Scenario-based Assessment of Softwar e Ar chitectur e Usability

Eelke Folmer, Jilles van Gurp, Jan Bosch
Department of Mathematics and Computing Science
University of Groningen, PO Box 800, 9700 AV théhRiands
mail@eelke.comlilles@cs.rug.nlJan.Bosch@cs.rug.nl

Abstract

Over the years the software engineering community
has increasingly realized the important role softwa
architecture plays in fulfilling the quality req@ments of
a system. The quality attributes of a softwareesysare,
to a large extent determined by the system’s softwa
architecture. In recent years various tools anchtéques
have been developed that allow for design for dyali
attributes, such as performance or maintainabilay the
software architecture level. We believe this design
approach can be applied not only to non-operational
quality attributes such as performance or maintaifity,
but also to operational quality attributes such as
usability. This paper presents and describes a aien

based assessment method to assess whether a give

software architecture (provided usability) meetse th
usability requirements (required usability).

1. Introduction

The quality attributes of a software system areato
considerable extent defined by its software archite.

In addition, design decisions in the beginning bé t
design process are the hardest to revoke. Theréfise
important to have an explicit and objective design
process. Various researchers in the software eegie
research community have proposed software architect
design methods: SAAM [1], ATAM [2] and QASAR [3].
The latter, the Quality Attribute-oriented Software
ARchitecture design method (QASAR), is a method for
software architecture design that employs explicit
assessment of, and design for the quality requinésnaf

a software system.

The architecture design process depicted in Fidure
can be viewed as a function that transforms a rement
specification to an architectural design. The nemments
are collected from the stakeholders; the userdpmess,
technological developments and the marketing

User/ Customer
Technological development
Marketing department

Functionality-based
architecture design
Software
architecture

Estimate
Quality
attributes

Requirement

specification

decisions

QA-optimizing
solutions

Figure 1. Software architecture design
method

architecture based on the functional requirements.
Although software engineers will not design a systan
purpose that is unreliable or performs poorly, mumh-
functional requirements are typically not expligitl
defined at this stage.

The design process results in a preliminary version
the software architecture design. This design euated
with respect to the quality requirements by using a
qualitative or guantitative assessment techniqu&in
assessment the provided quality attributes are aodp
to the required quality attribute specificatiorfshiese are
satisfactory, then the design process is finished.
Otherwise, the architecture transformation or
improvement stage is entered. This stage improkies t
software architecture by selecting appropriate igual
attribute optimizing or improving design solutions.

When applying architecture design solutions, gdhera
one or more quality attributes are improved wheathsr
attributes may be affected negatively. By applyomg or
more architectural design solutions, a new architat
design is created. The design is evaluated againtfzm
process is repeated, if necessary, until all norctfonal

departments. These groups often provide conflicting requirements have been satisfied as much as pessibl
requirements and have to agree on a specific set ofother design methods such as SAAM or ATAM take a

requirements before the design process can sta#. T gimilar approach with respect to iterative refinemef
design process starts with a design of the software

the design. Generally some compromises are negessars

with respect to conflicting non-functional requirents.

The design process described here depends on two

requirements:

e It is required to determine when the software desig
process is finished. Therefore, assessment teomiqu
are needed to provide quantitative or qualitatiatad
to determine if the architecture meets the non-
functional requirements.

« Development or identification of architectural dgsi
solutions that improve quality attributes.

As of yet, no architectural assessment techniqaes f
usability exist. The goal of this paper is to cugliand
present an assessment technique for usabilityftiféls
one of the requirements to be able to design fability
on the architectural level.

2. Architecture assessment of usability

Most usability issues are only discovered lateha t
development process, during testing and deploynéms.
late detection of usability issues is largely doette fact
that in order to do a usability evaluation, it ecessary to
have both a working system and a representativerfset
users present. This evaluation can only be dotigea¢nd
of the design process. It is therefore expensivgotback
and make changes at this stage. Most usabilityoripg

Simulation: Simulation of the architecture uses an
executable model of the application architecturés T
comprises models of the main components of the
system composed to form an overall architecture
model. It is possible to check various propertiés o
such a model in a formal way and to animate it to
allow the user or designer to interact with the slod
as they might with the finished system.
 Mathematical modeling: By using mathematical
models developed by various research communities
such as high performance computing, operational
quality attributes can be assessed. Mathematical
modeling is closely related to, or an alternative t
simulation.

It is our conjecture that a scenario based appréarch
developing an assessment method for usabilityeisribst
promising candidate technique. Mathematical modelin
and simulation are better suited to assess opee&itio
quality attributes because such quality attributés,
example performance, are easier and more accurately
estimated than usability. A scenario is similarataise
case for those familiar with object oriented moagliA
scenario is defined as a short statement describittty
interaction of one of the stakeholders with theeysin a
particular context. The usage of scenarios is mtdiy by
the consensus it brings to the understanding oft wha
particular software quality really means. Scenados a

modifications are structural and can hence not be900d way of synthesizing individual interpretatiooisa

implemented because of their cost
One of the goals of the STATU$roject is to develop

software quality into a common view. This view isttp
more concrete than the general software quality

techniqgues and methods that can assess softward€finitions [4] and also incorporates the uniqusnefsthe

architectures for their support of usability. Tleason for
developing such techniques
attributes of a software system are, to a largesrext

is because the quality

system to be developed, i.e. it is more contexsitiga.
Traditionally, scenario based assessment has been
applied to development related software qualiti6f [

determined by a system’s software architecture. weSoftware qualities such as maintainability can be

believe this not only holds for non-operational lgya
attributes such as maintainability or modifiabiliyt also
for usability.

expressed very naturally through change scenafibs.
safety quality attribute may be specified by hazard
scenarios In [1] the use of scenarios for assessing

Being able to assess the quality attributes such as@rchitectures is also identified. It is our conjeet that

usability during early development therefore is yer

important. Three types of architecture assessmamé h

been identified [3]

e Scenario based assessment: In order to assess
particular architecture, a set of scenarios is lbgpes
that concretizes the actual meaning of a requirémen
For instance, the maintainability requirements fay
specified by defining change profiles that captures
typical changes in the requirements, underlying
hardware and so on. For

scenario.

1 STATUS is an ESPRIT project (IST-2001-32298) finesh®y the European Commission in its Information
Society Technologies Program. The partners arerfréion Highway Group (IHG), Universidad Politecaige
Madrid (UPM), University of Groningen (RUG), ImpatiCollege of Science, Technology and Medicine T®1,
LOGICDIS S.A.

each scenario the
architecture is assessed for its support of this

scenario based assessment can also be applied for
usability assessment. Usability is often defined inery
abstract fashion. Scenarios can make abstract lingabi
requirements more specific. For example a usability
requirement like “the system should be learnatdethuch
harder to evaluate for a system than a usage socenar
defined as: “For a novice user operating on a lesdkd
context, inserting a new customer in the saleshdata
should be learnable”, which is a more concretestant.
Before we developed an assessment technique for
usability the relationship between usability and
architecture was investigated. The results of tesearch
are presented in the next section.

3. Usability Framewor k

Usability properties Usability patterns

satisfaction —
learnability <
RN -

efficiency

reliability

Problem domain

Figure 2: Usability framework

One of the first goals of the STATUS project was to
investigate the
software architecture. A framework has been dewop
[6] which illustrates this relationship. This framerk
provides the basis for developing assessment timols
usability. The framework is used for extracting
information regarding the architectural information
related to usability required for the assessménis (il
be discussed when presenting our assessment taehniq
The framework consists of the following concepts:

¢ Usability attributes.

¢ Usability properties.

¢ Usability patterns.

Figure gives some examples of attributes, progerti
and patterns, and shows how these are relateldistraite
the relationship between usability and software
architecture. The concepts used are defined below.

3.1. Usability attributes

A comprehensive survey of the literature [7] reeeal
that different researchers have different defingidor the
term usability attribute, but the generally accdpte
meaning is that a usability attribute is a precsd

measurable component of the abstract concept that i

usability. After an extensive search of the workafious

authors, the following set of usability attributess been
identified for which software systems in our worke a
assessed. No innovation was applied in this aieages

abundant research has already focused on findiy ane
defining the optimal set of attributes that compose

usability. Therefore, merely the set of attributesst

commonly cited amongst authors in the usabilitidfieas

been taken. The four attributes that are chosen are

« Learnability - how quickly and easily users canibeg
to do productive work with a system that is new to
them, combined with the ease of remembering the
way a system must be operated.

e Efficiency of use - the number of tasks per umiteti
that the user can perform using the system.

* Reliability in use - this attribute refers to theos
rate in using the system and the time it takes to
recover from errors.

e Satisfaction - the subjective opinions that usermf
in using the system.

These attributes can be measured directly by olvgerv
and interviewing users of the final system using
techniques that are well established in the field o
usability engineering.

3.2. Usability properties

Essentially, usability properties embody the heigss
and design principles that researchers in the lityafield

relationship between usability and have found to have a direct influence on systenbilisa

Usability properties cannot be observed when etialga
usability for an implemented system. These propgrtan
be used as requirements at the design stage, dtamice
by specifying "the system must provide feedback”,
however they are not strict requirements in way thay
are requirements that should be fulfilled at allstso

Usability properties should be considered as hidgnezl

design primitives, which have a known effect onhilgs.

It is up to the software engineer to decide how and

which levels these properties are implemented bggus

usability patterns of which it is known they haveedfect

on this usability property. The following propegibave

been defined:

* Providing feedback - the system provides continuous
feedback as to system operation to the user.

» Error management - includes error prevention and
recovery.

« Consistency - consistency of both the user interfac
and functional operation of the system.

e Guidance - on-line guidance as to the operatidhef
system.

* Minimize cognitive load - system design should
recognize human cognitive limitations, short-term
memory etc.

e« Natural mapping - includes predictability of

operation, semiotic significance of symbols andeeas

of navigation.

Accessibility - includes multi-mode access,

internationalization and support for disabled users

3.3. Usability patterns

The term usability pattern refers to a technique or
mechanism that can be applied to the design of the
architecture of a software system in order to askir@
need identified by a usability property at the iiegments
stage (or iteration thereof). Various pattern adltns
have been defined [8], [9], the difference with esth
collections is that our collection considers onbttprns
which should be applied during the design of aesys

software architecture, rather than during the thtai
design stage. There is not a one-to-one mappingeest
usability patterns and the usability propertiest ttheey

techniques for the specification of usability. They
traditional techniques specify usability such asppised
by Preece and Hix are not suited for architectural

affect. A pattern may be related to any number of assessment because of the following reasons:

properties, and each property may be improved (ore

impaired) by a number of different patterns. Theicé of
which pattern to apply may be made on the basosf
and the trade off between different usability pmips or
between usability and other quality attributes swsh
security or performance. 20 patterns have beertifih
and a detailed analysis of each usability patterth the
relationship between this patterns, usability props and
usability attributes can be found on
http://www.designforguality.com/

The next section presents our proposal of a saenari

based assessment method for architectural assdsemen

usability. The assessment method uses the framework

described in this section as a source of inpuektracting
the information required for assessment.

4. Usability assessment technique: SALUTA

What is Saluta? The Scenario based ArchitecturelLev
UsabiliTy Analysis method (SALUTA) comprises the
following steps:

1) Determine the goal of the assessment.

2) Create usage profile.

3) Describe the software architecture.

4)
the scenarios.

5)
analysis results.

Very little is mentioned about usability requirentsen

in scientific literature. In addition, real-life amples

are rarely provided. Preece for example, presents

much advice on usability requirements, but in heat

abstract setting without real-life examples.

Traditionally usability specifications are rather

defined in an abstract fashion and therefore nibégu

for architectural assessment.

e Traditionally usability requirements have been
specified such that these can be verified for an
implemented system. However, such requirements
are largely useless in a forward engineering psaces
For example, we could say that a goal for a syssem
that it should be easy to learn, or that new users
should require no more than 30 minutes instruction,
however, requirements at such a level are hard to
assess on an architectural level, because those can
only be measured when the system is in use. Such
statements are therefore useless for architectural
assessment of usability.

A more suitable format (as argued in section 1ot) f

specifying required usability for architectural @ssment

is by using scenarios. Scenario profiles are irginggdy

often used for the assessment of quality attribdtetg

Evaluate usage scenarios: determine the support fothe architectural design of software systems [IR].

scenario profile describes the semantics of so#war

Interpret the results: draw conclusions from the quality factors such as maintainability or safety &

“

particular system. A usage profile is defined aa:

The steps are discussed and defined in detail én th description of the semantics of usability for atjgatar

following subsections:

4.1 Determinethe goal of the assessment

The first step in the analysis method is to deteethe
type of results that will be delivered by its arsidy The
following goals are distinguished:

e Predict the level of usability: give an accurate
indication of the support of usability for an
architecture.

* Risk assessment: detect usability issues for wihieh
software architecture is inflexible.

e Software architecture selection: compare

optimal candidate which has the best support fo

usability

4.2 Create usage profile
Before an architecture can be assessed for itsosupp

of usability, first a way to describe the requireshbility
is required. Preece [10] and Hix [11] suggest uio

two

candidate software architectures and select the
¢ profile definition fully depends on the experiencjll

system in terms of scenarios”. Scenario profiles ar
created using the following steps:

1) Identify the context of scenario profile (SP)
generation.

Identify all scenario entities for usability

Create usage scenarios

Scenario elicitation

2)
3)
4)

4.2.1 Identify the context of SP generation. A scenario
profile can, basically, be defined in one of twantExts
[13]: the Greenfield and the experienced contekta |
scenario profile is defined in an organization gsthe
technique for the first time, for a new system amal
historical data is available about similar systernig

and creativeness of the individuals defining thefifa.

The resulting scenario profile is the only input ttee
architecture assessment. The lack of alternativea da
sources in this case and the lack of knowledge tathau
representativeness of scenario profiles defined by
individuals and groups, indicates that there iseadnto
increase our understanding of profiles in thisatitan. In

the second situation, there is either an earlikrase of

the system or historical data of similar systemsilaile.
Since, in this case, empirical data can be coltbdieis

3. Identify the context: The third step is determination of
the unique contexts in which each user operates.

data can be used as an additional input for tha nex Examples: helpdesk context or training environment.

prediction and a more accurate result is achieved.

4.2.2 Identify all scenario entities for usage scenarios.
A scenario is defined as: "Scenarios refer to adtons
between independent entities [14]. Entities fornegke
can be stakeholders, the system (or possibly pris
such as hardware, software, subsystems, objeatisjhan
environment” There are different ways to interptet
definition of scenario. In object oriented desigathods a
scenario generally refers to use case scenarieaag0s
that describe system behavior. However it is alsssible
to use the definition above so it describes actions
sequence of actions that might occur in relatiorthi®

4. Create attribute preference tablee The attribute
preference table (APT) is defined telate a scenario to
usability. Because a scenario consisting of a useask
and a context only describes interaction we havVieel a
way to relate it to usability. To express the ukghissues
a user has while performing a task in a specifictext
the scenarios are related to our usability attebuas
defined in [6]. To relate a scenario to usabilitye
determine the usability attribute values for thattigular
scenario. For example for a novice user perfornaiigsk
“insert order” in a “learning environment” the leability
attribute of usability may be important. The APT
expresses the required usability for that scenahio.

system. For example usage scenarios describe systeraxample of an APT can be found in Table 1 By defini

behavior whereas change scenarios describe am detio
modification task) in relation to the system.

the APT the required usability is quantified bytistg the
users’ preference concerning usability for thatnace.

Entities as defined in the definition above play an For each type of user, task and context, the user’s

essential role in defining scenarios. For examipdeantity
stakeholders is taken
stakeholders in the software lifecycle take differe

into account because differen

preferences concerning usability is determined.
There are various ways to determine quantitative
values for the preference to usability. It can loeed as

viewpoints when expressing their concerns about apart of requirements collection process: typicagrasor

software system. These viewpoints reflect
stakeholders' differing needs with respect to thfenare
architecture [15]. Because of that the differenédse of
each stakeholder directly relate to the differepeds
concerning quality attributes and hence to differeeds
concerning its software architecture. The
argumentation holds for other entities such asctirgext
in which the stakeholder operates or the hardwhat t
impose requirements on the quality attributes.
Identification of all entities that influence a tianlar
quality attribute is essential for defining a saemdor
that quality attribute. For usage scenarios théfohg
entities have been identified that define a usageaio:
e The user (as a stakeholder)
* The context in which the user operates (as paheof
environment)
e The tasks that a user can perform (as part of the
system).

4.2.3. Create usage scenarios. The way scenarios are
created or defined for a quality attribute largdbpends
on the entities that define the scenario for tretigular
quality attribute. For usability the following adties are
defined:

1. Identify the users. A representative list of distinct
users has to collected and defined. Examples: Movi
users, expert users or system administrators.

2. Identify the tasks: The next step is identification and
selection of distinct tasks. Most systems have taofo
different tasks; therefore a representative seecif
these tasks that are distinct has to be made.Xeonge a
task could be: insert new customer in database.

the experts assign values, for example they assignesalu

between 1 to 5 to each attribute for each taskcamtext.
The assigning of values can also be done as a post
requirements process (during assessment), where an
expert (or a team of experts) determine valuestlier

same usability preferences, the usability requiremeiit tare

collected during requirements analysis can theansed as
an informative source for assigning the values.

4.2.4. Scenario selection. The attribute preference table
that was created in combination with a descripliseof
users, tasks and contexts of operation can be tsed
summarize and describe the different scenarioshthet
been created. From this table, which holds all ades a
scenario, profile is created by selecting scenahas are
representative. Scenario selection is the process o
selecting those scenarios that are to be used én th
assessment step of the analysis. Scenario seleesoits

in a scenario profile which holds the set of retgva
scenarios which will be evaluated. A scenario feaf a

Table 1: Example APT

Scenario attribute preferencetable

User | Task | Context | Learn- | Efficien- Relia- | Satis-
ability | cy of use bility | faction

A T1 Cl 5 2 4 3

A T2 Cc2 5 5 3 2

A T3 Cl 1 1 3 3

A T4 Cc2 1 3 3

B Tl C1

B T1 C2

B T2 Cl

set of scenarios that form the context for a qualit
requirement posed on the system. Different prafitey
be defined depending on criteria for selecting the
scenarios into the profile. The selection criténfuence
the representativeness of the scenario profilegesiim
essence it is a kind of population sampling stratdgvo
types of general scenario profiles have been ifiedti
e Complete scenario profile: “all scenarios that can
potentially occur”
e Selected scenario profile: “arepresentative dutfse
the population of all possible scenarios
Scenarios may be assigned additional propertiey su
as an associated weight, priority or probability of
occurrence within a certain time. The selectiorusdge
scenarios also depends on the goal of the analf/sise
goal is to:
« Predict the level of a quality attribute: Select
scenarios that have high probability of occurring.
¢ Risk assessment: select scenarios that expose those
risks.
» Software architecture selection: select scenagb th
highlight differences
The process of identifying scenario entities, sdena

been defined depending on the amount of architalctur
information that is available for assessment or twha
information one is willing to acquire to get a more
accurate result from the assessment. The following
subsection discusses the different assessment types
defined and the architectural information necessary
perform that type of assessment.

4.4 Evaluate Scenarios

Assessing an architecture for its support of ai@aer
quality attribute basically comes down to a conguari
between the required values of that particular igual
attribute versus the provided value of that quality
attribute. For usability assessment the requireabiliy
‘levels’ are compared to the provided usabilityvéés’.
The levels are specified by scenarios. In sectich &
technique is discussed for capturing and descrilbigg
required usability using scenario profiles. For reac
scenario in the scenario profile the architectuse i
analyzed for its support of that scenario. The gsschat
identifies the support for the scenarios is defirex
architectural support analysis. Eventually the itestom

creation and scenario selection are often combinedthe analysis are summarized into an overall resdt.

performed in one process called scenario elicitatio
4.3 Describe the softwar e ar chitecture

The third step, architecture description, conceires
information about the software architecture thatéeded
to perform the analysis. Generally speaking, uggbil
analysis requires architectural information théowas the
analysis to evaluate the scenarios. The resuliisfstep is
a description of the provided usability. Informatio
related to the architecture; for example, box ame |
diagrams or documented design decisions, may peovid
data about various quality attributes but sinceioterest
lies in usability only the information that is redd to
usability is required. To achieve this, the infotima
required is extracted using our framework descritred
section 3. Different types of assessment technitpaes

Usability S.A.
specification

Ii

Pattern based assessment

example the number of supported scenarios verseis th
number scenario not supported. This number willabhe
indication of the support of the architecture fsrsupport
of usability. Three different types of assessmeateh
been defined (as depicted in Figure):
e Pattern based
e Design decision based
e Use case map based

The framework is used to extract the architectural
information required for each assessment technique.

4.4.1. Pattern based. By analyzing an architectural
description of the system an expert assesses the
architectures support of usability. The architegtur
designs present within the development are use@ as
source of input for this type of assessment. The
architectural design can be a simple box and liagrdm

Usability

D.D. S.A.
specification i

Design decision based assessment

S.A.
N
4

Use case map based assessment

Usability
specification

. D.D. S.A.
s
Scenario profile ﬁ ucm

SALUTA

Figure 3: Scenario based assessment techniques

or for example a 4+1 view on the architecture. Ehes
designs can provide a lot of information about tyal
attributes and since the subject of our evaluati®n
usability we are only interested in those parts of
architecture information that are related to usigbillo
acquire this information we use the framework ttraot
the required information. For expert based anslysi
identification of patterns that influence usability the
system is required. By heuristically evaluating slystem
using the list of patterns identified in [6] a Izt patterns

or possible derivatives of those patterns impleegman

be identified. The list usability patterns presémtthe
software system should provide the information seagy

for the software engineer to decide if a scenariib ve
supported by the architecture. For each scenar& th
software engineer will determine which patterns are
involved and whether the usage scenario is sulffilsie
supported.

4.4.2. Design decision based. Not only a description of

design decisions that have been extracted using the
framework is used to determine the support for each
usage scenario. For each scenario we analyzecérago

is affected by the design decisions and whether hias
resulted in sufficient support for that scenario.

443. UCM based. An even more detailed way of
assessing is to use use case maps (UCM) for dieggrib
the architecture. Using UCM for describing the
architecture has the following benefits:
Use case maps describe behavioral and structural
aspects of systems at a high (architectural lefel)
abstraction
UCM are easy to learn & understand but precise.
Use case maps can show multiple scenarios in one
diagram and the interaction amongst them. (which
allows reasoning about a system as a whole)
Use case maps are an informal abstract notation
suited to our purposed
Architecture designs and design decisions madegdluri

the structure of a system as it is decomposed intogesign can be provided by the software architeco wh

components and relations with its environment may b gssists the analysis. Use case maps in case rsenprean
used for analysis. The design decisions that leth& pe constructed with the assisting software archiased
particular architecture are also very important.eTh on the scenarios in the scenario profile for eaemario a
earliest design decisions may have a considerable;se case map is build. Some tasks may have thiasioni
influence on various quality attributes of the iéag the same use case maps. The use case map alldws us
system. However such design decisions which areemad analyze various static properties that relate ¢ouability

during design are most often not documented. I tiaave
been however they may be used as a source of faput

attributes layer in our framework. For example a case
map may visualize the number of steps or timekiésao

this type of assessment. For design decision base(berformatask. The number of steps may be anatidic

analysis it needs to be determined which desigisides
have been made with regard to usability. By heice8y
evaluating the design decisions made during desiging
the list of usability properties defined in ourrfrawork
the required information for the assessment (th&gde
decisions that relate to usability) is extracteklisType of
assessment heavily depends on the amount of infrmma
documented during or after initial architecturakide. If

to the efficiency or learnability attribute. Nexb t
providing static information use case maps alloasel
analysis of architectural components (such as tenpa)

involved in that particular scenario. The inforroati
gathered during this analysis is an extra sourcemit

for the architectural support analysis of the sdesa

4.4.4. Summarize: The types of assessment techniques

no design decisions have been documented, thispresented here are complementary as shown in Figare

information could be retrieved by interviewing thestem
architect(s). For design decision based analysés|ist of

Architecture
candidate

general expert based assessment can be appliedsn m
cases, assuming that at least some basic form of

Risk
assesment
Software
ture

architecture
selection

Evaluation

Pattern

based || decision

= &

ign
UCM based

Nl

=

Evaluation
% result

Result
analysis

Figure 4. Assessment process

architectural description has been made for desigjch
allows for identification of patterns. Design déwis and

[1] R. Kazman, G. Abowd and M. Webb, "SAAM: A Metho
for Analyzing the Properties of Software Architees!’,

use case map based assessment may give addition&roceedings of the 16th International Conferenceoftware

information for the architectural support analysis.
However because these types of required informatien
not always present these can be retrieved or cdate
interviewing the system architects, which has dtsts.

4.5 Interpret theresults

Engineering 1994, pp. 81-90

[2] R. Kazman, M. Klein, M. Barbacci, T. Longstalff, Lipson
and J. Carriere, "The Architecture Tradeoff Anaydiethod",
Proceedings of ICECCS'98998

[3] J. BoschDesign and Use of Software Architectures:

When the scenario evaluation has been finished WEAdopting and Evolving a Product Line Approaétearson

need to interpret the results to draw our conchsio
concerning the software architecture. At this stagego
back to our architecture design stage (see Figwhbeye
we wondered if this architecture had sufficientsup for
usability. The interpretation of the results depeadtirely
on the goal of the analysis and the system reqeinésn If
the architecture proves to have sufficient suppartall
quality attributes the design process is endede@iise
we need to apply architecture transformations igie
decisions to improve certain quality attribute(3he
choice to use particular transformations may beetbas
upon results from the analysis. For example: Cansid
system, which proves to have a low support for ilisgb
for example learnability for some usage scenaisonat

supported. To improve learnability we could use the
design primitive of guidance, to address guidanee w

could implement for example a wizard pattern orvjte
context sensitive help.

5. Conclusions

The work presented in this paper is motivated lgy th
increasing realization in
community of the importance of software architeettor
fulfilling quality requirements. We have presented
provisional assessment technique for usability thase
scenarios, which has potential to improve curresgigh
for usability. Future case studies should deternthme
validity of our approach to refine it, possibly ediche and

the software engineering

Education (Addison-Wesley and ACM Press).2000.

[4] IEEE Architecture Working Group. Recommendedqpice
for architectural description. Draft IEEE Stand&1471/D4.1,
IEEE.

[5] P. O. Bengtsson; N. Lassing; J. Bosch and . \Wiet
,"Architecture-Level Modifiability Analysis (ALMAY};,
Conditionally Accepted for the Journal of Systemd Software
2002.

[6] E. Folmer and J. Bosch, "Usability patternSioftware
Architecture",Accepted for HCI International 2003003

[7] E. Folmer and J. Bosch ,"Architecting for udepj a
survey",Accepted for the Journal of systems and software
2002.

[8] M. Welie and H. Traetteberg, "Interaction Pattem User
Interfaces" Conference on Pattern Languages of Programming
(PloP) 7th 2000

[9] J. Tidwell, "Interaction Design Pattern€onference on
Pattern Languages of Programming 199998

[10] J. Preece, Y. Rogers, H. Sharp, D. Benyomddandand
T. CareyHuman-Computer Interactioiddison Wesley.1994.

[11] D. Hix and H. R. HartsorDeveloping User Interfaces:
Ensuring Usability Through Product and Procesahn Wiley
and Sons.1993.

elaborate the steps that should be taken to make it

generally applicable. Several issues need to balvexs

during case studies, which have been summarizeavbel

* Relevance of framework: The relationships depicte
in our framework indicate potential relationships.
Further work is
relationships.

required to substantiate these

[12] J. Bosch and P. O. Bengtsson, "Assessing apsoftware
architecture maintainabilityfifth European Conference on

d Software Maintainability and Reengineerjr&02

[13] P. O. Bengtsson and J. Bosch ,"An ExperimenCreating
Scenario Profiles for Software Changgjecial issue on
Software maintenance in Annals of Software EnginggtSSN:

* Use case maps: may provide information about static1922-7091)yol. 9 59-78, 2000.

properties of usability. More research is requited

determine whether use case maps can provide that14] 3. M. Caroll, 1995. The Scenario PerspectivéSgstem

kind of information.

The main contribution of this paper is the formigdat
and derivation of an architectural assessment apprtor
usability.

6. References

Development, irBcenario Based Design: Envisioning Work and
Technology in System Developméesdroll, J. M., John Wiley
and Sons.

[15] C. Gacek, A. Abd-Allah, B. Clark and B. Boeht@®n the
Definition of Software System Architecture”, 1995

