similar communication tools.

for the project was a set of contributed developgmen Tooling. Similar to Eclipse, Mozilla development is
tools from various vendors and a number of (public) very tool centric. In addition, Mozilla is famousrf
J2EE specifications that these companies wanted tanventing its own tools. For example, Bugzilla isecof
have support for. the software projects that is maintained by the Nz
Quality management. The core Eclipse project has foundation. Other tools created by Mozilla include
seen many changes related to improving performanceBonsai for examining the CVS history, LXR for
and memory usage in its recent versions. To browsing the cross referenced source code through a
accomplish this, the automated test suites thatwarte web site, Tinderbox for monitoring the build proses
on nightly builds of the Eclipse software have been and Litmus for managing and running automated tests
extended with tests to measure specific scenarioson Firefox. Many of these tools, most notably Bansa
Furthermore, target performance numbers have beerand Bugzilla, have been adopted by other projeuts a
defined and cases where performance targets are ndtave even been integrated into commercial tools.

met are treated as bugs. The test reports forigely Code ownership. The Mozilla project features strong
builds and release candidates of the Eclipse 3=2se code ownership. In practice, this means that every
list performance numbers relative to the 3.1 raeas patch must be reviewed and approved by a component
Each case where performance decreases is treated asowner before being committed [4]. Component owners
regression. Aside from performance, the nightiyldsui are generally either Mozilla foundation employees o
also include a large number of unit tests (thouspnd individuals with a long history in the project eropéd
Specific quality issues either identified automaiticor by one of the high profile donating corporationsy(e
through testing, are reported in the bug trackau. t The Firefox project leader Ben Goodger is a Google
Release management. The Eclipse project has well employee).

defined release cycles which are beyond the scépe oTechnical roadmap. Firefox development takes place
this article to discuss in full. The key philosopbfythe in the context of a roadmap which is updated atilezg
Eclipse release process is to be automation cefitnie intervals (once or twice per year). The roadmap
release practice is outlined in a FAQ [3] that fdes features milestones and releases with a list dfifea
answers on mostly technical topics such as hoveto s and corresponding Bugzilla ids. While the foundatio
up the test suite; how to integrate componentstimo strives to release according to the roadmap, theillo

release policy in practice appears to be muchrigis manages the project is very different from Mozéled
then e.g. the Eclipse project. Often releases eliaydd Eclipse though still tool centric. Unlike the fornmtevo
for weeks or even months (as long as is neededh Al projects, Linux development is traditionally mucne
new milestones may be inserted into the roadmap.fragmented among thousands of developers and
Finally, the roadmap acts mostly as a guide rattnem hundreds of contributing companies. In a recent
a complete functional specification. It containsatvh interview, Torvalds estimates that there are ardbdd
the project leaders believe are relevant featuregork developers he communicates with directly and he
on. Input for this comes from the mailing listseth estimates that through them he is in contact with
WIKI and IRC discussions. approximately 5000 kernel developers [5].
Quality management. The Mozilla project has a Communication. Linux kernel developers rely very
number of quality attributes that are explicitty much on mailing lists and private mail exchanges (o
managed: IRC conversations). Linus Torvalds style of leatigrs
» Code quality. As part of the commit process, each has often been referred to as that of a benevolent
patch is attached to a bugreport in Bugzilla that dictator: ultimately, he is the one who takes ini@or
describes the problem and solution(s). Before decisions though in practice this responsibility is
being committed, the patch is reviewed and super delegated to trusted individuals.
reviewed. Tooling. The central leadership is also reflected in how
+ Correctness. The Firefox browser implements a the tooling works. The Linux project recently swiécl
large number of open standards. In addition to thatfrom using Bitkeeper to its own developed tool Git.
it supports poorly defined incorrect interpretaion Both are so-called distributed version management
of these standards (a.k.a. the quirks mode) ofrothe tools. Rather than pushing changes to a central
browsers. Testing for compliance therefore is an repository, the lead kernel developers pull chamgies
extremely complicated affair that is supported by their private repositories either by accepting pesc
manual testing, half automated tests (a.k.a. smokefrom a mailinglist or by updating from somebodyets
tests) and fully automated tests (e.g. using therepository. The repositories available at kerngl.are
Litmus tool). read only for most developers. They are merely the
« Performance. Similar to correctness, performance places where lead developers publish their approved

is explicitly managed through testing (automated change sets from their private repositories. Otbels
and manually). used in Linux development include Bugzilla and

« Security. Browser security is of extreme Vvarious news groups. However, email remains thet mos

importance to end users. In addition, it is a important tool.
sensitive topic. Therefore, the Mozilla project has The use of a distributed version management system
well defined procedures for reporting, solving and & large scale is a recent innovation that no dailbbe
publicizing security issues. Additionally, recent followed up by adoption in other projects as witlhas
versions of the Firefox browser include an auto Proven to be an effective way to orchestrate the
update feature to stimulate rapid deployment of development on a large software system with many
security related bug fixes. active developers.
Release management. The Mozilla foundation Code ownership. As the central leadership suggests,
manages and oversees the release process. Generaffpde ownership is very strong in the Linux projéa.
the process involves a number of alpha releaseget a change committed in the Linux kernel the
milestones followed by more or less feature coneplet associated patch needs to be communicated by tmail
beta releases (typically two) and finally followbyi a the relevant people that have the right to appitbwee
series of release candidates (as many as is needed§hange. Eventually the change will find its way to
During this process, the rules for committing ctesig Linus Torvalds, who, after assuring that everyttiag
become stronger. During the release process, noPeen properly reviewed, approved and tested may or
changes are committed before being extensivelymay notinclude the change at his discretion.
discussed by project leads. Additionally each af th Technical roadmap. Linux development tends to be
milestone and beta releases has a mini releasegwoc Mmore anarchistic than Mozilla or Eclipse developmen
which involves a few days of testing candidate dmiil Essentially, there is no centrally maintained roapgm
and restricting commit access to the CVS repository ~ Development consists of many subgroups working on
3.3 Linux e.g. drivers, new memory management routines, etc.
The Linux kernel development is overseen by its Majqr ve_rsions of the kernel usually include sorae r
inventor Linus Torvalds. The style in which he architecting as well. E.g., the current 2.6 version

included features to allow the kernel to scaledvetn
distributed systems.

Quality management. Stability, performance, security,
modularity are all important themes in the develeptm
of the Linux kernel. Linux is used on many mission
critical servers, mainframes and desktops. Addiilyn

it is embedded in devices. Therefore, all thesditgua
attributes are critical. Despite this, there are friality

similar communication infrastructure to the OS¥lest

of communicating. Email remains an important tool
across such organizations. Consequently, manyeof th
open source communication tools are already finding
their way into the corporate world (e.g. WIKI's,dou
tracking tools and instant messaging tools).

A problem remains that, in general, only the
developing part of such companies uses such tools.

management tools or processes in the Linux Senior managers, sales departments and otherqarts
development. Code review and testing by users seemshe organization are not using the same tools for
to be the main way of controlling quality. The r@as communicating. This creates a conceptual gap betwee
for this is that the Linux development and user the development reality on the work floor and the
community is extremely diverse. There are thousandsmanagement reality. The alternate managementyrealit
of developers working on or depending on the latestis an appealing ground to make important decisions

kernel sources. Testing happens in a distributskiida

on a wide variety of devices by a wide variety of
parties with a wide variety of interests (devicevelrs,
processor architectures, file system developmesa, r
time behavior, ...). The testers include: individua

that have major effect on the development reality:
especially for people who should not be making ¢hos
decisions.

The term slideware refers to software entities tdrdy
exist in PowerPoint slides and not in the relevant

desktop users, hardware vendors, Linux distribution development tools [6]. The problem with slidewase i

vendors, and the developers themselves.

Release management. In principle, Linus Torvalds is
the one who declares a release. His principle twer
years has always been that "it's done when it's éo

not sooner". Despite this, the process seems tuviav

that it doesn't have any corresponding representati
the development communication infrastructure. Ghce
does, it ceases to be slideware. Until it doedo@s not
exist. Problems arise when slideware fails
materialize in a timely fashion.

to

a number of stages spanning several months duringn open source projects, slideware does not eXisiv
which progressively less changes are accepted andequirements for features become WIKI documents.

testing efforts are increased.
4. Improving SPF development practice

WIKI documents become bug reports. Bug reports are
commented on and eventually are closed with either

Open source development as outlined above represenfieference to a patch or CVS commit or a message as
the state of the art in the way software developersWhy the particular feature is no longer relevant.

believe software should be developed. If left teirth
own devices, this is how they self organize.

4.2 Tooling
In a corporate setting tooling tends to be betqy. (the

In many respects that is very similar to how use of commercial version management or document
development takes place (or should take place) inmanagement tools is common; additionally expensive
traditional closed source environments. Howevestgh ~ modeling tools, IDE's and other tools may be used).
are some differences. In this section, we examow h However, over the years, the open source community
the practices discussed above may be integrated int has produced its own set of tools that meets its
Software Product Family development practice. requirements. Such tools include everything from, th
4.1 Communication now, industry standard GCC compiler, Bugzilla, the
Software Product Family developers are faced with Mozilla tool chain outlined above to sophisticated
similar communication challenges as open sourcedistributed version management systems (e.g.
developers. Often development teams are large bmay Subversion and GIT). Many commercial development
geographically distributed and composed of differen tools are simply based on open source componedts an
organizational entities. Additionally, a growingese €ither add value through support or by adding djeci
for accountability (e.g. for legal reasons) makes i features.

obvious that the solution to this communication A key feature of tools in the open source develapime
challenge also needs to be similar (see e.g. [1jHe community is that they are developer centric. Their
process for accepting contributions in the Eclipse Primary objective is to make the developer's wa (
project). developing software) easier. Many tools used in
Additionally, many multinational companies are so Software Product Family development on the other
large that the challenge of getting their develsper ~ hand are not developer centric (or even developer
work together on projects requires a more or lessfriendly). For example, many variability management

tools are aimed at requirements engineers or eales s SPF development tools is required as SPF are
departments; many architecture modeling tools areincreasingly complemented with third party provided
used by senior architects to communicate to their software components (open source and closed source)
managers; UML modeling tools are used to document4.3 Code ownership

already developed software; model driven architectu While corporate interest in many OSS projects igehu
tools are aimed at the consumers of the softwaee (i (also financially), OSS projects tend to be self
the people that design products) rather than thegrganizing in the sense that all important decisiare
developers of the composed software. Often made by developers rather than managers. The
bureaucracy in the form of heavy processes is meede relevance of opinions of individual developers is

to enforce the proper use of such tools. strongly related to their level of (technical) cdioition
A key lesson that may be drawn from the open sourceto the project (within the Eclipse project thiccalled a
style of tooling is that in order to be effectiiepls meritocracy).

need to integrate into other tools. The set ofdool A key issue in Software Product Family developing
create their own reality in which the developer is companies, which are generally not organized as
active. Anything outside this reality integratesofdy meritocracies, is that decisions are made based on
into the communication structure used and quickly authority, rank and status in the company. Espgcial
becomes irrelevant (for the developers). OSS when difficult technical decisions are taken, thiay

developers seem to have little or no need for $ocls not be the most optimal strategy since it is nohcomn
and yet manage to scale development to impressivethat the person with the most authority also has th
levels of scale, speed and quality. most technical competence. At best, he or shehms t

A good example of an integrated tool from the OSS wit to trust the judgment of the competent subaattis
community is Bugzilla. In both the Mozilla and Bxde ~ who should be making the decision. In other words,
projects (and in many other places) this tool isardy important technical decisions are routinely takgriHe
used for bug tracking but also for requirements wrong people; influenced by the wrong motives (e.g.
engineering, release management and even processhort term market interests vs. quality) and midgdi
improvement. The imposed reality in these projégts by a lack of relevant knowledge of domain, techgglo
that any change to anything is communicated throughand software design.

and documented in Bugzilla. Bugzilla in turn is To counter this problem, many organizations organiz
integrated with email (notifications) and version their Software Product Family development as a
management systems. separate organizational entity to shield it from #fort
Many Software Product Family tools are plagued by aterm interests that are present in depending
lack of integration. Design documentation tenddéo organizational units that develop the products [9].
incomplete (or non existent) because the documentDespite this, influence of the other organizatiomaits
management system is not part of the developmentremains high through e.g. funding, upper management
environment, variability management tools depend on etc.

extensive manual updates to stay in sync with gurc The conflict between the long term technical roagma
code level changes; requirement specifications need (development), the short term market interestse§3al
be continuously validated and verified. Successful and the long term market perspective (marketingepo
examples do exist however. For example, KOALA, the a risk to the long term technical health of thetwafe.
architecture description language used by Philips Open source projects solve this by being autonomous
integrates with the build system and design [7]e Th That does not mean they are not affected by th&ehar
COVAMOF variability management tool proposed by Through funding, donations and man power companies
Sinnema et al. integrates into visual studio [8]. exert influence over the technical roadmap, shemwnt

A second problem with such tools is that they ae n interests etc. For example, IBM maintains a strong
general purpose. This poses problems when producinfluence in the Eclipse project (and in fact matiyer
families become product populations and differ&tss open source projects that are of strategic intet@st
of incompatible tools become obstacles that nedteto them). While they cannot dictate their changesy the
bridged. A key driver for growth in the OSS have a very strong influence on the technical divac
communities is that everybody uses the same otasimi of their project simply by funding development of
tools. This lowers the barrier of entry for new features and components that are of interest to.the
contributors. The fact that the tools are compegdti 4.4 Technical Roadmap

primitive is compensated by the fact that everybody Software Product Families are a key investmentter
knows how to work with them. Similar consolidation companies that own them. Naturally, these companies

wish to have a strong influence on the roadmaheft What make code reviews particularly effective ireop
product lines. As outlined above under code ownpysh source communities is that they can block the cammi
this can easily lead to a situation where decisimmes of a change until the component owner decidesthigat
made by the wrong people. A real problem is thes¢h quality of the commit is good enough. This aspdct o
roadmaps tend to focus on functional requiremeniig 0 code reviews is hard to duplicate in companies &her
(because that is what is marketable to customers). the code reviewer generally has limited authordy t
For example refactoring is unlikely to feature iISBF block changes (especially if they address urgenteis
roadmap. Yet, when looking at OSS projects, through a quick hack). Automated tests and tesedri
refactoring is often a driving force for major new development are also increasingly popular. For
releases. For example, the Eclipse project wasexample, in earlier research we reported on the
refactored extensively between version 2 and 3. Insuccessful use of automated tests in improvingityual
addition, the subsequent 3.1 and upcoming 3.2 havein Baan ERP. Test driven development is a corneesto
seen additional refactoring work done. This had ksa of extreme programming [10].

major improvements in performance, usability and 4.6 Release Management

flexibility (which was the main reason for the Depending on the number of customers for a pasticul
refactoring). Additionally, it has enabled the piece of software, the release process can becaitee q
development of new features. The Linux kernel has sophisticated. For example releasing a new versfon
seen large portions of its code being rewritteres@lv ~ the Mozilla Firefox browser is a process that spans
times in its 1.0, 1.2, 2.0, 2.2, 2.4 and 2.6 inatioms. multiple months and involves exposing alpha, beth a
Firefox started out as an attempt by a small grolp release candidate versions to large groups of @sets
individual Mozilla developers to refactor/rewritbet processing any feedback that comes back from these
Mozilla user interface, against the explicit wishefs users. In Software Product Family development, the
their AOL peers at the time. Firefox has since aeptl number of users is typically small. Despite thisnay
Mozilla as the flagship product of the Mozilla be productive to have some form of release proiress
foundation. place. It also depends on the organizational mddel.
Refactoring is a good example of an activity that as outlined above, the product family development i
developers will put on a roadmap and companies will developed by a more or less independent organigdtio
likely not until the need becomes obvious. Refantpr entity, it makes sense that the rest of the orgdioia
almost always conflicts with commercial product does not access the version repository directly and
roadmaps and short term interests of companies. instead relies on properly packaged and testedsete

A problem with OSS roadmaps is that they reflecatvh provided by the product family developers. However,
the developers would like to see done, which is not having no feedback from real users (i.e. the prbduc
necessarily as important for end users or relef@nt developers) until after the release is likely taism
the companies financing the development. Cleahig, t issues with respect to implemented requirements and
model is not applicable to commercial software faults that are discovered after the release.
development on Software Product Families. On the The author's experience as the (ex) release manéger
other hand, there is a much better understandiigeof a Dutch content management Software Product Family
technical feasibility of requirements at the depelo suggests that a good strategy may be to expose
level than there is elsewhere in an organization. A increasingly large groups of internal developers to
SPF roadmap should be realistic in the sense that i increasingly mature versions of the product. Comthin
requirements are technically feasible, desirablé ian with a transition period with e.g. bi weekly releaghis

the sense that important development activitiesiegée ensures that feedback and development stability (fo
for maintaining or improving quality are covered. the product developers) are balanced. This is aintil

4.5 Quality M anagement the beta stage of many open source projects where
Open source development relies on three powerfultypically third parties (at their own risk) get wived
quality management tools: large scale testing by en into testing the beta and release candidate release
users, code reviews and automated tests. Testirey on 5. Conclusion

large scale may be impractical for some software This position paper looks at open source developmen
product families. But both other approaches are notpractice and makes some observations as to how this
unique to the open source community and can andpractice is different from Software Product Family

should be implemented in software product family development practice and how improvements could be
development methodology (in so far that is notdhse made to the latter.

already).

This article does not, and cannot possibly tell\Baife [9] Jan Bosch, Maturity and Evolution in Software
Product Family owners how to develop their software Product Familys: Approaches, Artefacts and
Instead, it merely suggests to them that therhissset Organization. SPLC 2002: 257-271.

of practices that may be found in many open source[10] Kent Beck, "Test Driven Development”, Addison
projects that is known to work well at least inttha Wesley, 2002.

context. In so far these practices are not already

integrated into the Software Product Family

development practice, it is further outlined hovatth

might be accomplished and what the tradeoffs are.

The key vision underlying this paper is that frome t

point of view of the experts, i.e. the developdhe

open source style of working is the best practicthe

context of large software projects that are worked

by many geographically distributed developers.

A key difference between open source projects and

most Software Product Families is that in open a®ur

projects the developers are in charge. This wotks o

surprisingly well for all the aspects discussedvabo

All of the three cited projects are performing dbere

in terms of quality, features and development speed

Therefore, the key recommendation of this paper to

Software Product Family owners is to carefully

(re)consider the balance between product family

developers and management. Empowering developers

allows them to work in a way that they considertbes

(and who are we to disagree). At the same time, of

course the point of Software Product Families is

directly aligned with the owning company's core

business.

6. References

[1] Eclipse Foundation Process for accepting
contributions,
http://imww.Eclipse.org/legal/EclipseLegalProcessPos
r-v1.2.4.pdf

[2] The Eclipse development process.
http://mww.Eclipse.org/Eclipse/Eclipse-charter.html
[3] Eclipse Release Engineering FAQ.
http://WIKI.Eclipse.org/index.php/Platform-relengef.

[4] Hacking Mozilla,
http://imww.Mozilla.org/hacking/life-cycle.html
[5] Interview with Linus Torvalds

http://edition.cnn.com/2006/BUSINESS/05/18/global.o
ffice.linustorvalds/

[6] Slideware definition,
http://en.WIKlpedia.org/WIKI/Slideware, 2005-05-31
[7] R. van Ommering, Building product populations
with software components, proceedings of the 24rd
International Conference on Software Engineering, p
255-265, 2002.

[8] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, Ja
Bosch: Modeling Dependencies in Product Families
with COVAMOF. ECBS 2006: 299-307.

