
Abstract
Quantitative techniques have traditionally been used to
assess software architectures. We have found that early in
the development process there is often insufficient
quantitative information to perform such assessments. So
far the only way to make qualitative assessments about an
architecture, is to use qualitative assessment techniques
such as peer reviews. The problem with this type of
assessment techniques is that they depend on the
knowledge of the expert designers who use them. In this
paper we introduce a technique, SAABNet (Software
Architecture Assessment Belief Network), that provides
support to make qualitative assessments of software
architectures.

1. Introduction
Traditionally the software development is organized in-

to different phases (requirements, design, implementa-
tion, testing, maintenance). The phases usually occur in a
linear fashion (the waterfall model). The phases of this
model are usually repeated in an iterative fashion. This is
especially true for the development of OO systems.

At any phase in the development process, the process
can shift back to an earlier phase. If, for instance, during
testing a design flaw is discovered, the design phase and
consequently also the phases after that need to be repeated.
These types of setbacks in the software development pro-
cess can be costly, especially if radical changes in the ear-
lier phases (triggering even more radical changes in
consequent phases) are needed. We have found that non-
functional requirements or quality requirements often
cause these type of setbacks. The reason for this is that
testing whether the product meets the quality requirements
generally does not take place until the testing phase [1].

To assess whether a system meets certain quality re-
quirements, several assessment techniques can be used.
Most of these techniques are quantitative in nature. I.e.
they measure properties of the system. Quantitative as-
sessment techniques are not very well suited for use early
in the development process because incomplete products
like design documents and requirement specifications do
not provide enough quantifiable information to perform
the assessments. Instead developers resort to qualitative
assessment techniques. A frequently used technique, for
instance, is the peer review where design and or require-
ment specification documents are reviewed by a group of

experts. Though these techniques are very useful in find-
ing the weak spots in a system, many flaws go unnoticed
until the system is fully implemented. Fixing the architec-
ture in a later stage can be very expensive because the sys-
tem gets more complex as the development process is
progressing.

Qualitative assessment techniques, like the peer review,
rely on qualitative knowledge. This knowledge resides
mostly in the heads of developers and may consist of solu-
tions for certain types of problems (patterns [2][6]), statis-
tical knowledge (60% of the total system cost is spent on
maintenance), likely causes for certain types of problems
(“our choice for the broker architecture explains weak per-
formance“), aesthetics (“this architecture may work but it
just doesn’t feel right“), etc. A problem is that this type of
knowledge is inexplicit and very hard to document. Con-
sequently, qualitative knowledge is highly fragmented and
largely undocumented in most organizations. There are
only a handful known ways to handle qualitative knowl-
edge:
• Assign experienced designers to a project. Experienced
designers have a lot of knowledge about how to engineer
systems. Experienced designers are scarce, though, and
when an experienced designer resigns from the organiza-
tion he was working for, his knowledge will be lost for the
organization.
• Knowledge engineering. Here organizations try to cap-
ture the knowledge they have in documents. This method
is especially popular in large organizations since they have
to deal with the problem of getting the right information in
the right spot in the organization. A major obstacle is that
it is very hard to capture qualitative knowledge as dis-
cussed above.
• Artificial Intelligence (AI). In this approach qualitative
knowledge is used to built intelligent tools that can assist
personnel in doing their jobs. Generally, such tools can’t
replace experts but they may help to do their work faster.
Because of this less experts can work more efficiently.

In this paper we present a way of representing and us-
ing qualitative knowledge in the development process.
The technique we use for representing qualitative knowl-
edge, Bayesian Belief Networks (BBN), originates from
the AI community. We have found that this technique is
very suitable for modeling and manipulating the type of
knowledge described above. Bayesian Belief Networks
are currently used in many organizations. Examples of
such organizations are NASA, HP, Boeing, Siemens [8].
BBNs are also applied in Microsoft’s Office suite where

SAABNet: Managing Qualitative Knowledge in Software Architecture Assessment
Jilles van Gurp & Jan Bosch

[Jilles.van.Gurp|Jan.Bosch]@ipd.hk-r.se
University of Karlskrona/Ronneby

Department of Software Engineering and Computer Science
Soft Center, S-372 25 Ronneby

http://www.ipd.hk-r.se/[jvg|bosch]

they are used to power the infamous paperclip [13].
We created a Bayesian Belief Network, called SAAB-

Net (Software Architecture Assessment Belief Network),
that enables us to feed information about the characteris-
tics of an architecture to SAABNet. Based on this infor-
mation, the system is able to give feedback about other
system characteristics. The SAABNet BBN consists of
variables that represent abstract quality variables such as
can be found in McCall’s quality factor model [12] (i.e.
maintainability, flexibility, etc.) but also less abstract vari-
ables from the domain of software architectures like for
instance inheritance depth and programming language.
The variables are organized in such a way that abstract
variables decompose into less abstract variables.

A BBN is a directed acyclic graph. The nodes in the
graph represent probability variables and the arrows repre-
sent conditional dependencies (not causal relations!). A
conditional dependency of variable C on A and B in the
example in figure 1 means that if the probabilities for A
and B are known, the probability for C is known. If two
nodes are not directly connected by an arrow, this means
they are independent given the nodes in between (D is
conditionally independent of A). Each node can contain a
number of states. A conditional probability is associated
with each of these states for each combination of states of
their direct predecessors (see figure 2 for an example).

A BBN consists of both a qualitative and a quantitative
specification. The qualitative specification is the graph of
all the nodes. The quantitative specification is the collec-
tion of all conditional chances associated with the states in
each node. In figure 1 a qualitive specification is given and
a quantitative specification is given in figure 2.

By using a sophisticated algorithm, the a priori proba-
bilities for all of the variables in the network can be calcu-
lated using the conditional probabilities. This would take
exponential amounts of processing power using conven-
tional mathematical solutions (it’s a NP complete prob-
lem). A BBN can be used by entering evidence (i.e. setting
probabilities of variables to a certain value). The a priori

probabilities for the states of the other variables are then
recalculated. How this is done is beyond the scope of this
paper. For an introduction to BBNs we refer to [16].

The remainder of this paper is organized as follows. In
section 2. we discuss our methodology, in section 3. we
will introduce SAABNet. Section 4. discusses different
ways of using SAABNet and in section 5. we discuss a
case study we did to validate SAABNet. Related work is
presented in section 6. and we conclude our paper in sec-
tion 7.

2. Methodology
The nature of human knowledge is that it is unstruc-

tured, incomplete and fragmented. These properties make
that it is very hard to make a structured, complete and un-
fragmented mathematical model of this knowledge. The
strength of BBNs is that they enable us to reason with un-
certain and incomplete knowledge. Knowledge (possibly
uncertain) can be fed into the network and the network us-
es this information to calculate information that was not
entered. The problem of fragmentation still exists for this
way of modeling knowledge, though.

To build a BBN, knowledge from several sources has
to be collected and integrated. In our case the knowledge
resides in the heads of developers but there may also be
some knowledge in the form of books and documentation.
Examples of sources for knowledge are:
• Patterns. The pattern community provides us with a rich
source of solutions for certain problems. Part of a pattern
is a context description where the author of a pattern
describes the context in which a certain problem can occur
and what solutions are applicable. This part of a pattern is
the most useful in modeling a BBN because this matches
the paradigm of dependencies between variables.
• Experiences. Experienced designers can indicate
whether certain aspects in a software architecture depend
on each other or not, based on their experience.
• Statistics. These can be used to reveal or confirm depen-
dencies between variables.

To put this knowledge into a BBN, a BBN developer
generally goes through the following steps: (1) Identify
relevant variables in the domain. (2) Define/identify the
probabilistic dependencies and independencies between
the variables. (this should lead to a qualitative specifica-
tion of the BBN). (3) Assess the conditional probabilities
(this should lead to a quantitative specification of the
BBN). (4) Test the network to verify that the output of the
network is correct.

We have found that the last two steps need to be iterat-
ed many times and sometimes enhancements in the quali-
tative specification are also needed.

The only way to establish whether a BBN is reliable
(i.e. is a good representation of the probabilistic distribu-
tion of its variables) is to perform casestudies. Performing
such case studies means feeding evidence of a number of
selected cases to the network and verifying whether the
output of the network corresponds with the data available
from the case studies. The network can be relied upon to
deliver mathematical correct probabilities given correct
qualitative and quantitative specifications of the BBN. If a
BBN doesn’t give correct output, that may be an indica-
tion that the probabilistic information in the network is

Figure 1. A BBN: qualitative spec.

A B

C

D

P(A=true) = 0.75
P(A=false) = 0.25

P(B=true) = 0.21
P(B=false) = 0.79

P(C=true|A=true,B=true) = 0.97
P(C=true|A=true,B=false) = 0.67
P(C=true|A=false,B=true) = 0. 71
P(C=true|A=false,B=false) = 0.43

P(D=true|C=true,B=true) = 0.31
P(D=true|C=true,B=false) = 0.48
P(D=true|C=false,B=true) = 0.65
P(D=true|C=false,B=false) 0.84

Figure 2. A BBN: quantitative spec.

wrong or that there is something wrong with the qualita-
tive specification of the network.

Problems with the qualitative specification may be
missing variables (over-simplification) or incorrect depen-
dency relations between variables (missing arrows or too
many arrows). Problems with the quantitative specifica-
tion are caused by incorrect conditional probabilities. Esti-
mating probabilities is something that human beings are
not good at [4] so it is not unlikely that the quantitative
specification has errors in it. Most of these errors only
manifest them in very specific situations, however. There-
fore a network has to be tested to make sure the output of
it is correct under all circumstances.

3. SAABNet
Based on a number of cases we have created a BBN for

assessing software architectures called SAABNet (Soft-
ware Architecture Assessment Belief Network) which is
presented in figure 3. The aim of SAABNet is to help de-
velopers perform qualitative assessments on architectures.
Its primary aim is to support the architecture design pro-
cess (i.e. we assume that requirements are already avail-
able). Consequently, it does not support later phases of the
software development process.

3.1. Qualitative Specification

The variables in SAABNet can be divided into three
categories:
• Architecture Attributes

• Quality Criteria
• Quality Factors

This categorization was inspired by McCall’s quality
requirement framework [12], though at several points we
deviated from this model. In this model, abstract quality
factors, representing quality requirements, are decom-
posed in less abstract quality criteria. We have added an
additional decomposition layer (not found in McCall’s
model), called architecture attributes, that is even less ab-
stract. Architecture attributes represent concrete, observ-
able artifacts of an architecture.

In figure 3, a qualitative representation of SAABNet is
given (i.e. a directed acyclic graph). Though at first sight
our network may seem rather complicated, it is really not
that complex. While designing we carefully avoided hav-
ing to many incoming arrows for each variable. In fact
there are no variables with more than three incoming ar-
rows. The reason that we did this was to keep the quantita-
tive specification simple. The more incoming arrows, the
higher the number of combinations of states of the prede-
cessors. The cleverness of a BBN is that it organizes the
variables in such a way that there are few dependencies
(otherwise the number of conditional probabilities be-
comes exponentially large). Without a BBN, all combina-
tions of all variable states would have to be considered
(nearly impossible to do in practice because the number
rises exponentially). In addition to limiting the number of
incoming arrows we also limited the number of states the
variables can be in. Most of the variables in our network
only have two states (i.e. good and bad or high and low
etc.). We may add more states later on to provide greater

Figure 3. Qualitative specification of SAABNet

implementation_langauge dynamic_binding nr_of_threads context_switchesarch_style

multiple_inheritance class_inheritance comp_granularity interface_granularity comp_interdependencies exception_handling responsivenessthroughput scalability

vertical_complexity

complexitydocumentation horizontal_complexity

reusability coupling

fault_tolerance

understandabilitytestability configurability

modifieability

maintainability

flexibility

correctness

usability safety security

reliability

memory_usage

performance

accuracy. A short description of all the variables is given
in figure 4, figure 5 and figure 6. For complexity reasons,
we omitted a full description of all the relations between
the variables.

3.2. Quantitative Specification

Since quantitative information about the attributes we

are modeling here is scarce, our main method for finding
the right probabilities was mostly through experimenta-
tion. Since our assessment did not provide us with detailed
information, we provided the network with estimates of
the conditional probabilities. Since the goal of this net-
work is to provide qualitative rather than quantitative in-
formation, this is not necessarily a problem.

A complete quantitative specification of our network is

arch_style (pipesfilters, broker, layers,
blackboard): This variable defines the style
of the architecture. The states correspond to
architectual styles from [2].

class_inheritance_depth (deep, not
deep): This variable detemines whether the
depth of the inheritance hierarchy is deep or
not.

comp_granularity (fine-grained, coarse-
grained): This variable acts as an indicator
for component size. A component, in our
view, can be anything from a single class up
to a large number of classes [5]. In the first
case we speak of fine-grained component
granularity and in the other case we speak
of coarse-grained granularity.

comp_interdependencies (many, few):
This indicates the amount of dependencies
between the components in the architec-
ture.

context_switches (many, few): A context
switch can occur in multi threaded systems
when data currently owned by a particular

thread is needed by another thread.

coupling (static, loose): This indicates
whether the components are statically cou-
pled (through hard references in the source
code) or loosely coupled (for instance
through an event mechanism).

documentation (good, bad): Indicates the
quality of the documentation of the system
(i.e. class diagrams and other design docu-
ments).

dynamic_binding (high, low): Modern OO
languages allow for dynamic binding. This
means that the program pieces are linked
together at run time rather than at compile
time. Programmers often resort to static
binding for performance reasons (i.e. the
program is linked together at compile time).

exception_handling (yes, no): Exception
handling is a mechanism for handling fault
situations in programs. This variable indi-
cates whether this is used in the architec-
ture.

implementation_language (C++, Java):
This variable indicates what programming is
used or is going to be used to implement
the architecture.

interface_granularity (coarse-grained,
fine-grained): In [5] we introduced a concep-
tual model of how to model a framework.
One of the aspects of this model is to use
small interfaces that implement a role as op-
posed to the traditional method of putting
many things in a single interface. We refer
to these small interfaces as fine-grained in-
terfaces and to the larger ones as coarse-
grained interfaces. This variable is an indi-
cation of whether fine-grained or coarse-
grained interfaces are used in the architec-
ture.

multiple_inheritance (yes, no): This vari-
able indicates whether multiple inheritance
is used in the architecture design.

nr_of_threads (high, low): Indicates wheth-
er threads are used in the application or not.

Figure 4. Architecture attributes variable definition
fault_tolerance (tolerant, intolerant): The
ability of implementations of the architec-
ture to deal with fault situations.

horizontal_complexity (high, low): We de-
composed the quality factor comlexity (see
figure 6) into two less abstract forms of
complexity (horizontal and vertical complexi-
ty). With horizontal complexity the complexi-
ty of the aggregation and association
relations between classes is denoted.

memory_usage (high, low): Indicates
whether implementations of the architec-

ture are likely to use much memory.

responsiveness (good/bad): Gives an indi-
cation of the responsetime of implementa-
tions of the architecture.

security (secure, unsecure): This variable
indicates whether the architecture takes se-
curity aspects into account.

testability (good, bad): Indicates whether it
is easy to test the system

throughput (good, bad): This variable is an
indication of the ability of implementations of

the architecture to process data.

understandability (good, bad): This vari-
able indicates whether it is easy for devel-
opers to understand the architecture.

vertical_complexity (high, low): Earlier we
discussed horizontal complexity (the com-
plexity of aggregation and association rela-
tions between classes). Vertical complexity
measures the complexity of the inheritance
relations between classes.

Figure 5. Quality criteria variable definitions

complexity (high, low): This variable indi-
cates whether an architecture is perceived
as complex.

configuration (good, bad): This indicates
the ability to configure the architecture at
runtime (for compile time configurability see
the variable modifiability).

correctness (good, bad): This variable indi-
cates whether implementations of the archi-
tecture are likely to behave correctly. I.e.
whether they will always give correct output.

flexibility (good, bad): Flexibility is the abili-
ty to adapt to new situations. A flexible ar-
chitecture can easily be tuned to new
requirements and to changes in its environ-

ment.

maintainability (good, bad): the ability to
change the system either by configuring it or
by modifying parts of the code in order to
meet new requirements.

modifyability (good, bad): The ability to
modify an implementation of an architec-
ture on the source code level.

performance (good, bad): This variable in-
dicates whether implementations of the ar-
chitecture perform well.

reliability (good, bad): Good relieability in
SAABNet means that the architeture is both
safe and secure.

reusability (good, bad): The ability to re-
use parts of the implementation of an archi-
tecture.

safety (safe, not safe): An architecture’s im-
plementation is safe if it does not affect its
environment in a negative way.

scalability (good, bad): With scalability we
refer to performance scalability. I.e. the sys-
tem is scalable if performance goes up if
better hardware is used.

usability (good, bad): Usability in SAAB-
Net is defined in terms of performance, con-
figurability and relieability. I.e. usable
architectures are those architectures that
score well on these quality attributes.

Figure 6. Quality factor variable definitions.

beyond the scope of this paper. A reason for this is that
there are simply too many relations to list here. Our net-
work contains 30+ variables that are linked together in all
sorts of ways. A complete quantitative specification would
have to list close to 200 probabilities. As an illustration we
will show the conditional probabilities of the configurabil-
ity variable in SAABNet.

Configurability depends on understandability and cou-
pling. In table 1 the conditional probabilities for the the
two states of this variable (good and bad) are listed. Since
there are 2 predecessors with each two states, there are 4
combinations of predecessor states for each state in con-
figurability. Since we have two states that is 8 probabilities
for this variable alone. Note that the sum of each column is
1.

The precision for the output of our model is one deci-
mal. Instead of using the exact probabilities we prefer to
interpret the figures as trends which can be either strong if
the differences between the probabilities are high or weak
if the probabilities do not differ much in value

4. SAABNet usage
It is important to realize that any model is a simplifica-

tion of reality. Therefore, the output of a BBN is also a
simplification of reality. When we designed our SAABNet
network, we aimed to get useful output. I.e. output that
stresses good points and bad points of the architecture.

The output of a BBN consists of a priori probabilities
for each state in each variable. The idea is that a user en-
ters probabilities for some of the variables (for instance
P(implementation_language=Java)=1.0). This informa-
tion is then used together with the quantitative specifica-
tion of the network to re-calculate all the other
probabilities. Since also probabilities other than 1.0 can be
entered, the user is able to enter information that is uncer-
tain.

Though the output of the network in itself is quantita-
tive, the user can use this output to make qualitative state-
ments about the architecture (“if we choose the broker
architecture there is a risk that the system will have poor
performance and higher complexity“) based on the quanti-
tative output.

Sometimes the output of a BBN contradicts with what
is expected from the given input. Contradicting output al-
ways can be traced back to either errors in the BBN, lack
of input for the BBN, unrealistic input, confusion about
terminology in the network or a mistake of the user. In
other cases the BBN will give neutral output. I.e. the prob-
abilities for each state in a certain variable are more or less
equal. Likely causes for this may be that there is not
enough information in the network to favour any of the
states or that the variable has no incoming arrows.

If the output is correct, the structure of the BBN can be
used to find proper argumentation for the probabilities of
the variables. If for instance SAABNet gives a high proba-
bility for high complexity, the variables horizontal and
vertical complexity (both are predecessors of complexity

in SAABNet) and their predecessors can be examined to
find out why the complexity is high. This analysis may al-
so suggest solutions for problems. If for instance maintain-
ability problems can be traced back to high horizontal
complexity, solutions for bad maintainability will have to
address the high horizontal complexity.

Though the ways in which a BBN can be used is unlim-
ited, we have identified four types of usage strategies for
SAABNet:
• Diagnostic use. One of the uses of SAABNet is that as a
diagnostic tool. When using SAABNet in this way, the
user is trying to find possible causes for problems in an
architecture. Usually some architectual attributes are
known and possibly also some quality criteria are known.
In addition there are one or more Quality Factors which
represent the actual problem. If, for instance, the imple-
mentation of an architecture has bad performance, the per-
formance variable should be set to “bad“.
• Impact analysis. Another way to use SAABNet is to
evaluate the consequences of a future change in the archi-
tecture on the quality factors. To do so, the architecture
attributes of the future architecture have to be entered as
evidence. The network then calculates the quality criteria
and the quality factors that are likely for such architecture
attributes.
• Quality attribute prediction. In this type of use, as much
information as possible is collected and put in the SAAB-
Net. From this information, the SAABNet can calculate all
the variables that have not been entered. This is ideal for
discovering potential problem areas in the architecture
early on but can also be used to get an impression of the
quality attributes of a future architecture
• Quality attribute fulfillment. The first three approaches
all required an architecture design. Early in the design pro-
cess when the design is still incomplete, these approaches
may not be an option. In this stage SAABNet can be used
to help choose the architecture attributes. This can be done
by entering information about the quality factors into
SAABNet. The probabilities for all the architecture
attributes are then calculated. This information can be
used to make decisions during the design process. If, for
instance, the architecture has to be highly maintainable,
SAABNet will probably give a high probability on single
inheritance since multiple inheritance affects maintenance
negatively. Based on this probability, the design team may
decide against the use of multiple inheritance or use it only
when there’s no other possibility.

The four mentioned usage profiles can be used in com-
bination with each other. A quality attribute prediction us-
age of SAABNet can for instance reveal problems
(making it a diagnostic usage). This may be the starting
point to do an impact analysis for solutions for the detect-
ed problems. Alternatively, if there are a lot of problems,
the quality attribute fulfillment strategy may be used to see
how much the ideal architecture deviates from the actual
architecture.

5. Validation
As a proof of concept, we implemented SAABNet us-

ing Hugin Lite [7] and applied it to some cases. The tool
makes it possible to draw the network and enter the condi-
tional probabilities. It can also run in the so called com-

Table 1. Conditional probabilities configurability
understandability good bad
coupling loose static loose static
good 0.9 0.2 0.7 0.1
bad 0.1 0.8 0.3 0.9

piled mode where evidence can be entered to a network
and the conditional probabilities for each variable’s states
are recalculated (for a complete specification of SAABNet
in the form of a Hugin file, please contact the first author).

All tests were conducted with the same version of the
network.

5.1. Case1: An embedded Architecture

For our first case we evaluated the architecture of a
Swedish company that specializes in producing embed-
ded software for hardware devices. The software runs on
proprietary hardware. We were allowed to examine this
company’s internal documents for our cases.

The software, originally written in C, has been rewrit-
ten in C++ over the past years. Most of the architecture is
implemented in C++ nowadays. The current version of the
architecture has recently been evaluated in what could be
interpreted as a peer review. The main goal of this evalua-
tion was to identify weak spots in the architecture and
come up with solutions for the found problems. The find-
ings of this evaluation are very suitable to serve as a
testcase for our BBN.

5.1.1. Diagnostic use. The current architecture has a
number of problems (which were identified in the evalua-
tion project). In this case we test whether our network
comes to the same conclusions and whether it will find ad-
ditional problems.

Facts/evidence. We know several things about the archi-
tecture that can be fed to our network:
• C++ is used as an implementation language
• The documentation is incomplete and usually is not up
to date
• Because of the use of object-oriented frameworks, the
class inheritance depth is deep.
• Components in the architecture are coarse-grained
• There are many dependencies between the modules and
the components
• The whole architecture is large and complicated. It con-
sists of hundreds of modules adding up to hundreds of
thousands lines of code.
• Interfaces are only present in the form of header files
and abstract classes form the frameworks

• There are very few context switches (this has been a
design goal to increase performance)

Based on these architectual attributes we can enter the
evidence listed in table 2.

Output of the network. In table 2 some of the output
variables for this case are shown. The results clearly show
that there is a maintainability problem. There is a depen-
dency between configurability and maintainability and a
dependency between modifiability and maintainability in
figure 3. So, not surprisingly, modifiability and config-
urability are also bad in the results. Reusability (depends
on understandability, comp_granularity and coupling) is
also bad since all the predecessors in the network also
score negatively. The latter, however, conflicts with the
company’s claims of having a high level of reuse.

In SAABNet, reusability depends on understandabili-
ty, component granularity and coupling. Clearly the archi-
tecture scores bad on all of these prerequisites (poor
understandability, coarse-grained components and static
coupling) so the conclusion of the network can be ex-
plained. The network only considers binary component re-
use. This is not how this company reuses their code.
Instead, when reusing, they take the source code of exist-
ing modules, which are then tailored to the new situation.
In most cases the changes to the source code are limited
though. Another reason why their claim of having reuse in
their organization is legitimate despite the output of
SAABNet is that they have a lot of expert programmers
who know a great deal about the system. This makes the
process of adapting old code to new situations a bit easier
than would normally be the case.

The network also gives the layers architectural style the
highest probability (out of four different styles). This is in-
deed the architectual style that is used for the device soft-
ware. As can be deduced from the many outgoing arrows
of this variable in our network, this is an important vari-
able. Choosing an architectural style influences many oth-
er variables. It is therefore not surprising that it picks the
right style based on the evidence we entered.

5.1.2. Impact analysis. To address the problems men-
tioned, the company plans to modify their architecture in a
number of ways. The most important architectural change
is to move from a layers based architecture to an architec-
ture that still has a layers structure but also incorporates el-
ements of the broker architecture. A broker architecture
will, presumably, make it easier to plug in components to
the architecture. In addition, it will improve the runtime
configurability.

Apart from architectural changes, also changes to the
development process have been suggested. These changes
should lead to more accurate documentation and better test
procedures. Also modularization is to be actively promot-
ed during the development process. In this test we used the
impact analysis strategy to verify whether the predicted
quality attributes match the expected result of the changes.

Table 2. Diagnostic use

Entered evidence
documentation bad
class_inheritance_depth deep
comp_granularity coarse_grained
comp_interdependencies many
complexity high
context_switches few
implementation_language C++
interface_granularity coarse_grained

Output of the network
arch_style layers (0.47)
configurability bad (0.76)
coupling static (0.76)
horizontal_complexity high (0.66)
maintainability bad (0.71)
multiple_inheritance yes (0.77)
vertical_complexity high (0.87)
modifiability bad (0.90)
reusability bad (0.68)
understandability bad (1.0)

Table 3. Impact analysis

Entered evidence
arch_style broker
class_inhertance_depth deep
comp_granularity coarse_grained
interface_granularity coarse_grained
context_switches few

Facts/evidence.
• C++ is still used as a primary programming language.
• Documentation will be better than it used to be because
of the process changes.
• The inheritance depth will probably not change since the
frameworks will continue to be used.
• The component granularity will still be coarse-grained.
• The component interfaces will remain coarse-grained
since the frameworks are not affected by the changes.
• There are still very few context switches.
• The architecture is now a broker architecture.

Output of the network. One of the reasons the broker ar-
chitecture has been suggested was that it would reduce the
number of interdependencies. SAABNet confirms this
with a high probability for few component interdependen-
cies. However, the network does not give such a high
probability for loose coupling (as could be expected from
applying a broker architecture). The reason for this is that
the involved components are coarse-grained. While the re-
lations between those components are probably loose, the
relations between the classes inside the components are
still static.

A second reason for using the broker architecture was
to increase configurability. In particular, it should be pos-
sible to link together components at runtime instead of
statically linking them at compiletime. The low score for
good configurability is a bit at odds with this. It is an im-
provement of the higher probability for bad configurabili-
ty in the previous case, though. The reason that it doesn’t
score very high yet is that the influencing variables, under-
standability and coupling, don’t score high probabilities
for good and loose. The improved documentation did of
course have a positive effect on understandability but it
was not enough to compensate for the probability on high
complexity. So, according to SAABNet, configurability
will only improve slightly because other things such as
complexity are not addressed sufficiently by the changes.

5.2. Case2: Epoc32

Epoc32 is an operating system for PDAs (personal digi-
tal assistants) and mobile phones. It is developed by Sym-
bian. The Epoc32 architecture is designed to make it easy
for developers to create applications for these devices and
too make it easy to port these applications to the different
hardware platforms EPOC 32 runs on. Its framework pro-
vides GUI constructs, support for embedded objects, ac-
cess to communication abilities of the devices, etc.

To learn about the EPOC 32 architecture we examined
Symbian’s online documentation [17]. This documenta-
tion consisted of programming guidelines, detailed infor-

mation on how C++ is used in the architecture and an
overview of the important components in the system.

5.2.1. Quality attribute prediction. In this case we fol-
lowed the quality attribute strategy to examine whether the
design goals of the EPOC 32 architecture are predicted by
our model given the properties we know about it. The de-
sign goals of the EPOC 32 architecture can be summarized
as follows:
• It has to perform well on limited hardware
• It has to be small to be able to fit in the generally small
memory of the target hardware
• It must be able to recover from errors since applications
running on top of EPOC are expected to run for months or
even years
• The software has to be modular so that the system can be
tailored for different hardware platforms
• The software must be reliable, crashes are not accept-
able.

Facts/evidence. We assessed the EPOC architecture using
the online documentation [17]. From this documentation
we learned that:
• A special mechanism to allocate and deallocate objects
is used
• Multiple inheritance is not allowed except for abstract
classes with no implementation (the functional equivalent
of the interface construct in Java).
• The depth of the inheritance tree can be quite deep.
There is a convention of putting very little behavior in vir-
tual methods, though. This causes the majority of the code
to be located in the leafs of the tree. The superclasses can
be seen as the functional equivalent of Java interfaces.
• A special exception handling mechanism is used. C++
default exception handling mechanism uses too much
memory so the EPOC 32 OS comes with its own macro
based exception handling mechanism.
• Since the system has to operate in devices with limited
memory capacity, the system uses very little memory. In
several places memory usage was a motivation to choose
an otherwise less than optimal solution (exception han-
dling, the way DLLs are linked)
• Components are medium sized.

documentation good
implementation_language C++

Output of the network
configurability good (0.52)
maintainability good (0.64)
modifiability good (0.66)
reusability bad (0.65)
understandability good (0.64)
coupling loose (0.54)
correctness good (0.75)
comp_interdependencies few (0.79)

Table 3. Impact analysis

Table 4. Quality attribute prediction

Entered evidence
class_inheritance_depth deep
comp_granularity coarse-grained
comp_interdendencies few
exception_handling yes
implementation_language c++
interface_granularity coarse-grained
memory_usage low
multiple_inheritance no

Output of the network
complexity low (0.62)
configurability high (0.55)
correctness good (0.73)
fault_tolerance tolerant (0.70)
flexibility good (0.55)
maintainability good (0.65)
modifiability good (0.66)
reliability reliable (0.74)
reusability bad (0.64)
usability good (0.65)
understandability good (0.52)

• There are few dependencies between components. In
particular circular dependencies are not allowed.
• Generally components can be replaced with binary com-
patible replacements which indicates that the components
are loosely coupled.

Output of the network. The output of the network con-
firms that the right choices have been made in the design
of the EPOC 32 operating system. Our network predicts
that low complexity is probable, high reliability is also
probable. Furthermore the system is fault tolerant (which
partially explains reliability.). The system also scores well
on maintainability and flexibility. A surprise is the low
score on reusability. Unlike the previous case, the EPOC
32 features so called binary components. What obstructs
their reuse is the fact that the components are rather large
and the fact that the interfaces are also coarse-grained.

Also of influence is the fifty fifty score on understand-
ability (good understandability is essential for reuse). The
latter is probably the cause of a lack of evidence, not be-
cause of an error in the network. The available evidence is
insufficient to make meaningful assumptions about under-
standability. The reason for the bad score on reusability
lies in the fact that even though EPOC components are re-
usable within the EPOC system, they are not reusable in
other systems (such as the PalmOS or Windows CE).

5.2.2. Quality attribute fulfillment. Though its certain-
ly interesting to see that the architectural properties predict
the design goals, it is also interesting to verify whether the
design goals predict the architectual properties. To do so,
we applied the quality attribute fulfillment strategy.

Facts/evidence. In this case we entered properties that
were presumably wanted quality attributes for the EPOC
architecture:
• Fault tolerance and reliability are both important for
EPOC since EPOC systems are expected to run for long
periods of time. System crashes are not acceptable and the
system is expected to recover from application errors.
• Since the system has to operate on relatively small hard-
ware, performance and low memory usage are important
• Since the system has to run on a wide variety of hard-
ware (varying in processor, memory size, display size), the
system must be tailorable (i.e. configurability and modifi-
ability should be easy)

Output of the network. It is unreasonable to expect our

network to come up with all the properties of the EPOC 32
OS based on this input. The output however once again
confirms that design choices for EPOC 32 make sense.
One of the interesting things is that our network suggests a
high probability on Java as a programming language.
While EPOC 32 was programmed in C++, its designers
tried to mimic many of Java’s features (also see [17]). In
particular they mimicked the way Java uses interfaces to
expose API’s (using abstract classes with virtual meth-
ods), they used an exception handling mechanism, they
created a mechanism for allocating and deallocating mem-
ory which is safer than the regular C++ way of doing so.
Considering this, it is understandable that our network
picked the wrong language.

SAABNet also predicts coarse-grained components
which is correct. In addition to that it gives a high proba-
bility for the presence of exception handling which is also
correct. The network is also correct in predicting no multi-
ple inheritance and few component interdependencies. It is
wrong, however, in predicting an low inheritance depth
and predicting fine-grained interfaces. The latter two er-
rors can easily be explained since, as we pointed out in the
previous case, virtual classes in EPOC can be compared to
Java interfaces. This makes the inheritance hierarchy
much easier to understand.

6. Related Work
Important work in the field of BBNs is that of Judea

Perl [16]. In this book the concept of belief networks is in-
troduced and algorithms to perform calculations on BBNs
are presented. Other important work in this area includes
that of Drudzel & Van der Gaag [4] where methodology
for quantification of a BBN is discussed.

We were not the first to apply belief networks to soft-
ware engineering. In [14] and [15], BBNs are used to as-
sess system dependability and other quality attributes.
Contrary to our work, their work focuses on dependability
and safety aspects of software systems.

The qualitative network we created could be perceived
as a complex quality requirement framework as the one
presented by McCall [12]. Apart from our model being
more complex, there are some structural differences with
McCall. In our model abstract attributes like flexibility
and understandability are decomposed into less abstract at-
tributes (follow the arrows in reverse direction). McCall’s
decomposition is far more simple than ours is: it only has
three layers and there are no connections within one layer.
We think that his decomposition is too simplistic for our
goal which is to make useful qualitative assessments about
software architecture using a BBN. Mc Call’s decomposi-
tion does not model independencies very well (which es-
sential for a BBN). Many criteria like “modularity“ show
up in the decomposition of nearly every quality factor. In a
BBN that would lead to many incoming arrows. We feel
that our model may be a better decomposition because it
tries to find minimal decompositions and groups simple
quality criteria into more abstract ones. An example of this
is our decomposition of complexity into vertical and hori-
zontal complexity. However, continued validation is re-
quired to prove our position.

Lundberg et al. provide another decomposition of a
limited number of quality attributes [9]. Like McCall’s de-

Table 5. Quality attribute fulfillment

Entered evidence
configurability good
fault_tolerance tolerant
memory_usage low
modifiability good
performance good
reliability reliable

Output of the network
class_inheritance_depth not deep (0.52)
comp_granularity coarse-grained (0.83)
comp_interdendencies few (0.75)
exception_handling yes (0.80)
implementation_language java (0.66)
interface_granularity fine-grained (0.58)
multiple_inheritance no (0.77)

composition, their decomposition is a hierarchical decom-
position. We adopted and enhanced their decomposition of
performance into throughput and responsiveness. Howev-
er, we did not use their decomposition of modifiability in-
to maintainability and configurability as we needed a more
detailed decomposition. Rather we adopted Swanson’s de-
composition of maintenance into perfective, adaptive and
corrective maintenance [18]. We mapped the notion of
perfective and corrective maintenance onto modifiability
while adaptive maintenance is mapped onto configurabili-
ty. A reason for this difference in decomposition is that we
prefer to think of modifiability as code modifications and
of configurability as run time modifications.

The SAABNet technique, we created, would fit in nice-
ly with existing development methods such as the method
presented in [1] which was developed in our research
group. In this design method, an architecture is developed
in iterations. After each iteration, the architecture is evalu-
ated and weaknesses are identified. In the next iteration
the weaknesses are addressed by applying transformations
to the architecture. Our technique could be used to detect
weak spots earlier so that they can be addressed while it is
still cheap to transform the architecture.

SAABNet could also be used in spiral development
methods, like ATAM (Architecture Tradeoff Analysis
Method) [10], that also rely on assessments. It is however
not intended to replace methods like SAAM [11] which
generally require an architecture description since SAAB-
Net does not require such a description. Rather SAABNet
could be used in an earlier phase of software development.

7. Conclusion
In this paper we have presented SAABNet, a technique

for assessing software architectures early in the develop-
ment process. Contrary to existing techniques this tech-
nique works with qualitative knowledge rather than
quantitative knowledge. Because of this, our technique can
be used to evaluate architectures before metrics can be
done and can even assist in designing the architecture.

We have evaluated SAABNet by doing four small case
studies, each using one of the four usage strategies we pre-
sented in section 4.. In each of the cases we were able to
explain the output of SAABNet. There were some devia-
tions with our cases. The most notable one was the low
score on reusability in both evaluated systems. We ex-
plained this by pointing out that in both cases the compa-
nies idea of reuse is different from what SAABNet uses. In
general the output of SAABNet is quite accurate, given the
limited input we provided in our cases. This suggests that
extending SAABNet may allow for even more accurate
output.

The sometimes rather obvious nature of the conclusions
of SAABNet are a result of the fact that the current version
of our belief network is somewhat simple. We intend to
extend SAABNet in the future to allow for more detailed
conclusions. We also intend to develop a tool around
SAABNet that makes it more easier to interact with it. A
starting point for building such a tool are the usage strate-
gies we identified. Although our small case study shows
that this is a promising technique, a larger, preferably in-
dustrial, case study is needed to validate SAABNet.

8. References
[1] J. Bosch, P. Molin, “Software Architecture Design:
Evaluation and Transformation“, in Proceedings of the 1999
IEEE Conference on Engineering of Computer Based Systems.
March 1999.
[2] F. Buschmann, C. Jäkel, R. Meunier, H. Rohnert, M.
Stahl, “Pattern-Oriented Software Architecture - A System of
Patterns“, John Wiley & Sons, 1996.
[3] J. Daly, A. Brooks, J. Miller, M. Roper, M. Wood, “The
effect of inheritance on the maintainability of object oriented
software: an empirical study“, Proceedings of the international
conference on software maintenance, pp. 20-29, IEEE computer
Society Press, Los Alamitos, CA, USA, 1995.
[4] M. J. Drudzel, L. C. van der Gaag, “Elicitation for Belief
Networks: Combining Qualitative and Quantitative
Information“, Proceedings of the 11th Annual Conference on
Uncertainty in Artificial Intelligence (UAI-95), pp. 141-148,
Montreal August 1995.
[5] J. van Gurp, J. Bosch, “Design, Implementation and
Evolution of Object Oriented Frameworks: Concepts &
Guidelines“, submitted July 1999.
[6] J. Gosling, B. Joy, G. Steele, “The Java Language
Specification“, Addison Wesley, 1996. Gamma, R. Helm, R.
Johnson, J. Vlissides, “Design Patterns - Elements of Reusable
Object Oriented software”, Addison-Wesley, 1995.
[7] Hugin “Hugin Expert A/S - Homepage”, http://
www.hugin.dk.
[8] Hugin, “General Information”, http://www.hugin.dk/gen-
inf.html.
[9] L. Lundberg, J. Bosch, D. Häggander, P. O. Bengtsson,
“Quality Attributes in Software Architecture Design“,
Proceedings of the IASTED 3rd International Conference on
Software Engineering and Applications, pp. 353-362, October
1999.
[10] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H.
Lipson, J. Carriere, “The architecture Tradeoff Analysis
Method“, Proceedings of ICECCS, August 1998, Monterey, CA.
[11] R. Kazman, L. Bass, G. Abowd, M. Webb, “SAAM: A
Method for Analyzing the Properties Software Architectures”,
pp. 81-90, Proceedings of ICSE 16, May 1994.
[12] J. A. McCall, “Quality Factors“, encyclopedia of Software
Engineering, vol 2 O-Z pp. 958-969, John Wiley & Sons New
York 1994.
[13] Microsoft Research, “Machine Learning and Applied
Statistics“, http://research.microsoft.com/research/mlas.
[14] M. Neil, B. Littlewood, N. Fenton, “Applying Bayesian
Belief Networks to Systems Dependability Assessment“,
Proceedings of Safety Critical Systems Club Symposium, Leeds,
Springer-Verlag February 1996.
[15] M. Neil, N. Fenton, “Predicting Software Quality using
Bayesian Belief Networks“, Proceedings of 21st Annual
Software Engineering Workshop, 1996.
[16] J. Pearl, “Probabilistic Reasoning in Intelligent Systems“,
Morgan Kaufmann Publishers, Inc. San Mateo 1988.
[17] Symbian, “EPOC World Library”, http://
developer.epocworld.com/EPOClibrary/EPOClibrary.html.
[18] E. B. Swanson, “The dimensions of maintenance“,
proceedings of the 2nd international conference on software
engineering, pp. 492-497, IEEE Computer Society Press, Los
Alamitos 1976.

