

Scenario-based Assessment of Software Architecture Usability

Eelke Folmer, Jilles van Gurp, Jan Bosch
Department of Mathematics and Computing Science

University of Groningen, PO Box 800, 9700 AV the Netherlands
mail@eelke.com, Jilles@cs.rug.nl, Jan.Bosch@cs.rug.nl

Abstract

Over the years the software engineering community
has increasingly realized the important role software
architecture plays in fulfilling the quality requirements of
a system. The quality attributes of a software system are,
to a large extent determined by the system’s software
architecture. In recent years various tools and techniques
have been developed that allow for design for quality
attributes, such as performance or maintainability, at the
software architecture level. We believe this design
approach can be applied not only to non-operational
quality attributes such as performance or maintainability,
but also to operational quality attributes such as
usability. This paper presents and describes a scenario
based assessment method to assess whether a given
software architecture (provided usability) meets the
usability requirements (required usability).

1. Introduction

The quality attributes of a software system are to a

considerable extent defined by its software architecture.
In addition, design decisions in the beginning of the
design process are the hardest to revoke. Therefore it is
important to have an explicit and objective design
process. Various researchers in the software engineering
research community have proposed software architecture
design methods: SAAM [1], ATAM [2] and QASAR [3].
The latter, the Quality Attribute-oriented Software
ARchitecture design method (QASAR), is a method for
software architecture design that employs explicit
assessment of, and design for the quality requirements of
a software system.

The architecture design process depicted in Figure 1
can be viewed as a function that transforms a requirement
specification to an architectural design. The requirements
are collected from the stakeholders; the users, customers,
technological developments and the marketing
departments. These groups often provide conflicting
requirements and have to agree on a specific set of
requirements before the design process can start. The
design process starts with a design of the software

architecture based on the functional requirements.
Although software engineers will not design a system on
purpose that is unreliable or performs poorly, most non-
functional requirements are typically not explicitly
defined at this stage.

The design process results in a preliminary version of
the software architecture design. This design is evaluated
with respect to the quality requirements by using a
qualitative or quantitative assessment technique. During
assessment the provided quality attributes are compared
to the required quality attribute specifications. If these are
satisfactory, then the design process is finished.
Otherwise, the architecture transformation or
improvement stage is entered. This stage improves the
software architecture by selecting appropriate quality
attribute optimizing or improving design solutions.

When applying architecture design solutions, generally
one or more quality attributes are improved whereas other
attributes may be affected negatively. By applying one or
more architectural design solutions, a new architectural
design is created. The design is evaluated again and the
process is repeated, if necessary, until all non-functional
requirements have been satisfied as much as possible.
Other design methods such as SAAM or ATAM take a
similar approach with respect to iterative refinement of

Figure 1: Software architecture design

method

the design. Generally some compromises are necessary
with respect to conflicting non-functional requirements.
The design process described here depends on two
requirements:
• It is required to determine when the software design

process is finished. Therefore, assessment techniques
are needed to provide quantitative or qualitative data,
to determine if the architecture meets the non-
functional requirements.

• Development or identification of architectural design
solutions that improve quality attributes.

As of yet, no architectural assessment techniques for
usability exist. The goal of this paper is to outline and
present an assessment technique for usability that fulfills
one of the requirements to be able to design for usability
on the architectural level.

2. Architecture assessment of usability

Most usability issues are only discovered late in the
development process, during testing and deployment. This
late detection of usability issues is largely due to the fact
that in order to do a usability evaluation, it is necessary to
have both a working system and a representative set of
users present. This evaluation can only be done at the end
of the design process. It is therefore expensive to go back
and make changes at this stage. Most usability improving
modifications are structural and can hence not be
implemented because of their cost

One of the goals of the STATUS1 project is to develop
techniques and methods that can assess software
architectures for their support of usability. The reason for
developing such techniques is because the quality
attributes of a software system are, to a large extent
determined by a system’s software architecture. We
believe this not only holds for non-operational quality
attributes such as maintainability or modifiability but also
for usability.

Being able to assess the quality attributes such as
usability during early development therefore is very
important. Three types of architecture assessment have
been identified [3]
• Scenario based assessment: In order to assess a

particular architecture, a set of scenarios is developed
that concretizes the actual meaning of a requirement.
For instance, the maintainability requirements may be
specified by defining change profiles that captures
typical changes in the requirements, underlying
hardware and so on. For each scenario the
architecture is assessed for its support of this
scenario.

1 STATUS is an ESPRIT project (IST-2001-32298) financed by the European Commission in its Information

Society Technologies Program. The partners are Information Highway Group (IHG), Universidad Politecnica de

Madrid (UPM), University of Groningen (RUG), Imperial College of Science, Technology and Medicine (ICSTM),

LOGICDIS S.A.

• Simulation: Simulation of the architecture uses an
executable model of the application architecture. This
comprises models of the main components of the
system composed to form an overall architecture
model. It is possible to check various properties of
such a model in a formal way and to animate it to
allow the user or designer to interact with the model
as they might with the finished system.

• Mathematical modeling: By using mathematical
models developed by various research communities
such as high performance computing, operational
quality attributes can be assessed. Mathematical
modeling is closely related to, or an alternative to
simulation.

It is our conjecture that a scenario based approach for
developing an assessment method for usability is the most
promising candidate technique. Mathematical modeling
and simulation are better suited to assess operational
quality attributes because such quality attributes, for
example performance, are easier and more accurately
estimated than usability. A scenario is similar to a use
case for those familiar with object oriented modeling. A
scenario is defined as a short statement describing and
interaction of one of the stakeholders with the system in a
particular context. The usage of scenarios is motivated by
the consensus it brings to the understanding of what a
particular software quality really means. Scenarios are a
good way of synthesizing individual interpretations of a
software quality into a common view. This view is both
more concrete than the general software quality
definitions [4] and also incorporates the uniqueness of the
system to be developed, i.e. it is more context sensitive.

Traditionally, scenario based assessment has been
applied to development related software qualities [5].
Software qualities such as maintainability can be
expressed very naturally through change scenarios. The
safety quality attribute may be specified by hazard
scenarios In [1] the use of scenarios for assessing
architectures is also identified. It is our conjecture that
scenario based assessment can also be applied for
usability assessment. Usability is often defined in a very
abstract fashion. Scenarios can make abstract usability
requirements more specific. For example a usability
requirement like “the system should be learnable” is much
harder to evaluate for a system than a usage scenario
defined as: “For a novice user operating on a helpdesk
context, inserting a new customer in the sales database
should be learnable”, which is a more concrete statement.

Before we developed an assessment technique for
usability the relationship between usability and
architecture was investigated. The results of that research
are presented in the next section.

3. Usability Framework

One of the first goals of the STATUS project was to
investigate the relationship between usability and
software architecture. A framework has been developed
[6] which illustrates this relationship. This framework
provides the basis for developing assessment tools for
usability. The framework is used for extracting
information regarding the architectural information
related to usability required for the assessment (this will
be discussed when presenting our assessment technique).
The framework consists of the following concepts:

• Usability attributes.
• Usability properties.
• Usability patterns.
Figure gives some examples of attributes, properties

and patterns, and shows how these are related to illustrate
the relationship between usability and software
architecture. The concepts used are defined below.

3.1. Usability attributes

A comprehensive survey of the literature [7] revealed
that different researchers have different definitions for the
term usability attribute, but the generally accepted
meaning is that a usability attribute is a precise and
measurable component of the abstract concept that is
usability. After an extensive search of the work of various
authors, the following set of usability attributes has been
identified for which software systems in our work are
assessed. No innovation was applied in this area, since
abundant research has already focused on finding and
defining the optimal set of attributes that compose
usability. Therefore, merely the set of attributes most
commonly cited amongst authors in the usability field has
been taken. The four attributes that are chosen are:
• Learnability - how quickly and easily users can begin

to do productive work with a system that is new to
them, combined with the ease of remembering the
way a system must be operated.

• Efficiency of use - the number of tasks per unit time
that the user can perform using the system.

• Reliability in use - this attribute refers to the error
rate in using the system and the time it takes to
recover from errors.

• Satisfaction - the subjective opinions that users form
in using the system.

These attributes can be measured directly by observing
and interviewing users of the final system using
techniques that are well established in the field of
usability engineering.

3.2. Usability properties

Essentially, usability properties embody the heuristics
and design principles that researchers in the usability field
have found to have a direct influence on system usability.
Usability properties cannot be observed when evaluating
usability for an implemented system. These properties can
be used as requirements at the design stage, for instance
by specifying "the system must provide feedback",
however they are not strict requirements in way that they
are requirements that should be fulfilled at all costs.
Usability properties should be considered as higher-level
design primitives, which have a known effect on usability.
It is up to the software engineer to decide how and at
which levels these properties are implemented by using
usability patterns of which it is known they have an effect
on this usability property. The following properties have
been defined:
• Providing feedback - the system provides continuous

feedback as to system operation to the user.
• Error management - includes error prevention and

recovery.
• Consistency - consistency of both the user interface

and functional operation of the system.
• Guidance - on-line guidance as to the operation of the

system.
• Minimize cognitive load - system design should

recognize human cognitive limitations, short-term
memory etc.

• Natural mapping - includes predictability of
operation, semiotic significance of symbols and ease
of navigation.

• Accessibility - includes multi-mode access,
internationalization and support for disabled users.

3.3. Usability patterns

The term usability pattern refers to a technique or

mechanism that can be applied to the design of the
architecture of a software system in order to address a
need identified by a usability property at the requirements
stage (or iteration thereof). Various pattern collections
have been defined [8], [9], the difference with other
collections is that our collection considers only patterns
which should be applied during the design of a system’s

Figure 2: Usability framework

software architecture, rather than during the detailed
design stage. There is not a one-to-one mapping between
usability patterns and the usability properties that they
affect. A pattern may be related to any number of
properties, and each property may be improved (or
impaired) by a number of different patterns. The choice of
which pattern to apply may be made on the basis of cost
and the trade off between different usability properties or
between usability and other quality attributes such as
security or performance. 20 patterns have been identified
and a detailed analysis of each usability pattern and the
relationship between this patterns, usability properties and
usability attributes can be found on
http://www.designforquality.com/

The next section presents our proposal of a scenario
based assessment method for architectural assessment of
usability. The assessment method uses the framework
described in this section as a source of input for extracting
the information required for assessment.

4. Usability assessment technique: SALUTA

What is Saluta? The Scenario based Architecture Level
UsabiliTy Analysis method (SALUTA) comprises the
following steps:
1) Determine the goal of the assessment.
2) Create usage profile.
3) Describe the software architecture.
4) Evaluate usage scenarios: determine the support for

the scenarios.
5) Interpret the results: draw conclusions from the

analysis results.
The steps are discussed and defined in detail in the

following subsections:

4.1 Determine the goal of the assessment

The first step in the analysis method is to determine the
type of results that will be delivered by its analysis. The
following goals are distinguished:
• Predict the level of usability: give an accurate

indication of the support of usability for an
architecture.

• Risk assessment: detect usability issues for which the
software architecture is inflexible.

• Software architecture selection: compare two
candidate software architectures and select the
optimal candidate which has the best support for
usability

4.2 Create usage profile

Before an architecture can be assessed for its support

of usability, first a way to describe the required usability
is required. Preece [10] and Hix [11] suggest various

techniques for the specification of usability. The way
traditional techniques specify usability such as proposed
by Preece and Hix are not suited for architectural
assessment because of the following reasons:
• Very little is mentioned about usability requirements

in scientific literature. In addition, real-life examples
are rarely provided. Preece for example, presents
much advice on usability requirements, but in a rather
abstract setting without real-life examples.
Traditionally usability specifications are rather
defined in an abstract fashion and therefore not suited
for architectural assessment.

• Traditionally usability requirements have been
specified such that these can be verified for an
implemented system. However, such requirements
are largely useless in a forward engineering process.
For example, we could say that a goal for a system is
that it should be easy to learn, or that new users
should require no more than 30 minutes instruction,
however, requirements at such a level are hard to
assess on an architectural level, because those can
only be measured when the system is in use. Such
statements are therefore useless for architectural
assessment of usability.

A more suitable format (as argued in section 1.1) for
specifying required usability for architectural assessment
is by using scenarios. Scenario profiles are increasingly
often used for the assessment of quality attributes during
the architectural design of software systems [12]. A
scenario profile describes the semantics of software
quality factors such as maintainability or safety for a
particular system. A usage profile is defined as: “a
description of the semantics of usability for a particular
system in terms of scenarios”. Scenario profiles are
created using the following steps:
1) Identify the context of scenario profile (SP)

generation.
2) Identify all scenario entities for usability
3) Create usage scenarios
4) Scenario elicitation

4.2.1 Identify the context of SP generation. A scenario
profile can, basically, be defined in one of two contexts
[13]: the Greenfield and the experienced context. If a
scenario profile is defined in an organization using the
technique for the first time, for a new system and no
historical data is available about similar systems, the
profile definition fully depends on the experience, skill
and creativeness of the individuals defining the profile.
The resulting scenario profile is the only input to the
architecture assessment. The lack of alternative data
sources in this case and the lack of knowledge about the
representativeness of scenario profiles defined by
individuals and groups, indicates that there is a need to
increase our understanding of profiles in this situation. In
the second situation, there is either an earlier release of

the system or historical data of similar systems available.
Since, in this case, empirical data can be collected, this
data can be used as an additional input for the next
prediction and a more accurate result is achieved.

4.2.2 Identify all scenario entities for usage scenarios.
A scenario is defined as: "Scenarios refer to interactions
between independent entities [14]. Entities for example
can be stakeholders, the system (or possibly parts of it
such as hardware, software, subsystems, objects) and the
environment" There are different ways to interpret the
definition of scenario. In object oriented design methods a
scenario generally refers to use case scenarios; scenarios
that describe system behavior. However it is also possible
to use the definition above so it describes actions or
sequence of actions that might occur in relation to the
system. For example usage scenarios describe system
behavior whereas change scenarios describe an action (a
modification task) in relation to the system.

Entities as defined in the definition above play an
essential role in defining scenarios. For example the entity
stakeholders is taken into account because different
stakeholders in the software lifecycle take different
viewpoints when expressing their concerns about a
software system. These viewpoints reflect the
stakeholders' differing needs with respect to the software
architecture [15]. Because of that the different needs of
each stakeholder directly relate to the different needs
concerning quality attributes and hence to different needs
concerning its software architecture. The same
argumentation holds for other entities such as the context
in which the stakeholder operates or the hardware that
impose requirements on the quality attributes.

Identification of all entities that influence a particular
quality attribute is essential for defining a scenario for
that quality attribute. For usage scenarios the following
entities have been identified that define a usage scenario:
• The user (as a stakeholder)
• The context in which the user operates (as part of the

environment)
• The tasks that a user can perform (as part of the

system).

4.2.3. Create usage scenarios. The way scenarios are
created or defined for a quality attribute largely depends
on the entities that define the scenario for that particular
quality attribute. For usability the following activities are
defined:
1. Identify the users: A representative list of distinct
users has to collected and defined. Examples: Novice
users, expert users or system administrators.
2. Identify the tasks: The next step is identification and
selection of distinct tasks. Most systems have a lot of
different tasks; therefore a representative selection of
these tasks that are distinct has to be made. For example a
task could be: insert new customer in database.

3. Identify the context: The third step is determination of
the unique contexts in which each user operates.
Examples: helpdesk context or training environment.
4. Create attribute preference table: The attribute
preference table (APT) is defined to relate a scenario to
usability. Because a scenario consisting of a user, a task
and a context only describes interaction we have defined a
way to relate it to usability. To express the usability issues
a user has while performing a task in a specific context
the scenarios are related to our usability attributes as
defined in [6]. To relate a scenario to usability we
determine the usability attribute values for that particular
scenario. For example for a novice user performing a task
“insert order” in a “learning environment” the learnability
attribute of usability may be important. The APT
expresses the required usability for that scenario. An
example of an APT can be found in Table 1 By defining
the APT the required usability is quantified by stating the
users’ preference concerning usability for that scenario.
For each type of user, task and context, the user’s
preferences concerning usability is determined.

There are various ways to determine quantitative
values for the preference to usability. It can be done as
part of requirements collection process: typical users or
experts assign values, for example they assign values
between 1 to 5 to each attribute for each task and context.
The assigning of values can also be done as a post
requirements process (during assessment), where an
expert (or a team of experts) determine values for the
usability preferences, the usability requirements that are
collected during requirements analysis can then be used as
an informative source for assigning the values.

4.2.4. Scenario selection. The attribute preference table
that was created in combination with a descriptive list of
users, tasks and contexts of operation can be used to
summarize and describe the different scenarios that have
been created. From this table, which holds all scenarios a
scenario, profile is created by selecting scenarios that are
representative. Scenario selection is the process of
selecting those scenarios that are to be used in the
assessment step of the analysis. Scenario selection results
in a scenario profile which holds the set of relevant
scenarios which will be evaluated. A scenario profile is a

Table 1: Example APT

Scenario attribute preference table
User Task Context Learn-

ability
Efficien-
cy of use

Relia-
bility

Satis-
faction

A T1 C1 5 2 4 3
A T2 C2 5 5 3 2
A T3 C1 1 1 3 3
A T4 C2 1 … 3 3
B T1 C1 …. … …
B T1 C2
B T2 C1
… … …

set of scenarios that form the context for a quality
requirement posed on the system. Different profiles may
be defined depending on criteria for selecting the
scenarios into the profile. The selection criteria influence
the representativeness of the scenario profile, since in
essence it is a kind of population sampling strategy. Two
types of general scenario profiles have been identified:
• Complete scenario profile: “all scenarios that can

potentially occur”
• Selected scenario profile: “a representative subset of

the population of all possible scenarios
Scenarios may be assigned additional properties, such

as an associated weight, priority or probability of
occurrence within a certain time. The selection of usage
scenarios also depends on the goal of the analysis, if the
goal is to:
• Predict the level of a quality attribute: Select

scenarios that have high probability of occurring.
• Risk assessment: select scenarios that expose those

risks.
• Software architecture selection: select scenario that

highlight differences
The process of identifying scenario entities, scenario

creation and scenario selection are often combined
performed in one process called scenario elicitation.

4.3 Describe the software architecture

The third step, architecture description, concerns the

information about the software architecture that is needed
to perform the analysis. Generally speaking, usability
analysis requires architectural information that allows the
analysis to evaluate the scenarios. The result of this step is
a description of the provided usability. Information
related to the architecture; for example, box and line
diagrams or documented design decisions, may provide
data about various quality attributes but since our interest
lies in usability only the information that is related to
usability is required. To achieve this, the information
required is extracted using our framework described in
section 3. Different types of assessment techniques have

been defined depending on the amount of architectural
information that is available for assessment or what
information one is willing to acquire to get a more
accurate result from the assessment. The following
subsection discusses the different assessment types
defined and the architectural information necessary to
perform that type of assessment.

4.4 Evaluate Scenarios

Assessing an architecture for its support of a particular
quality attribute basically comes down to a comparison
between the required values of that particular quality
attribute versus the provided value of that quality
attribute. For usability assessment the required usability
‘levels’ are compared to the provided usability ‘levels’.
The levels are specified by scenarios. In section 2.2 a
technique is discussed for capturing and describing the
required usability using scenario profiles. For each
scenario in the scenario profile the architecture is
analyzed for its support of that scenario. The process that
identifies the support for the scenarios is defined as
architectural support analysis. Eventually the results from
the analysis are summarized into an overall result. For
example the number of supported scenarios versus the
number scenario not supported. This number will be an
indication of the support of the architecture for its support
of usability. Three different types of assessment have
been defined (as depicted in Figure):
• Pattern based
• Design decision based
• Use case map based

The framework is used to extract the architectural
information required for each assessment technique.

4.4.1. Pattern based. By analyzing an architectural
description of the system an expert assesses the
architectures support of usability. The architecture
designs present within the development are used as a
source of input for this type of assessment. The
architectural design can be a simple box and line diagram

�

�������������	���
������������
������

�������
��������	���
���������������������	���
�������������

�

����

�

�

���� ���������	
�
���
�������	 	

�

�����

�

�

����

���������	
�
���
�������	

��������	
��
���	

�

����

�

�����

���	

���	

���������	
�
���
�������	

Figure 3: Scenario based assessment techniques

or for example a 4+1 view on the architecture. These
designs can provide a lot of information about quality
attributes and since the subject of our evaluation is
usability we are only interested in those parts of
architecture information that are related to usability. To
acquire this information we use the framework to extract
the required information. For expert based analysis an
identification of patterns that influence usability in the
system is required. By heuristically evaluating the system
using the list of patterns identified in [6] a list of patterns
or possible derivatives of those patterns implemented can
be identified. The list usability patterns present in the
software system should provide the information necessary
for the software engineer to decide if a scenario will be
supported by the architecture. For each scenario the
software engineer will determine which patterns are
involved and whether the usage scenario is sufficiently
supported.

4.4.2. Design decision based. Not only a description of
the structure of a system as it is decomposed into
components and relations with its environment may be
used for analysis. The design decisions that led to that
particular architecture are also very important. The
earliest design decisions may have a considerable
influence on various quality attributes of the resulting
system. However such design decisions which are made
during design are most often not documented. If they have
been however they may be used as a source of input for
this type of assessment. For design decision based
analysis it needs to be determined which design decisions
have been made with regard to usability. By heuristically
evaluating the design decisions made during design, using
the list of usability properties defined in our framework
the required information for the assessment (the design
decisions that relate to usability) is extracted. This type of
assessment heavily depends on the amount of information
documented during or after initial architectural design. If
no design decisions have been documented, this
information could be retrieved by interviewing the system
architect(s). For design decision based analysis, the list of

design decisions that have been extracted using the
framework is used to determine the support for each
usage scenario. For each scenario we analyze if a scenario
is affected by the design decisions and whether this has
resulted in sufficient support for that scenario.

4.4.3. UCM based. An even more detailed way of
assessing is to use use case maps (UCM) for describing
the architecture. Using UCM for describing the
architecture has the following benefits:
• Use case maps describe behavioral and structural

aspects of systems at a high (architectural level) of
abstraction

• UCM are easy to learn & understand but precise.
• Use case maps can show multiple scenarios in one

diagram and the interaction amongst them. (which
allows reasoning about a system as a whole)

• Use case maps are an informal abstract notation
suited to our purposed

Architecture designs and design decisions made during
design can be provided by the software architect who
assists the analysis. Use case maps in case not present can
be constructed with the assisting software architect. Based
on the scenarios in the scenario profile for each scenario a
use case map is build. Some tasks may have the similar or
the same use case maps. The use case map allows us to
analyze various static properties that relate to the usability
attributes layer in our framework. For example a use case
map may visualize the number of steps or time it takes to
perform a task. The number of steps may be an indication
to the efficiency or learnability attribute. Next to
providing static information use case maps allow close
analysis of architectural components (such as a patterns)
involved in that particular scenario. The information
gathered during this analysis is an extra source of input
for the architectural support analysis of the scenarios.

4.4.4. Summarize: The types of assessment techniques
presented here are complementary as shown in Figure . In
general expert based assessment can be applied in most
cases, assuming that at least some basic form of

Figure 4: Assessment process

architectural description has been made for design which
allows for identification of patterns. Design decision and
use case map based assessment may give additional
information for the architectural support analysis.
However because these types of required information are
not always present these can be retrieved or created by
interviewing the system architects, which has its costs.

4.5 Interpret the results

When the scenario evaluation has been finished we
need to interpret the results to draw our conclusions
concerning the software architecture. At this stage we go
back to our architecture design stage (see Figure) where
we wondered if this architecture had sufficient support for
usability. The interpretation of the results depends entirely
on the goal of the analysis and the system requirements. If
the architecture proves to have sufficient support for all
quality attributes the design process is ended. Otherwise
we need to apply architecture transformations or design
decisions to improve certain quality attribute(s). The
choice to use particular transformations may be based
upon results from the analysis. For example: Consider a
system, which proves to have a low support for usability,
for example learnability for some usage scenarios is not
supported. To improve learnability we could use the
design primitive of guidance, to address guidance we
could implement for example a wizard pattern or provide
context sensitive help.

5. Conclusions

The work presented in this paper is motivated by the

increasing realization in the software engineering
community of the importance of software architecture for
fulfilling quality requirements. We have presented a
provisional assessment technique for usability based on
scenarios, which has potential to improve current design
for usability. Future case studies should determine the
validity of our approach to refine it, possibly redefine and
elaborate the steps that should be taken to make it
generally applicable. Several issues need to be resolved
during case studies, which have been summarized below:
• Relevance of framework: The relationships depicted

in our framework indicate potential relationships.
Further work is required to substantiate these
relationships.

• Use case maps: may provide information about static
properties of usability. More research is required to
determine whether use case maps can provide that
kind of information.

The main contribution of this paper is the formulation
and derivation of an architectural assessment approach for
usability.
6. References

[1] R. Kazman, G. Abowd and M. Webb, "SAAM: A Method
for Analyzing the Properties of Software Architectures",
Proceedings of the 16th International Conference on Software
Engineering, 1994, pp. 81-90

[2] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson
and J. Carriere, "The Architecture Tradeoff Analysis Method",
Proceedings of ICECCS'98, 1998

[3] J. Bosch, Design and Use of Software Architectures:
Adopting and Evolving a Product Line Approach, Pearson
Education (Addison-Wesley and ACM Press).2000.

[4] IEEE Architecture Working Group. Recommended practice
for architectural description. Draft IEEE Standard P1471/D4.1,
IEEE.

[5] P. O. Bengtsson; N. Lassing; J. Bosch and H. van Vliet
,"Architecture-Level Modifiability Analysis (ALMA),",
Conditionally Accepted for the Journal of Systems and Software,
2002.

[6] E. Folmer and J. Bosch, "Usability patterns in Software
Architecture", Accepted for HCI International 2003, 2003

[7] E. Folmer and J. Bosch ,"Architecting for usability; a
survey", Accepted for the Journal of systems and software,
2002.

[8] M. Welie and H. Trætteberg, "Interaction Patterns in User
Interfaces", Conference on Pattern Languages of Programming
(PloP) 7th, 2000

[9] J. Tidwell, "Interaction Design Patterns", Conference on
Pattern Languages of Programming 1998, 1998

[10] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Hollandand
T. Carey, Human-Computer Interaction, Addison Wesley.1994.

[11] D. Hix and H. R. Hartson, Developing User Interfaces:
Ensuring Usability Through Product and Process., John Wiley
and Sons.1993.

[12] J. Bosch and P. O. Bengtsson, "Assessing optimal software
architecture maintainability", fifth European Conference on
Software Maintainability and Reengineering, 2002

[13] P. O. Bengtsson and J. Bosch ,"An Experiment on Creating
Scenario Profiles for Software Change", special issue on
Software maintenance in Annals of Software Engineering (ISSN:
1022-7091), vol. 9 59-78, 2000.

[14] J. M. Caroll, 1995. The Scenario Perspective on System
Development, in Scenario Based Design: Envisioning Work and
Technology in System Development. Caroll, J. M., John Wiley
and Sons.

[15] C. Gacek, A. Abd-Allah, B. Clark and B. Boehm, "On the
Definition of Software System Architecture", 1995

