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Abstract

Mobile devices are evolving into hubs of content and context information. There
have been many research projects showing the potential for new applications for
pervasive computing. We aim to support pervasive applications on a wide variety of
devices using Web and resource-based smart spaces. We address several issues for
adapting a resource-based style of HTTP (REST) for pervasive services to enable
easy mashup of applications in this environment. First, for security and access
control in heterogeneous, dynamic environments we introduce a flexible access
control mechanism on top of OpenID and OAuth. Additionally to support finding
resources we use a search engine that can collaborate with existing service and
network discovery mechanisms. We also outline how an emerging W3C standard,
DCCI, can be used to share information within a device in an interoperable fashion.
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1 Introduction

Mobile devices are evolving into hubs of content and context information. With this
premise, we focus on pervasive applications in smart spaces that use locally
available connectivity and discovery of devices. For example, this allows sharing
content and offering services locally with direct connections between devices. While
there have been many research projects showing the potential of such applications,
results from this research have not yet become widely deployed. An important
reason for this is interoperability --- a fundamental requirement for practical smart
space applications. Smart applications are straightforward to demonstrate in a
research lab environment with a small number of limited devices, but rather
challenging in practice with hundreds of different devices with a large number of
different operating systems and run time environments. This is a well-known
challenge for ubiquitous and pervasive computing. For example, the survey [1]
features 29 different pervasive computing platforms up to 2004.

The aim of this paper is to present our approach for addressing practical smart
space deployment using Web technology. Web technology is becoming an integral
part of mobile devices as consumers demand Web access. Moreover, the Web has
already proven to be a highly interoperable software platform. In our proposed
approach, devices offer and consume services using Web technology. While not
every device will be able to offer services, they will be able to consume services and
provide content and context information for these services. Furthermore, we see
Web technology as an essential enabler for combining locally provided services with
other Internet services. For instance, users may share geo-tagged content locally
and load maps and other content from third party Internet services. The current
success of application mashup technologies in Internet applications can be extended



to pervasive services in smart spaces. Currently, application mashup is typically
done using HTTP in REpresentational State Transfer (REST) style, combined with
RSS or Atom feeds.

Another important aspect is that the skills needed to create Web-based applications
are now widely developed and there also exists an abundance of tools and
developer and vendor support for these. Technologies, such as Web servers and
content management systems, are currently becoming available on mobile devices
as well.

Solutions for hosting Web-based services on mobile devices have been emerging
recently, such as the Nokia Mobile Web server [2]. Additionally, recent popularity of
push email and chat on mobiles shows the feasibility of semi-real time delivery of
messages to devices. However, fully integrated and optimized solutions for mobile
devices are still being developed. In addition, we have to take into account
limitations of mobile devices, such as more limited memory, energy, and wireless
transmission resources. A number of additional key requirements come from the
mobile device and personal context, which is different from PC-centric devices. In
this paper, we outline solutions for the following challenges in smart space
applications:

- Web technologies need to be integrated with local smart spaces and made
available on more mobile devices. While many approaches have used Internet
technology, we use “Web 2.0” HTTP and REST style Web services as a
middleware to mashup services, both between devices as well as on one device.
Mashups also need to include local smart space artifacts like user context,
content and devices.

- Resources in a smart space need to be able to find each other. The
heterogeneous environment makes this resource discovery and subsequent
communication between resources challenging. In our context, this needs to be
integrated with the above.

- Privacy and security are major challenges for services and application mashups
in smart spaces. Currently, application mashups are often poorly secured [4]. In
mobile devices, we typically have sensitive information like location and other
personal content. Devices in the smart space engage in many complex
interactions with services on other devices and in the Internet that need to be
properly secured. Widely used Internet practices, which often require manual
entry of passwords and authorization of services, are not an adequate solution
here.

- The Web browser model of consuming services does not allow one to access
local context and content on the device. Fortunately, there are a number of
upcoming standards that permit such context access from the web browser.



We have implemented a smart space shopping mall setup, which is open for public
at the Nokia Showroom in the city of Oulu, Finland. This scenario demonstrates a
number of services and integrates solutions for the issues outlined above.

Earlier approaches such as CoolTown [5] have applied basic Web architectures to
ubiquitous applications based on PDAs. We now see the opportunity to use the
traditional Web as well as “Web 2.0” technologies as a platform for providing smart
space services. REST has been recently proposed for pervasive applications due to
its simplicity and interoperability [7][8]. Additionally, Semantic Web, ontologies and
SOAP-based Web services, and agent systems have been proposed as enablers in
this environment [1][3]. Our approach advocates lightweight solutions that use
established standards. We do not use SOAP-based Web services for reasons of
complexity and lacking suitability for mashup applications. Many consumer Internet
services omit SOAP support for this reason as well. A preliminary version of this
work has been presented in [9].

2 Web and Resource based Smart Spaces

A smart space is a heterogeneous, local environment with many different devices
with varying capabilities. A schematic picture is shown in Figure 1. Being Web-
based, a smart space network includes devices capable of accessing, and optionally
providing, HTTP based Web services. In practice this means most devices with a
network connection (WIFI or telephone network) and TCP/IP support. For low-end
devices without this capability, we utilize a proxy solution in which high-end
devices, such as phones or access-points, proxy functionality of more limited devices
such as for example sensors, Bluetooth peripherals, etc. We argue that with this
approach we can target a very large portion of the current mobile and portable
devices market.
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Figure 1. Smart Space Network Architecture

We distinguish between devices that host Web-based services and clients that only
consume services. Clients are either Web browsers accessing a HTML/XHTML based
Web application in the Smart Space or on-devices applications that access Smart
Space services through their APIL. The key advantage of using HTML based Uls is that
these can work well across devices with a sufficiently capable Web browser.
Additionally, deployment is easier since software installation is not required. A
native application may provide better usability, which comes at the cost of
sacrificing portability and the need to install the software before it can be used.

Web services and Web applications are dependent on Web servers. The distinction
is that a Web service provides an API whereas a Web application provides a
browsable application Ul (usually HTML based). Servers can be embedded in, e.g., a
mobile phone or hosted in the Internet in a hosting environment. One advantage of
running an embedded Web server in a mobile device is that such servers are
capable of accessing local device functionality and resources. For example, the Nokia
Web Server [2] comes with a portal that can access the camera and application data
such as contacts and calendar. This Web server can be reached even if firewalls and
NATs are present (e.g. in mobile operator networks) by employing a permanent
connection to a proxy server which passes any incoming traffic to the device over
the open connection. This is conceptually similar to how Javascript techniques such
as Ajax can turn a passive web application in the browser into a message processing
server. The proxy also provides a URL for the device.

Our software architecture for a mobile device hosting a Web portal is shown in
Figure 2. The figure shows the Web platform and middleware services which are



discussed in this section. Distributed operation is realized by querying a search
engine for services and accessing these services.

Smart Space services in our architecture provide REST APIs. This means that
entities such as people, content, devices, services are resources with a URI that can
be manipulated using simple operations provided by the HTTP protocol such as
GET, POST, PUT, and DELETE. The main advantage is that it is suitably lightweight
for implementation on limited devices and that it aligns well with existing APIs.
Being Web and REST based has allowed us to reuse existing web components such
as feed aggregators, content management software, Web application frameworks,
databases etc in our shopping mall demo. Another key benefit of REST style Web
services is that they can easily be supported in devices in our target market of
mobile and portable devices.
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Figure 2. Software Architecture Overview

Locating Resources

Smart Space services are similar to location-based services (LBS) in the Internet in
the sense that they are typically scoped to a particular physical space such as a
room, a moving vehicle, a building, etc. However they are different in the sense that
such spaces are not easily identified by simple attributes such as GPS coordinates.

In our setting, people, devices, and resources may come and go and they need to
constantly adjust to this dynamic nature of the smart space. In order to be able to
locate entities, indoor maps, points-of-interest, and indoor positioning
infrastructure are required. In order to foster and support easy mashup of indoor
LBSs, we have adopted solutions that are simple to integrate with existing Web
technologies and applications, such as making services and their own geo-spatial
data available through REST APIs and widely used formats such as ATOM feeds and
GEO RSS. Our system was developed by integrating commodity Open Source GIS
software and novel research prototypes realized within our labs, including a WIFI-
based indoor positioning system [13].



As is common for indoor positioning systems, this positioning system represents
locations using spatial relations between buildings, floors, sections and rooms. We
represent these locations using a URL schema. For example,
http://nokia.com/locations/helsinki/ruoholahti/4/A/401 references room 401 in
one of the Nokia premises.

.Referencing resources using a URL is a concept that is native to the Web and an
important aspect of the REST architectural style. It is also an important concept in
Web 2.0 where content is often tagged with keywords. These keywords are typically
part of a name space that is represented by a URL. The URL with /<keyword>
appended is then used as a tag URL to refer to the tag (eg.
http://delicious.com/tags/smartspace). Resources can be indoor geo tagged with
location URLs similar to this. For example, we indoor geo tag items in an Atom feed
by simply including link elements with the rel="tag” attribute set.

The tag URLs refer resources in a location tag directory that provides meta
information about the locations, such as GPS coordinates, name and description, etc.
This directory can be manipulated using the IETF Atom Publishing protocol (RFC
5023), which is a REST based protocol for performing create, read, update and
delete operations on resources that is complementary to the IETF RFC for Atom
feeds (RFC 4287).

Finding Resources

A key issue for interacting with resources in the smart space is finding out their
URL. There has been a lot of research on service registries and service discovery.
While various solutions have been proposed today’s Web and Web services function
mostly without such solutions (aside from DNS, which is used for looking up domain
names). However, a smart space is much more dynamic than the current Web and a
service registry or discovery mechanism is needed here to be able to create
mashups that use locally available resources.

In our system we use a combination of both and decouple the problem of finding
resources from that of registering or discovering them. To find resources in the
Smart Space, we use a search engine based on Apache Lucene
(http://lucene.apache.org) that indexes resources, including their tags that
encapsulate information about their type, location, ownership, etc. Discovering
resources then becomes a matter of specifying the right tags in a search query and
using the resulting resource URLs. The search service can be accessed through the
internet or discovered in a local network via MDNS.

The search engine can be populated with resources in various ways: it can crawl
networks for resources, use traditional discovery mechanisms such as UPNP or
MDNS to discover resources in local networks, or it can be used as a traditional
service registry (local or Internet based). In our prototype system we use a
combination of these approaches. For example, we use discovery to add UPNP
media server advertised content to the search service. Other services register



directly with the search service and consumers of resources look them up with
simple queries to the search service.

Combined with the location tag directory, this solution provides a flexible system for
tagging resources such as content objects, service end points and other information,
with location URLs and retrieving by querying the search engine. We also use
tagging for associating other semantics with resources. We use service type tags,
content type tags, group membership tags, etc. Consequently, the technique is also
suitable for non-localized, virtual smart spaces (e.g. clusters of devices and services
belonging to a person, company or group of friends). Location is just one of many
possible search criteria.

Protecting Resources

Ubiquitous context information, based on location and sensing of the surrounding
environment, is typically privacy sensitive. Similarly, there is a need to restrict the
ability to act upon the physical world and the entities within it. Consequently there
is a need to authorize access to resources. There is considerable work on security
and access control for pervasive systems and discovery protocols [14]. Our goal is to
use existing, web based application mashup techniques, which also combine easily
with existing Internet technologies and services. Howevr, current mash-ups atr
unsecure [4] and do not support our setting with many distributed resources
sufficiently well, as we discuss below.

Resources are accessed by different services on behalf of users. This includes
resources owned by the user, other users, and resources provided by various
services. A typical example is giving access to your current location, which is
provided by some location service, to other services. This becomes more complex
for a friends finder application that needs to access the locations of your friends on
different location services. The application needs to authenticate with each location
service and each of these needs to check authorization rules (i.e. are you allowed to
see your friend’s location).

We need a solution for this that is lightweight, simple and that does not rely on a
centrally owned and provisioned identity solution. Additionally, it needs to integrate
well with our resource based architecture, it has to scale to large groups of
resources and to loose associations, and the solution needs to be easy to support
across a wide range of existing devices.

There is considerable work in this area of security including for example, the Liberty
Alliance Identity Federation Framework and several trust management systems
such as SPKI/SDSI that are distributed in the sense that they permit separate, local
name spaces. Access control is possible over several kinds of relations such as “kids
of friends of Dad”, where the local names are maintained locally. However, these
solutions do not fully meet our requirements of being lightweight and mashup
friendly. On the web, two key protocols have emerged recently, OpenID [11] and
OAuth [12] that rely on a novel and more flexible, decentralized approach to



authentication and authorization and thus can provide the foundation for a solution
that meets our requirements.

OpenlD is a lightweight, single sign on, identity federation protocol that can be used
by relying parties to authenticate users with an identity provider. To sign in, a
relying party verifies whether the client that the user is using (usually a browser)
has authenticated the user with the identity provider that the user specifies. An
important aspect of OpenlID is that it uses identity URLs to identify users. OAuth is a
similar protocol for authentication that is used to allow services to authenticate to
each other on behalf of a user. The result of a successful authentication with OAuth
is a token that can be used to access the service. OAuth is especially popular for
implementing mashup applications involving services from different service
providers. Important is that OpenID and OAuth rely on URLs to specify trusted
entities and hence nicely fit with our REST based architecture.

We extend these protocols to cover scenarios with large amounts of resources,
people and services. To do so, resources are organized in groups, which themselves
are resources. A group server is technically similar to the location tag directory
discussed earlier and a group is simply a list of URLs. Each group has a public key
and a private key. The central idea is to authorize access to resources based on
group membership. The group server can issue a signed proof of group
membership. This membership assertion is then included in requests to resources
that can simply verify the signature.
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Figure 3 Sample Interaction for Friend Finder with multiple location and group
servers

We use the group server mechanism in combination with the location tagging
mechanism and search architecture outlined above to implement a system where it
is possible to use groups and membership assertions to find and access resources
that one is authorized to use. A modified OpenlID provider keeps track of the user’s
group memberships and an OAuth like mechanism is used between services to pass
on membership proofs. Group members can be people, represented by their OpenID
URL, services represented by their service endpoint URL, or any other type of
resource.

Figure 3 illustrates our approach with the friend finder example. The friend finder
uses Alice’s identity URL to query the search engine for her location service
provider. Then it uses the membership token that proves that Bob is a friend of Alice
to authenticate for the location service, which returns Alice’s location after verifying
the signature. It is assumed that the friend finder obtains membership tokens in
advance in a secure way. A nonce is used to prevent replay attacks. Any public keys



fetched can of course be cached and, additionally, HTTPS certificates may be used to
verify ownership of public keys that are being exchanged.

A key benefit of this approach is that it can vastly reduce the number of HTTP
redirects in the browser that would otherwise complicate use of either OpenID or
OAuth with more than a handful of resources. With OAuth, the browser would have
to redirect to each resource individually, just to verify authentication. Therefore,
using verifiable and cacheable assertions significantly reduces network overhead
for clients, which is essential in a smart space.

The approach is decentralized since it decouples service providers from identity
providers and group servers. This means that they can be flexibly reused with each
other in a smart space. For example, a location service can discover the user’s list of
friends and their preferred identity provider and enforce a rule that friends of the
user are allowed to access their location when another service is doing so on their
behalf. Furthermore, it is very easy to adopt this protocol for service providers since
it stays close to how OAuth and OpenID work. Finally, it reduces the number of user
interactions needed (e.g. permissions and confirmations) by relying on assertions
instead.

Appropriate levels of security and trust are achieved in a similar manner to other
public/private key based security mechanisms that have been proposed in the
ubiquitous computing research community. Trust is decentralized in our system and
very much relies on choices made by, e.g.,, identity providers and users regarding
which groups to trust, which services to trust, etc. Given that a smart space is too
dynamic and heterogeneous to orchestrate this centrally, we claim that this is a
suitable way to help the smart space participants self organize along alliances,
friend relations, etc.

Context Information for Browser Based Applications

While not all devices will be able to provide services, most will be able to consume
services. Adaptive web applications used on such devices need access to local device
and user context information. In order to be able to support this local data sharing,
we have experimented with W3C DCCI (Delivery Context Client Interfaces) [10].
DCCI is based on W3C DOM (Document Object Model), which is an API with an
underlying tree representation for accessing and manipulating HTML/XML
documents. DCCI extends the standard DOM tree and API to provide a context tree
where each context source has its own node representation. A directed event
propagation model based on DOM events is provided to allow remote capture of
specific events and change notifications from other devices. Additionally, static and
dynamic properties are supported (local or remote). DCCI provides only the access
API for consumer applications. It is up to the implementation to provide additional
modules within the framework that addresses functionalities such as property
management, security, and connectivity for context providers to the model. The
main benefit of using DCCI for pervasive smart space applications is that it provides
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easy navigation, search and query for static and dynamic properties and can support
publish subscribe mechanisms for local and remote context changes.

We have implemented DCCI as an extension to the Mozilla based MicroBrowser on
the Maemo platform for Nokia Linux Tablet N810 that can easily be added to other
Mozilla based browsers. This extension provides dynamic location information and
static information such as screen size and width. The “Location” parent node has
two child nodes “Location-GPS” and “Location-Indoor” that are linked with GPS and
indoor location respectively. The “property change” event is used to send
notifications whenever the location changes. By using a single event listener for
parent “Location” node, an application (script) can monitor all location nodes below
the parent “Location” node.

The extension also supports remote DCCI devices. This can be used to create an
adhoc smart space over Bluetooth. When combined with the proxies illustrated in
Figure 1, we can expose local context to non-DCCI capable devices in the smart
space. The hierarchical nature of DCCI trees is utilized to construct a composite tree
structure that includes local copies of DCCI trees of remote devices that are
synchronized using events. Web applications see the composite smart space context
reflected in the local DCCI tree. In practice, the DCCI context tree of each device may
be different as a result of e.g. different access rights or different needs of locally
running applications.

Our analysis of the implementation has revealed a few drawbacks with the DCCI
approach:

* Since DCCI is derived from the DOM API, implementations have to support all
DOM Element (and thereby Node) methods, including those intended for
document manipulation. Consequently only a subset of the API is relevant for
context representation models. However, for compatibility reasons an
implementation must still support the full APIL

* A simplified event model would suffice as opposed to the full DOM event
support. The DOM Event mandates the implementation of event capture,
target and bubble phases.

* DCCI provides an API to read context information provided by various
context services; however, applications currently lack standardized means to
pass information to these services (e.g. for configuring update frequency or
other service specific parameters).

* There is no standard ontology that DCCI context trees conform to. Such
agreed semantics would be needed to ensure compatibility of DCCI context
between applications. The W3C UWA working group is developing an
ontology to resolve this issue.

* The lack of a security model for DCCI is inhibiting factor for wide spread
adoption. However, DCCI is intended to be used with additional frameworks
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that can address this and other issues. For example, the resource access
control mechanism discussed in this paper can be used for this. The DCCI
model would have to be annotated with access rights and could also be used
to store membership assertions for the user.

Despite these current limitations, DCCI is a forward looking approach with its
support for dynamic properties, access to data providers through a unified API,
dynamic topologies and representation that separates syntax and semantics
(through use of ontology) that provides many advantages for future smart spaces.

3 Concept Evaluation and Experiences

In order to gain first-hand experience on the applicability of the Web-based smart
space approach in a practical setting, we developed a shopping mall smart space
demo. This has been running non-stop for several months in a Nokia Showroom in
Ouluy, Finland.

The user interface (Figure 4) presents the users with a Web portal served from a
mobile web server that integrates a set of service portlets. The portlets represent
distinct services in the system that are found using our resource search solution.
The integration of a Web based UI with local service discovery ensures that each
user is presented with a dynamic, up-to-date representation of the contents and
services from devices participating in the smart space. The main services include a
shop directory component, per shop sales feeds, aggregated sales and news, portal
finder, friend finder, commenting, media sharing and smart space search. Users are
able to come and go and their presence in the smart place is reflected by their device
portals showing up on the list of visible portals in the main screen of the portal
running on their device.

Creating additional services is similar to creating ordinary web applications.
Security is integrated into the application framework (in our case python Django)
and resource discovery for easy mash-ups are supported with a python library.

12
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Our main findings and feedback we got from users are:

* Location-aware maps and location-based services are good concepts that
users would like to see more of.

* People were generally able to accomplish simple tasks since using the system
is similar to using a normal browser based Web service.

* Responsiveness of the Ul is important, especially for blocking operations
involving e.g. network discovery. This suggests that we should handle the
discovery asynchronously, which with our search engine approach is
possible.

4 Conclusions

The main goal of this work has been to establish Web technologies as a middleware
platform for pervasive services in smart devices and utilizing a number of open
source components. We have outlined the key challenges for practical smart spaces
and provided solutions for these in the form of a REST-based framework that
includes support for location models, finding relevant resources, authorizing access
to resources with group based security, and sharing context information locally
through W3C’s DCCI. Furthermore, we have demonstrated the feasibility of
providing pervasive smart space services by implementing a prototype smart space
around. The user study we have done has confirmed that this approach can be
acceptable to users, despite some usability issues.
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Our central claim is that the presented solutions may help to achieve the vision of
mass market pervasive services. The REST based approach advocated in this paper
can be applied easily in the context of existing Web based architects and it can be
used on existing browsers on mobile devices. The key remaining challenges involve
resolving usability issues such as those encountered in our study, and establishing a
widely used security and resource finding solution as proposed in this article as well
as spreading the use of technologies such as DCCI on the client side.
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