
A Framework for capturing the Relationship between
Usability and Software Architecture

Eelke Folmer, Jilles van Gurp, Jan Bosch
Department of Mathematics and Computing Science

University of Groningen, PO Box 800, 9700 AV, the Netherlands
mail@eelke.com, jgurp@xs4all.nl, Jan.Bosch@cs.rug.nl

http://www.rug.nl/informatica/search
Abstract
Usability is increasingly recognized as an essential factor that determines the success of software
systems. Practice shows that for current software systems, most usability issues are detected during
testing and deployment. Fixing usability issues during this late stage of the development proves to be
very costly. Some usability improving modifications such as usability patterns may have architectural
implications. We believe that the software architecture may restrict usability. The high costs associated
with fixing usability issues during late stage development prevent developers from making the necessary
adjustments for meeting all the usability requirements. To improve upon this situation we have
investigated the relationship between usability and software architecture to gain a better understanding
of how the architecture restricts the level of usability. Our paper makes a number of contributions; a
framework is presented that expresses the relationship between usability and software architecture. The
framework consists of an integrated set of design solutions such as usability patterns and usability
properties that have been identified in various cases in industry, modern day software, and literature
surveys. These solutions, in most cases, have a positive effect on usability but are difficult to retrofit into
applications because they have architectural impact. Our framework may be used to guide and inform the
architectural design phase. This may decrease development costs by reducing the amount of usability
issues that need to be fixed during the later stages of development.

Keywords
Usability, software architecture, usability patterns.

1. Introduction
In recent years, usability is increasingly recognized as an important consideration during software
development. Issues such as whether a product is easy to learn, to use, or whether it is responsive to the
user and whether the user can efficiently complete tasks using it, may greatly affect a product’s
acceptance and success in the marketplace. In the future, as users become more critical, poor usability
may become a major barrier to the success of new commercial software applications. Therefore, software
developing organizations are paying more and more attention to ensuring the usability of their software.

One of the problems with many of today’s software systems is that they do not meet their quality
requirements very well. In addition, it often proves hard to make the necessary changes to a system to
improve its quality. A reason for this is that many of the necessary changes require changes to the
system that cannot be easily accommodated by the software architecture [Bosch, 2000], i.e. “the
fundamental organization of a system embodied in its components, their relationships to each other and
to the environment and the principles guiding its design and evolution” [IEEE, 1998]. In other words, the
software architecture does not support the required level of quality.

The work in this paper is motivated by the fact that this also applies to usability. Many well-known
software products suffer from usability issues that cannot be repaired without major changes to the
software architecture of these products.

Studies of software engineering projects reveal that organizations spend a relatively large amount of time
and money on fixing usability problems. Several studies have shown that 80% of total maintenance costs
are related to problems of user with the system [Pressman, 1992]. Among these costs, 64% are related
to usability problems [Landauer, 1995]. This is called adaptive maintenance by [Swanson, 1976]. These
figures show that a large amount of maintenance costs are spent on dealing with usability issues such as
frequent requests for interface changes by users, implementing overlooked tasks and so on [Lederer and
Prassad, 1992].

An important reason for these high costs is that most usability issues are only detected during testing
and deployment rather than during design and implementation. Consequently, a large number of change
requests to improve usability are made after these phases. This makes meeting all the usability
requirements expensive. Potential causes for this problem are:

• Evaluation of usability requires a working system/prototype. In [Folmer and Bosch, 2002] we
identified that in order to do a usability evaluation, most existing techniques require at least an

mailto:mail@eelke.com
mailto:jgurp@xs4all.nl
mailto:Jan.Bosch@cs.rug.nl
http://www.rug.nl/informatica/search

interactive prototype and a representative set of users present to assess the usability of a
system. Some techniques such as rapid prototyping [Nielsen, 1993] allow for early testing, for
example by using a prototype or simulation of an interface. Early prototyping, even on paper, of
what the customer’s experience will be like, always has great value. However, prototypes have a
limited ability to model the application architecture since they only model the interface.
Interaction issues such as whether a task can be undone, or the time it takes to perform a
specific task or system properties such as reliability have a great influence on the level of
usability. Such issues are hard to simulate with a prototype.

• Limitation of requirements engineering: Usability-engineering techniques such as usage-centered
design [Constantine and Lockwood, 1999] have a limited ability to capture or predict all usability
requirements. During development, the uses of the system are often not fully documented, nor
exactly who the users are. Users themselves lack understanding of their own requirements. No
sooner then they work with a first version of the software do they realize how the system is going
to be used. Usability experts miss about half of the problems that real users experience using
traditional techniques [Cuomo and Bowen, 1994]. Therefore, some usability requirements will not
be discovered until the software has been deployed.

• Change of requirements: During or after the development, usability requirements change. The
context in which the user and the software operate is continually changing and evolving, which
makes it hard to capture all possible (future) usability requirements at the outset [Gurp & Bosch,
2002]. Sometimes users may find new uses for a product, for which the product was not originally
intended, which changes the required usability.

These are three of the main reasons that some usability problems are not discovered until testing and
deployment. The problem with this late detection is that sometimes it is very difficult to apply design
solutions that fix these usability problems, because some of these design solutions may be ‘architecturally
sensitive’. Some changes that may improve usability require a substantial degree of modification. For
example, changes that relate to the interactions that take place between the system and the user, such
as undo to a particular function. Such a modification cannot be implemented easily after implementation
without incurring great costs.

A first step in solving these problems is to investigate which of such solutions are architecturally sensitive.
The primary motivation behind the STATUS1 (SofTware Architecture That supports USability) project that
sponsored the research presented in this paper is to gain a better understanding of this relationship
between usability and software architecture.

The contribution of this paper, which is one of the cornerstones of this effort, is a framework that
expresses the relationship between usability and software architecture. This framework describes an
integrated set of ‘design solutions’, that, in most cases, have a positive effect on the level of usability but
that are difficult to retro-fit into applications because these design solutions may require architectural
support. For each of these design solutions we have analyzed the usability effect and the potential
architectural implications.

The remainder of this paper is organized as follows. The next section presents the relationship between
software architecture and usability and presents a framework that expresses this relationship. Section 3,
4, and 5 discuss the elements that compose the framework: usability attributes, usability properties and
architecturally sensitive usability patterns. Section 6 discusses the relationships between the elements of
our framework and how this framework may be used to inform design. Finally, related work is discussed
in section 7 and the paper is concluded in section 8.

2. The relationship between SA and Usability
Our investigation of the relationship between usability and software architecture has resulted in the
definition of a framework, which has the following purposes:

- Express the relationship between usability and software architecture.

- Inform design: existing design knowledge and experience in the software engineering and
usability community is consolidated in a form that allows us to inform architectural design.

The framework consists of three layers:

• Attribute layer: a number of usability attributes (see section 3) have been selected from literature that
appear to form the most common denominator of existing notions of usability.

1 STATUS is an ESPRIT project (IST-2001-32298) financed by the European Commission in its Information Society

Technologies Program. The partners are Information Highway Group (IHG), Universidad Politecnica de Madrid (UPM),
University of Groningen (RUG), Imperial College of Science, Technology and Medicine (ICSTM), and LOGICDIS S.A.

• Properties layer: the usability properties embody the heuristics and design principles that researchers
in the usability field consider to have a direct influence on system usability. The usability properties
(see section 4) are a means to link architecturally sensitive usability patterns to usability attributes.

• Patterns layer: consists of architecturally sensitive usability patterns (see section 5) that we have
identified from various industrial case studies and modern software applications as well as from
existing (usability) pattern collections. We have focused on selecting patterns that are architecture-
sensitive and have omitted patterns in which the architectural sensitiveness was not clear. In addition,
we have abstracted from patterns, which are similar from the point of view of a software architect.

The framework expresses the relationship between usability and software architecture. The following two
examples illustrate this relation:

An architecturally sensitive usability pattern that we identified from a case presented by one of our
industrial partners in the STATUS project is the wizard pattern (Figure 1). The ESUITE product developed
by LogicDIS is a system that allows access to an ERP (Enterprise Resource Planning) system, through a
web interface. Part of this application is a shopping cart, which uses a wizard for checking out items that
are purchased. The checkout procedure uses a wizard that helps users to accomplish the actual purchase
with all possible assistance.

The wizard pattern guides the user through a complex task by decomposing the task into a set of
manageable subtasks. This usability pattern is described in several usability pattern collections such as
[Welie, 2003]. In the cases we studied, where this pattern had been implemented, we identified that to
implement a wizard pattern the following architectural considerations must be made:

• There may need to be a provision in the architecture for a wizard component, which can be
connected to other relevant components, the one triggering the operation, and the one receiving
the data gathered by the wizard.

We identified that the wizard may improve usability because it relates to the principle of guidance to
“assist” the user through performing the task. The concept of “guidance” is an example of a usability
property. Guidance may have a positive effect on the attribute learnability but may negatively effect the
attribute efficiency [Scapin and Bastien, 1997], [Ravden and Johnson, 1989].

Usability Attributes

+

Properties Architecture sensitive usability
patterns

Guidance

Learnability

Efficiency

Interface Wizard-Executor System A

Interface
System B

1 4

2
3

5 6

-

Figure 1: Wizard pattern

Usability Attributes Properties Architecture sensitive usability
patterns

AccessibilitySatisfaction

Interface

Device
recognitor

Interface

Device
Transformer 1

System

Interface

Device
Transformer n

.

1 2

3
4

5
6

7

8

Figure 2: Multi-channeling pattern

Another architecturally sensitive usability pattern that we identified from a case study is the multi-
channeling pattern (Figure 2). The compressor catalogue application is a product developed by imperial
highway group (IHG) for a client in the refrigeration industry. It is an e-commerce application, which
makes it possible to search for detailed technical information about a range of equipment (compressors).
This is a multichanneling application offering access through a variety of devices (e.g. desktop computer,
WAP phone). Multi-channeling refers to the capability of the software to be accessed using different types
of devices. The architectural considerations that must be made are:

• There may need to be a component that monitors how users access the application. Depending
on which medium is used, the system should make adjustments. For example by presenting a
different navigation menu or by limiting the number of images that is sent to the user.

We identified that the pattern multi-channeling relates to the usability property of accessibility.
Accessibility may improve the usability attribute satisfaction [Nielsen, 1993], [Holcomb and Tharp, 1991].

The next sections enumerate the concepts of usability attributes, properties, and architecturally sensitive
usability patterns that comprise our framework. The full relationships between these concepts are
presented in section 6.

3. Usability attributes
Our investigation of the relationship between software architecture and usability started with a survey of
existing literature [Folmer and Bosch, 2002] and practice to try to find a commonly accepted definition of
usability in terms of a decomposition of usability into usability attributes. Therefore, we decided to stick to
the definitions in literature for our definition of our usability attributes. Our survey revealed that different
researchers have different definitions for the term usability attribute, but the generally accepted meaning
is that a usability attribute is a precise and measurable component of the abstract concept that is
usability. For our attributes we have merely taken the subset of attributes most commonly cited amongst
authors, [Constantine and Lockwood, 1999], [Hix and Hartson, 1993], [ISO 9126-1], [Nielsen, 1993],
[Preece et al, 1994], [Shackel, 1991], [Shneiderman, 1998] and [Wixon & Wilson, 1997] in the usability
field. Table 1 gives a short overview of the attributes that are most commonly cited. We wanted to be
able to compare the different decompositions, so we have grouped attributes that refer to the same
concept in the same row. Some authors use more attributes than the ones stated in the table.

Overview of authors

Constantine Hix ISO9126 Nielsen Preece Shackel Shneiderma
n

Wixon

Learnability Learnability Learnability Learnability Learnability Learnability Time to learn Learnability

Efficiency in use Long-term
performance

Operability

Efficiency of
use

Throughput Effectiveness Speed of
performance

Efficiency

Rememberability Retainability - Memorability - Learnability Retention over
time

Memorability

Reliability in use Operability Errors Throughput Effectiveness Rate of errors
by users

Error rates

User satisfaction Long-term
user
satisfaction

Attractiveness Satisfaction Attitude Attitude Subjective
Satisfaction

Satisfaction

Table 1: Overview of usability attributes

We have not tried to innovate in this area, since abundant research has already focused on finding and
defining the optimal set of attributes that compose usability. We have merely taken the set of attributes
most commonly cited, the four attributes that we selected are:

• Learnability: how quickly and easily users can begin to do productive work with a system that is new
to them, combined with the ease of remembering the way a system must be operated.

• Efficiency of use: the number of tasks per unit time that the user can perform when using the system.

• Reliability in use: this refers to the error rate (i.e. user errors, not system errors) when using the
system and the time it takes to recover from errors.

• Satisfaction: the subjective opinions of the users of the system.

In our definition of usability attributes, we have grouped memorability retention over time [Nielsen,
1993; Shneiderman, 1998] rememberability [Constantine and Lockwood, 1999] with learnability. Some
definitions such as [ISO 9126-1] and [Preece et al, 1994] do not mention this attribute and [Shackel,
1991] also links retention over time with learnability. We have also used the term reliability to refer to the
error rate in using the system.

4. Usability properties
When we identified our architecturally sensitive patterns, we discovered that it was extremely difficult to
draw a direct relationship between the four usability attributes we identified and these patterns. Some
usability patterns that we considered; for example, a wizard (see 5.12) has an influence on the usability
attributes learnability and efficiency, but many usability patterns do not have this direct relationship. For
example, multi-channeling (see 5.8) or multiple views (see 5.7) do not appear to have a direct
relationship to usability attributes.

However, we want to have this direct relationship between usability and software architecture, to be able
to describe and categorize our usability patterns in such a way that they can be used as requirements
that can support architectural design. The problem with usability requirements is that traditionally these
are specified such that these can be verified for an implemented system. Such requirements are largely
useless in a forward engineering process. For example, a usability requirement that specifies: “the
system should be easy to learn”, or “new users should require no more than 30 minutes instruction” does
not help guide the design process since there is no obvious way in which the 30-minute time span can be
measured when evaluating a design for usability. Usability requirements need to take a more concrete
form expressed in terms of the solution domain to be able to influence and guide architectural design.

The concept of usability property has been defined to link architecturally sensitive usability patterns to
requirements and to create a direct relationship between usability attributes and our architecturally
sensitive usability patterns. Essentially, these properties embody the heuristics and design principles that
researchers in usability field have found to have a direct influence on system usability. For example, one
of the concepts that we defined as a usability property is guidance. In order to help the user understand
and use the system, the system should provide informative, easy to use, and relevant guidance and
support in the application as well as in the user manual. From various literature sources [Scapin and
Bastien, 1997], [Ravden and Johnson, 1989] it is known that guidance may improve learnability, but may
negatively affect efficiency.

These properties can be used as requirements at the design stage, for instance by specifying, "The
system must provide feedback". However, these are not strict requirements in way that they are
requirements that should be fulfilled at all costs. They should be considered as high-level design
primitives that have a known effect on usability and most likely have architecture implications, for
example by using architecturally sensitive usability patterns, which relate to such a property. It is up to
the software architect to decide how and at which levels these properties are implemented. For instance
providing feedback when printing in an application is considered to have a positive effect on the usability
of the system because it keeps the user informed about the state of the system, which increases user
satisfaction. However, if every possible user action would result in feedback from the system it would just
be annoying and negatively affect usability. Therefore, these properties should be implemented with care.

To fulfill usability requirements during architectural design architecturally sensitive usability patterns may
be applied that relate to specific usability properties, which is discussed in section 0.

Our properties have been derived from an extensive survey of design heuristics and principles of various
authors [Shneiderman, 1998], [Nielsen, 1993], [Constantine and Lockwood, 1999], [Ravden and
Johnson, 1989], [Hix and Hartson, 1993], [Norman, 1988], [Polson and Lewis, 1990], [ISO 9241-11],
[Holcomb and Tharp, 1991], [Rubinstein and Hersh, 1984] and step by step analysis and discussion with
the STATUS partners.

Similar to identifying the usability attributes we have limited ourselves to merely taking a set of
properties most commonly cited amongst authors in the usability field that addressed all of the patterns
that we identified, rather than inventing our own properties. However, for some heuristics, we have used
different names and we have grouped similar heuristics together under a new name. For example we
grouped ‘speak the users language’ [Nielsen, 1993] and ‘allow access to operations from other
applications’ [Holcomb and Tharp, 1991] under the property of accessibility.

In the following tables (4.1 – 4.9), the properties are presented in a pattern-like format [Alexander et al,
1977] with the following aspects listed for each property:

• Name: the name of the property.

• Intent: a short statement that describes the properties rationale and intent [Gamma et al 1995].

• References: lists some of the authors that consider this property and that describe the effect on
usability.

• Usability attributes affected: which usability attributes that we identified in section 3, are affected
by this property. Only the relationships that in our experience are the strongest are indicated, as well
positive as negative relationships. In some systems, the indicated relationships may not apply. These
relationships have been derived from our literature survey.

• Example: an illustration of the property (not necessarily implemented in an architecture-sensitive
fashion)

4.1 Providing Feedback
Intent: The system should provide at every (appropriate) moment feedback to the user

in which case he or she is informed of what is going on, that is, what the system
is doing at every moment.

Usability attributes
affected:

+ Efficiency: feedback may increase efficiency, as users do not have to wonder
what the system is doing.

+ Learnability: feedback may increase learnability, as users know what the
system is doing.

References: [Nielsen, 1993], [Constantine and Lockwood, 1999]

Example: Progress indication during a file download.

4.2 Error management
Intent: The system should provide a way to manage user errors. This can be done in two

ways:

• By preventing errors to happen, so users make no or less mistakes.

• By providing an error correcting mechanism, so that errors made by users can
be corrected.

Usability attributes
affected:

+ Reliability: error management increases reliability because users make fewer
mistakes.

+ Efficiency: efficiency is increased because it takes less time to recover from
errors or users make fewer errors.

References: [Nielsen, 1993], [Hix and Hartson, 1993]

Example: Red underline for a syntax error in Eclipse (a popular Java development
environment).

4.3 Consistency
Intent: Users should not have to wonder whether different words, situations, or actions

mean the same thing. It is regarded as an essential design principle that
consistency should be used within applications. Consistency might be provided in
different ways:

• Visual consistency: user interface elements should be consistent as well in
aspect and structure.

• Functional consistency: that is, the way of performing different tasks across
the system should be consistent, but also with other similar systems, and
even between different kinds of applications in the same system.

• Evolutionary consistency: in the case of a software product family, consistency
over the products in the family is typically considered an important aspect.

Usability attributes
affected:

+ Learnability: consistency makes learning easier because concepts and
actions have to be learned only once, because next time the same concept or
action is faced in another part of the application, it is familiar.

+ Reliability: visual consistency increases perceived stability, which increases
user confidence in different new environments.

References: [Nielsen, 1993], [Shneiderman, 1998], [Hix and Hartson, 1993]

Example: Most applications for MS Windows conform to standards and conventions with
respect to e.g. menu layout (file, edit, view, …, help) and key-bindings.

4.4 Guidance
Intent: In order to help the user understand and use the system, the system should

provide informative, easy to use, and relevant guidance and support in the
application as well as in the user manual.

Usability attributes
affected:

+ Learnability: guidance informs the user at once which steps or actions will
need to be taken and where the user currently is, which increases learnability.
[Welie, 2003]

- Efficiency: guidance may decrease efficiency as users are forced to follow the
guidance. (for example when following a wizard)

+ Reliability: when users are forced to follow a sequence of tasks, users are
less likely to miss important things and will hence make fewer errors. [Welie,
2003]

References: [Scapin and Bastien, 1997], [Ravden and Johnson, 1989]

Example: ArgoUML, a popular UML modeling tool auto generates a to-do list based on
lacking information in models under construction.

4.5 Minimize cognitive load
Intent: Humans have cognitive limitations, therefore should have this limitations in mind.

For example presenting more than seven items on the screen is considered an
overload of information. Therefore, systems should minimize the cognitive load.

Usability attributes
affected:

+ Reliability: as users are less distracted by objects or functions not of their
interest users are less likely to make errors.

+ Efficiency: minimize cognitive load may increase efficiency, as users are not
distracted by objects or functions, which are not of their interest.

- Efficiency: for expert users this argument goes the other way around. (see the
auto hide feature in office applications)

References: [Nielsen, 1993], [Hix and Hartson, 1993]

Example: The auto hide menu-items feature in Office applications.

4.6 Explicit user control
Intent: Direct manipulation should be supported; e.g. the user should get the impression

that he is “in control” of the application.

Usability attributes
affected:

+ Satisfaction: interaction is more rewarding if the users feel that they directly
influence the objects instead of just giving the system instructions to act.

References: [Hix and Hartson, 1993], [Shneiderman, 1998]

Example: The cancel button when copying a large file allows users to interrupt the
operation.

4.7 Natural mapping
Intent: The system should provide a clear relationship between what the user wants to

do and the mechanism for doing it. This property can be structured as follows:

• Predictability: the system should be predictable; e.g. to the user the behavior
of the system should be predictable

• Semiotic significance: systems should be semiotically significant; Semiotics, or
semiology, is the study of signs, symbols, and signification. It is the study of
how meaning is created, not what it is.

• Ease of navigation: it should be obvious to the user how to navigate the
system.

Usability attributes
affected:

+ Learnability: if the system provides a clear relationship between what the
user wants to do and the mechanism for doing it, users have less trouble
learning something that is already familiar to the user in the real world.

+ Efficiency: a clear relationship between what needs to be done and how, may
increase efficiency.

+ Reliability: a clear relationship between what and how minimizes the number
of errors made performing a task

References: [McKay, 1999], [Norman, 1988]

Example: The drag and drop recycle bin on the desktop is an easy to remember metaphor.

4.8 Accessibility
Intent: Systems should be accessible in everyway that is required. Such property might

be decomposed as follows:

• Disabilities: systems should provide support for users that are disabled
(blind/deaf/short sighted);

• Multi-channeling: the system should be able to support access via various
media. Multi channeling (accessing) in this way is a very broad concept
varying from being able to browse a website via a phone or being able to
auditory browse a website (support for audio output).

• Internationalization: systems should provide support for internationalization,
because users are more familiar with their own language, currency, ZIP code
format, date format etc.

Usability attributes
affected:

+ Satisfaction: accessibility may increase satisfaction by allowing the use of the
system adapted to their (familiar) context (access medium, language, disability
etc).

+ Learnability: learnability may be improved for internationalization because
users are more familiar with their own language, currency etc.

References: [Nielsen, 1993], [Holcomb and Tharp, 1991]

Example: The w3c CSS (Cascading Style Sheets) standard supports multi-channeling by
allowing developers to make specific style rules for printer layout, web layout etc.

4.9 Adaptability
Intent: The system should be able to satisfy the user’s needs when the context changes

or adapt to changes in the user. Such property might be decomposed as follows:

• User experience: Ability to adapt to changes in the user's level of experience.

• Customization: Ability to provide certain customized services.

• System memorability: capacity of the system for remembering past details of
the user-system interaction.

Usability attributes
affected:

+ Satisfaction: satisfaction may be increased because users can express their
individual likes and preferences.

+ Efficiency: adaptability allows the system to adept to the skills or preferences
or details of the user, which may increase user’s efficiency.

References: [Scapin and Bastien, 1997], [Norman, 1988], [McKay, 1999]

Example: Customization: Winamp allows skinning. Users can apply a skin they have
downloaded or created themselves to the interface of the Winamp application.

5. Architecturally sensitive usability patterns
One of the products of the research into the relationship between software architecture and usability is
the concept of an architecturally sensitive usability pattern. We determined that the implementation of a
usability pattern is a modification that may solve a specific usability problem in a specific context, but
which may be very hard to implement afterwards because such a pattern may have architectural
implications.

We define the term “architecturally sensitive usability pattern” to refer to a technique or mechanism that
should be applied to the design of the architecture of a software system in order to address a need
identified by a usability property at the requirements stage (or an iteration thereof).

The purpose of identifying and defining architecturally sensitive usability patterns is to capture design
experience to inform architectural design and hence avoid the retrofit problem. There are many different
types of patterns. In the context of this paper, we use the term pattern in a similar fashion as
[Buschmann et al, 1996]: “patterns document existing, well-proven design experience”. With our set of
patterns, we have concentrated on capturing the architectural considerations that must be taken into
account when deciding to implement a usability pattern.

Our architecturally sensitive usability patterns have been derived from two sources:

• Internal case studies at the industrial partners in the STATUS project.

• Existing usability pattern collections [Tidwell 1998],[Brighton, 1998],[Welie and Trætteberg,
2000], [PoInter, 2003].

• An study into the relationship between usability and software architecture [Bass et al, 2001].

Only those patterns are selected or defined that to our analysis require architectural support. We have
merely annotated existing usability patterns for their architectural sensitiveness. When necessary we
have defined new patterns or grouped patterns together to define a pattern at the highest possible level
of abstraction. For example the usability patterns "progress indication" [Welie, 2003] and "wizard/alert"
[Brighton, 1998]have been combined in a pattern called "system feedback" since it covers both patterns.
This has also been done for defining properties.

As identified by [Granlund et al, 2001] patterns are an effective way of capturing and transferring
knowledge due to their consistent format and readability. To describe our patterns the following format is
used:

• Name: whenever possible we use the names of existing patterns. However, some patterns are known
under different names and some patterns are not recognized in usability pattern literature.

• Usability context: a situation giving rise to a usability problem, the context extends the plain
problem-solutions dichotomy by describing situations in which the problems occur. This is similar to
the context used in the patterns defined in [Buschmann et al, 1996].

• Intent: a short statement that answers the following questions: what does the pattern do and what
are its rationale and intent. Similar to the patterns in [Gamma et al 1995].

• Architectural implications: it may be possible to use a number of different methods to implement
the solution presented in each usability pattern. Some of our architecturally sensitive usability patterns
such as undo (table 5.9) may be implemented by a design pattern. For example, the Memento pattern
should be used whenever the internal state of an object may need to be restored at a later time
[Gamma et al 1995] Alternatively, an architectural pattern may be used. For example providing
multiple views (table 5.7) by using a model view controller pattern [Buschmann et al, 1996]. Our
patterns do not specify implementation details in terms of classes and objects. We specify a level
abstracted from that. However, we are contemplating a case study to analyze how companies
implement the patterns we discuss in this paper. Furthermore, we present which architectural
considerations must be taken into account to implement the pattern. In the case of the wizard
example there may need to be a provision in the architecture for a wizard component, which can be
connected to other relevant components, the one triggering the operation and the one receiving the
data gathered by the wizard. This leads to architectural decisions about the way that operations are
managed.

• Usability Properties affected: the patterns we considered, relates to one or more usability
properties. For example, the wizard pattern (table 5.12) relates to the property of guidance. The
cancel pattern (table 5.3) relates to the property of explicit user control but is also related to the
property of error prevention. These relationships are also acknowledged in usability pattern literature.
The usability properties as we defined them may be used as requirement to inform design. For each
architecturally sensitive usability pattern, we annotate to which usability properties it relates.
Concerning the relationship between patterns and properties, there is no one-to-one mapping
between patterns and the usability properties that they affect. A pattern may be related to any
number of properties, and each property may be improved (or impaired) by a number of different
patterns. A complete overview of the relationships is presented in section 6.

• Examples: similar to patterns described in [Gamma et al 1995] and [Buschmann et al, 1996] we
present three examples of the use of the pattern in current software (not necessarily implemented in
an architecture-sensitive fashion).

Our pattern format is not intended to be exhaustive. We intend to add to the collection in future work and
actively engage in discussions with the usability and software engineering communities through e.g.
workshops and our website2. Future work will lead to the expansion and reworking of the set of patterns
presented here. This includes work to fill out the elements of each pattern to include more of the
sections, which traditionally make up a pattern description, for instance what the pros and cons of using
each pattern may be, forces that lead to the use of the pattern, aliases etc.

2 www.designforquality.com

http://www.designforquality.com

5.1 System Feedback
Usability context: Situations where the user performs an action that may unintentionally lead to a

problem [Welie, 2003]

Intent: Communicate changes in the system to the user.

Architectural
implications:

To support the provision of alerts to the user, there may need to be a component
that monitors the behavior of the system and sends messages to an output
device. Furthermore, some form of asynchronous messaging (e.g. events)
support may be needed to respond to events in other architecture components.
[Buschmann et al, 1996] suggests several architectural styles to implement
asynchronous messaging (e.g. the blackboard style).

Usability properties
affected:

+ Feedback: alerts help to keep the user informed about the state of the
system, which is a form of feedback.

+ Explicit user control: giving an indication of the system’s status provides
feedback to the user about what the system is currently doing, and what will
result from any action they carry out.

Examples: • If a new email arrives, the user may be alerted by means of an aural or visual
cue.

• If a user makes a request to a web server that is currently off line, they will
be presented with a popup window telling the user that the server is not
responding

• If a user is running out of disk space, windows XP will alert the user with a
popup box in the system tray.

5.2 Actions for Multiple Objects
Usability context: Actions need to be performed on objects, and users are likely to want to perform

these actions on two or more objects at one time [Tidwell 1998].

Intent: Provide a mechanism that allows the user to customize or aggregate actions

Architectural
implications:

A provision needs to be made in the architecture for objects to be grouped into
composites, or for it to be possible to iterate over a set of objects performing the
same action for each.

Usability properties
affected:

+ Explicit user control: providing the user with the ability to group the objects
and apply one action to them all “in parallel” increases explicit user control

+ Error management: if each object has to be treated individually, errors are
more likely to be made.

Examples: • In a vector based graphics package such as Corel Draw, it is possible to select
multiple graphics objects and perform the same action (e.g. change color) on
all of them at the same time.

• Copying several files from one place to another.

• Outlook allows the selection of different received emails and forward them all
at once.

5.3 Cancel
Usability context: The user invokes an operation, then no longer wants the operation to be

performed [Bass et al, 2001]

Intent: Allow the user to cancel a command that has been issued but not yet completed,
to prevent reaching an error state.

Architectural
implications:

There needs to be provision in the architecture for the component(s) monitoring
the user input to run independently from and concurrently with the components
that carry out the processing of actions. The components processing actions
need to be able to be interrupted and the consequences of the actions may need
to be rolled back.

Usability properties
affected:

+ Error management: the ability to cancel commands is a form of error
management, if the user realizes that he or she has initiated an incorrect action
then this action can be interrupted and cancelled before the error state is
reached.

+ Explicit user control: it also gives the user the feeling that they are in
control of the interaction (Explicit user control)

Examples: • In most web browsers, if the user types a URL incorrectly, and the web
browser spends a long time searching for a page that does not in fact exist.
The user can cancel the action by pressing the “stop” button before the
browser presents the user with a “404” page, or a dialog saying that the
server could not be found.

• When copying files with windows explorer the user is able to press the cancel
button to abort the file copy process.

• Norton antivirus allows the user to interrupt or cancel the virus scanning
process.

5.4 Data Validation
Usability context: • The user needs to supply the application with data, but does not know which

data is required or what syntax should be used. [Welie and Trætteberg,
2000]

• Users have to input data where errors are likely to occur.

Intent: Verify whether (multiple) items of data in a form or field have been entered
correctly.

Architectural
implications:

To ensure that the integrity of the data stored in the system is maintained, a
mechanism is needed to validate both the data entered by the user and the
processed data. Solutions that may be employed include the use of XML and XML
schemas. Furthermore, a data integrity layer consisting of business-objects may
be implemented to shield application code from the underlying database. Finally,
there may be some client or server components that verify the data entered by
users.

Usability properties
affected:

+ Error management: this pattern relates to a provision for the management
of errors.

Examples: • This pattern is often employed in forms on websites where the user has to
enter a number of different data items, for example, when registering for a
new service, or buying something.

• Large content management systems often use XML to define objects. Some
WYSIWYG tools that allow the user to edit these objects use the XML
definition (DTD or schema) to prevent users from entering invalid data.

• Use of a data integrity layer in multi tiered applications to shield user interface
code from database.

5.5 History logging
Usability context: • How can the software help save the user time and effort? [Tidwell 1998]

• How can the artifact support the user's need to navigate through it in ways
not directly supported by the artifact's structure? [Tidwell 1998]

• The user performs a sequence of actions with the software, or navigates
through it. [Tidwell 1998]

Intent: Record a log of the actions of the user (and possibly the system) to be able to
look back over what was done.

Architectural
implications:

In order to implement this, a repository must be provided where information
about actions can be stored. Consideration should be given to how long the data
is required. Actions must be represented in a suitable way for recording in the
log. Additionally, such features may have some privacy/security implications.

Usability properties
affected:

+ Error management: providing a log helps the user to see what went wrong if
an error occurs and may help the user to correct that error.

Examples: • Web browsers create a history file listing all the websites that the user has
visited. Most web browsers also include functionality for purging this data.

• Windows XP keeps track of recently accessed documents.

• Automatic Form completion in Mozilla and Internet Explorer based upon
previously inserted information.

5.6 Scripting
Usability context: The user needs to perform the same sequence of actions over and over again,

with little or no variability [Tidwell 1998].

Intent: Provide a mechanism that allows the user to perform a sequence of commands
or actions to a number of different objects.

Architectural
implications:

A provision needs to be made in the architecture for grouping commands into
composites or for recording and playing back sequences of commands in some
way. There needs to be an appropriate representation of commands, and a
repository for storing the macros. Typically, some sort of scripting language is
often used to implement such functionality. This implies that all features must
scriptable.

Usability properties
affected:

+ Minimize cognitive load: providing the ability to group a set of commands
into one higher-level command reduces the user’s cognitive load, as the user
does not need to remember how to execute the individual steps of the process
once the user has created a macro, the user just need to remember how to
trigger the macro.

Examples: • Microsoft’s Office applications provide the ability to record macros, or to
create them using the Visual Basic for Applications language.

• Mozilla Firebird allows users to install extensions that extend the features of
the program using scripts.

• Open Office has java bindings that allows users to write Java programs that
extend open office. Open office also supports a subset of VB.

5.7 Multiple views
Usability context: The same software functionality requires to be presented using different human-

computer interface styles for different user preferences, needs or disabilities.
[Brighton, 1998]

Intent: Provide multiple views for different users and uses.

Architectural
implications:

The architecture must be constructed so that components that hold the model of
the data that is currently being processed are separated from components that
are responsible for representing this data to the user (view) and those that
handle input events (controller). The model component needs to notify the view
component when the model is updated, so that the display can be redrawn.
Multiple views is often facilitated through the use of the MVC pattern [Buschmann
et al, 1996]

Usability properties
affected:

+ Consistency: separating the model of the data from the view aids consistency
across multiple views when these are employed.

+ Accessibility: separating out the controller allows different types of input
devices to be used by different users, which may be useful for disabled users.

+ Error management: having data-specific views available at any time will
contribute to error prevention.

Examples: • Microsoft Word has a number of views that the user can select (normal view,
outline view, print layout view…) and switch between these at will, which all
represent the same underlying data.

• Rational Rose, uses a single model for various UML diagrams. Changes in one
diagram affects related entities in other diagrams.

• Nautilus file manager of the Gnome desktop software for Linux allows multiple
views on the file system.

5.8 Multi-Channeling
Usability context: • Users want or require (e.g. because of disabilities) access to the system

using different types of devices (input/output).

• Increasing the number of potential users (customers) and usage of a system.

Intent: Provide a mechanism that allows access using different types of devices
(input/output).

Architectural
implications:

There may need to be a component that monitors how users access the
application. Depending on which device is used, the system should make
adjustments. For example, by presenting a different navigation menu or by
limiting the number of data/images sent to the user.

Usability properties
affected:

+ Accessibility: this pattern improves system accessibility by users using
different devices (accessibility)

Examples: • Auction sites such as eBay can be accessed from a desktop/laptop, but this
information can also be obtained using interactive TV or a mobile phone.

• Some set top boxes allow users to surf the internet using an ordinary TV.

• Some Word processors allow voice input, which allows (disabled) users to
control the application by voice.

5.9 Undo
Usability context: Users may perform actions they want to reverse. [Welie, 2003]

Intent: Allow the user to undo the effects of an action and return to the previous state.

Architectural
implications:

In order to implement undo, a component must be present that can record the
sequence of actions carried out by the user and the system, and also sufficient
detail about the state of the system between each action in order that the
previous state can be recovered.

Usability properties
affected:

+ Error management: providing the ability to undo an action helps the user to
correct errors if the user makes a mistake.

+ Explicit user control: allowing the user to undo actions helps the user feel
that they are in control of the interaction.

Examples: • Microsoft Word provides the ability to undo and redo (repeatedly) almost all
actions while the user is working on a document.

• Emacs allows all changes made in the text of a buffer to be undone, up to a
certain amount of change.

• Photoshop provides a multilevel undo, which allows the user to set the
number of steps that can be undone. This is necessary because storing the
information required to do the operations requires a substantial amount of
memory.

5.10 User Modes
Usability context: The application is very complex and many of it functions can be tuned to the

user's preference. Not enough is known about the user's preferences to assume
defaults that will suit all users. Potential users may range from novice to expert
[Welie, 2003].

Intent: Provide different modes corresponding to different feature sets required by
different types of users, or by the same user when performing different tasks.

Architectural
implications:

Depending on the mode, the same set of controls may be mapped to different
actions, via different sets of connectors, or more or less user interface
components may be displayed. Using e.g. [Buschmann et al, 1996] Broker style
may be required to implement this.

Usability properties
affected:

+ Adaptability: supporting different modes allows personalization of the
software to the current user’s needs or expertise.

+ Minimize cognitive load: expert users can tweak the application for their
particular purposes.

Examples: • WinZip allows the user to switch between “wizard” and “classic” modes, where
the wizard mode gives more guidance, but the classic mode lets the expert
user work more efficiently.

• Many websites have different modes for different users, e.g. guests, normal,
logged-in users or administrators.

• ICQ allows the user to switch from novice user (limited functionality) to
advanced mode thus enabling all functionality

5.11 User Profiles
Usability context: The application will be used by users with differing abilities, cultures, and tastes

[Tidwell 1998]

Intent: Build and records a profile of each type of user, so that specific attributes of the
system (for example, the layout of the user interface, the amount of data or
options to show) can be set and reset each time for a different user. Different
users may have different roles, and require different things from the software.

Architectural
implications:

A repository for user data needs to be provided. This data may be added or
altered either by having the user setting a preference, or by the system. User
profiles often have a security impact that has major architectural implications.

Usability properties
affected:

+ Adaptability: providing the facility to model different users allows a user to
express preferences.

Examples: • Many websites recognize different types of users (e.g. customers or
administrators) and present different functionality tailored to the current user.

• Amazon.com builds detailed profiles for each of its customers so it can
recommend products the user might like.

• .NET security model. By means of attribute oriented programming users can
set security modes for three types of profiles.

5.12 Wizard
Usability context: A non-expert user needs to perform an infrequent complex task consisting of

several subtasks where decisions need to be made in each subtask [Welie,
2003].

Intent: Present the user with a structured sequence of steps for carrying out a task and
guide them through one by one. The task as a whole is separated into a series of
more manageable subtasks. At any time, the user can go back and change steps
in the process.

Architectural
implications:

There needs to be provision in the architecture, for example a wizard component
that can be connected to other relevant components, the one triggering the
operation and the one receiving the data gathered by the wizard.

Usability properties
affected:

+ Guidance: the wizard shows the user each consecutive step in the process is.

+ Minimize cognitive load: the task sequence informs the user at once which
steps will need to be taken and where the user currently is.

Examples: • The install wizard used by most Windows programs guides the user through
choosing various options for installation.

• When partitioning hard disks during Mandrake Linux install a user can use
Disk Druid, which is a disk partition wizard.

• Blogger.com allows a user to create a new web log (online publishing system)
in four simple steps using a wizard. Advanced users may customize their web
log afterwards by editing templates.

5.13 Workflow model
Usability context: A user who is part of a workflow chain (based on some company process), should

perform its specific task efficiently and reliable.

Intent: Provide different users only the tools or actions that they need in order to
perform their specific task on a piece of data before passing it to the next person
in the workflow chain.

Architectural
implications:

A component or set of connectors that model the workflow is required, describing
the data flows. A model of each user in the system is also required, so the
actions that the user needs to perform on the data can be provided (see also
user profile).

Usability properties
affected:

+ Minimize cognitive load: targeting the user interface specifically to each
user, dependent on the task that they need to perform in the workflow minimizes
the user’s cognitive load (minimize cognitive load).

+ Natural mapping: if workflow model is based upon business models, users
switching to automation have less trouble switching over.

Examples: • Most CMS and ERP systems are workflow model based.

• A typical example of an administrative process that is workflow based is the
handling of an expense account form. An employee fills in the proper
information; the form is routed to the employee's manager for approval and
then on to the accounting department to disburse the appropriate check and
mail it to the employee.

• Online publishing: a journalist writes an article and submits it online to an
editor for review before it is published on the website of a newspaper. This
process is often automated in a workflow model.

5.14 Emulation
Usability context: Users are familiar with a particular system and now require consistency in terms

of interface and behavior between different pieces of software

Intent: Emulate the appearance and/or behavior of a different system.

Architectural
implications:

Command interfaces and views but also behavior needs to be replaceable and
interchangeable, or there needs to be provision for a translation from one
command language and view to another in order to enable emulation. This differs
from the providing multiple views diagram because the behavior of the
application should be replaceable.

Usability properties
affected:

+ Consistency: emulation can provide consistency in terms of interface and
behavior between different pieces of software.

Examples: • Microsoft Word 97 can be made to emulate WordPerfect, so that it is easier to
use for users who are used to that system.

• Windows XP offers a new configuration menu; however, it is possible to switch
to the “classic view” for users more familiar with windows 2000 or windows
98.

• Jedit (Open Source programmer's text editor) can have EMACS and VI key
bindings modes.

5.15 Context Sensitive Help
Usability context: When help in the context of the current task would be useful.

Intent: Monitor what the user is currently doing, and make documentation available that
is relevant to the completion of that task.

Architectural
implications:

There needs to be provision in the architecture for a component that tracks what
the user is doing at any time and targets a relevant portion of the available help.

Usability properties
affected:

+ Guidance: the provision of context sensitive help can give the user guidance.

Examples: • Microsoft Word includes context sensitive help. Depending on what feature the
user is currently using (entering text, manipulating an image, selecting a font
style) the Office Assistant will offer different pieces of advice (although some
users feel that it is too forceful in its advice).

• Depending upon what the cursor is currently pointing to; Word will pop up a
small description or explanation of that feature.

• Eclipse (a popular Java development environment) allows the user to consult
context sensitive info (such as specific API specifications)

6. Putting it all together: The relation between SA and usability
Figure 3 summarizes the different usability attributes, usability properties and architecturally sensitive
usability patterns that have been considered in the previous sections of this paper and the (positive)
relationships between them.

Figure 3: Usability framework

The usability properties in the framework in this figure may be used as requirements during design. For
example, if the requirements specify, "the system must provide feedback”, or “minimize cognitive load”,
we use the framework to identify which usability patterns may be implemented to fulfill these properties
by following the arrows in figure 3. For each architecturally sensitive usability pattern that we identified
we linked it to certain usability properties, as discussed in section 0. Usability properties are linked to
usability attributes as discussed in section 4. The relationships link architecturally sensitive usability
patterns to requirements so that when the designer has a usability property as a requirement, they can
easily find candidate patterns to meet these requirements.

Consider for example that we want provide guidance to improve learnability. Using the relationships in
the framework, we can identify that the patterns “wizard” and “context sensitive help” relates to

guidance. During architectural design, we may adjust our architecture to facilitate such patterns. The
choice of which pattern to apply may be made based on cost and trade-off between different usability
properties or between usability and other quality attributes such as security or performance. In some
systems however, the indicated relationships may not apply. It is up to the software architect to decide
how and at which levels these patterns and properties are implemented. Using the framework in this way
may guide architectural design and may avoid the retrofit problem we identified in the introduction.

Ongoing work in the STATUS project focuses on developing architectural assessment techniques based on
this framework. By evaluating a software architecture for its support of architecturally sensitive usability
patterns and/or usability properties, we get an indication of the architectures support of usability. If the
architecture does not provide sufficient support for usability (for example, learnability), the framework
may be consulted to select usability attribute improving properties and patterns.

7. Related work
Many authors for example: [Constantine and Lockwood, 1999], [Hix and Hartson, 1993], [ISO 9126-1],
[Nielsen, 1993], [Preece et al, 1994], [Shackel, 1991], [Shneiderman, 1998], [Wixon & Wilson, 1997]
have studied usability. Most of these authors focus on finding and defining the optimal set of attributes
that compose usability and on developing guidelines and heuristics for improving and testing usability.
Several techniques such as usability testing [Nielsen, 1993], usability inspection [Nielsen, 1994] and
usability inquiry [Nielsen, 1993] may be used to evaluate the usability of systems. However, none of
these techniques is focused on software architecture. These authors do not explicitly define a relationship
between usability and software architecture or elaborate on how usability requirements may be fulfilled
during architectural design. These literature sources have been used as an input for defining our attribute
and properties layer.

[Nigay and Coutaz, 1997] are the first to discuss a relationship between usability and software
architecture by presenting an architectural model that can help a designer satisfy ergonomic properties.

The layered view on usability presented in [Welie et al, 1999] inspired several elements of the framework
model we presented in Section 2. For example their usage indicators and usability layer inspired our
attribute layer and our architecturally sensitive usability patterns and usability properties are present in
their means layer. One difference with their layered view is that we have made a clear distinction
between patterns (solutions) and properties (requirements). In addition we have tried to explicitly define
the relationships between the elements in our framework. The terms “usability factors” and “usability
criteria” in [Abowd et al, 1992] are similar to our notion of usability attributes".

In our work, the concept of a pattern is used to define an architecturally sensitive usability pattern.
Software patterns first became popular with the object-oriented Design Patterns book [Gamma et al
1995]. Since then a pattern community has emerged that specifies patterns for all sorts of problems (e.g.
architectural styles [Buschmann et al, 1996] and object oriented frameworks [Coplien and Schmidt,
1995].

An architecturally sensitive usability pattern as defined in our work is not the same as a design pattern
[Gamma et al 1995] Unlike the design patterns, architecturally sensitive patterns do not specify a specific
design solution in terms of objects and classes. Instead, we outline potential architectural implications
that face developers looking to solve the problem the architecturally sensitive pattern represents.

One aspect that architecturally sensitive usability patterns share with design patterns is that their goal is
to capture design experience in a form that can be effectively reused by software designers in order to
improve the usability of their software, without having to address each problem from scratch. The aim is
to capture what was previously very much the “art” of designing usable software and turn it into a
repeatable engineering process.

Previous work has been done in the area of usability patterns, by [Tidwell 1998], [Perzel and Kane 1999],
[Welie and Trætteberg, 2000]. Several usability pattern collections [Brighton, 1998], [Common ground,
1999], [Welie, 2003], [PoInter, 2003] can be found on the web3. Most of these usability patterns
collections refrain from providing or discussing implementation details. Our paper is not different in that
respect because it does not provide specific implementation details. However, we do discuss potential
architectural implications. Our work has been influenced by their work, but takes a different standpoint,
concentrating on the architectural effect that patterns may have on a system. We consider only patterns
that should be applied during the design of a system’s software architecture, rather than during the
detailed design stage.

[Bass et al, 2001] give several examples of architectural patterns that may aid usability. They have
identified scenarios that illustrate particular aspects of usability that are architecture-sensitive and

3 for a complete overview: http://www.pliant.org/personal/Tom_Erickson/InteractionPatterns.html

http://www.pliant.org/personal/Tom_Erickson/InteractionPatterns.html

present architectural patterns for implementing these aspects of usability. Our approach has been
influenced by their work. This approach has the following limitations:

• The [Bass et al, 2001] approach on the other hand, used a bottom up approach by working from
the field of software engineering. They first identified certain usability scenarios and usability
patterns that require architectural support. Gradually they have collected these patterns and
worked towards the definition of usability by organizing these usability scenarios into a benefits
category that partially overlaps with the existing usability definitions.

• Some usability scenarios lack structure and refinement. Some of the scenarios they have
identified have quite a similar effect on usability. In our framework they would relate to a higher-
level design primitives. For example the scenarios “working in an unfamiliar context” and
“operating consistently across views” relate to the higher level design primitive of “consistency”.
The same goes for other scenarios such as “predicting task duration” and “observing system
state” both relate to a the higher-level design primitive of “system feedback”.

• Some scenarios such as "supporting multiple activities" and "using applications concurrently" are
similar and can be replaced by a higher-level pattern or property.

• The number of usability scenarios they have identified is limited and for some of their scenario’s it
is debatable whether they are related to usability (Evaluating the system, Verifying resources) or
whether they are architecture sensitive (Retrieving forgotten passwords).

• [Bass et al, 2001] give architectural patterns for their scenarios, which is debatable, since
different patterns can be given for such an implementation. We believe that it is very difficult to
prove that some usability patterns are architecture-sensitive therefore we just state that they
may be.

These issues were our reason to take a different approach towards investigating the relationship between
usability and software architecture. We take a top-down approach to the usability - software architecture
relationship by starting from the definition of usability and gradually refining this definition until we
defined usability properties and finally relating those to architecturally sensitive usability patterns. We
focus less on software architecture details, but focus more detailing the relationship with usability,
whereas bass an john focus more on architecture. To an extent the set of patterns overlaps though we
make a clear distinction between pattern and properties. We believe both approaches are
complementary; and present different views on a set of patterns that require

A number of papers discuss the relationship between SE and HCI. [Willshire, 2003] and [Milewski, 2003]
focus on educational issues. [Walenstein, 2003] discusses what bridges need to be built between the SE
and HCI community. [Constantine et al, 2003] and [Ferre, 2003] discuss how HCI engineering should be
integrated with software engineering. However, with the exception of and [Bass et al, 2001] and [Nigay
and Coutaz, 1997], few authors focus on the in our opinion essential relation with software architecture.

The notion of software architecture was already identified in the late sixties. However, it was not until the
nineties before architecture design gained the status it has today. Publications such as [Shaw and Garlan,
1996] and [Bass et all, 1998] that discuss definitions, methods and best practices have contributed to a
growing awareness of the importance of an explicit software architecture.

8. Conclusions
In this article, we present a framework that captures the relationship between usability and software
architecture. The framework consists of usability attributes, usability properties, architecturally sensitive
usability patterns and the relationships between these elements.

The purpose of this framework is the following:

• Express the relationship between usability and software architecture.

• Guide the architecture design process. Existing design experience from the usability and software
engineering communities is consolidated in a form that allows us to inform architectural design.

This framework describes an integrated set of ‘design solutions’, that, in most cases, are considered to
have a positive effect on the level of usability but that are difficult to retro-fit into applications because
these design solutions may require architectural support. For each of these design solutions we have
analyzed the usability effect and the potential architectural implications. The architecturally sensitive
usability patterns and properties that we identified have been derived from internal case studies at the
industrial partners in the STATUS project and from existing usability pattern collections.

The framework may be used to guide design; however, we do not claim that a particular pattern or
property will always improve usability. It is up to the architect to assess whether implementing a property
or pattern at the architectural level will improve usability. In addition, the architect will have to balance

usability optimizing solutions with other quality attributes such as performance, maintainability or
security.

We believe that it is vital that usability issues are taken into account during the architecture design phase
to as large an extent as is possible to prevent high cost incurring adaptive maintenance activities once
the system has been implemented. This not only holds for usability patterns but also for the usability
properties we identified. Usability properties such as consistency need to be considered during
architectural design. Future research should focus on how usability properties may be fulfilled during
architecture design stage by using architectural design decisions (apart from implementing architecturally
sensitive patterns that address them).

This framework has allowed us to develop an architectural assessment technique that may solve some of
these problems discussed in the introduction. Issues such as performance or reliability which affect
usability but that are hard to model with a prototype can be analyzed in an architecture, by analyzing the
presence of properties such as error management or patterns such as data validation or workflow
modeling. Using this technique software architects may analyze their architectures for their support of
usability without a prototype. Issues such as performance or reliability which affect usability but that are
hard to model with a prototype can be analyzed in an architecture, by analyzing the presence of
properties such as error management or patterns such as data validation or workflow modeling.

Using the assessment technique, software architectures may become more flexible towards unanticipated
usability requirements caused by the limitations of requirements engineering techniques or changes of
usability requirements. We have already used this framework at three case studies. These cases studies,
which will be published as part of the STATUS deliverables and in a pending article, show that it is
possible to use the framework for assessing software architectures for their support of usability. The
industrial partners in the STATUS projects are using the results of the assessment and the framework to
improve their architectural designs.

Empirical validation is important when offering new techniques. Our framework is a first step in
illustrating the relationship between usability and software architecture. The list of architecturally
sensitive usability patterns and properties we identified are substantial but incomplete. The relationships
depicted in the framework indicate potential relationships. Further work is required to substantiate these
relationships and to provide models and assessment procedures for the precise way that the relationships
operate.

Future research should focus on verifying our assumptions concerning the architectural sensitiveness of
the usability patterns and properties. Proving the architecture sensitivity of a usability pattern is difficult
because the patterns we presented may be implemented in different ways, influencing architectural
sensitiveness. Practice shows that patterns such as cancel, undo and history logging may be
implemented by the command pattern [Gamma et al 1995], emulation and providing multiple views may
be implemented by the MVC pattern [Buschmann et al, 1996]. Actions for multiple objects may be
implemented by the composite pattern [Gamma et al 1995] or the visitor pattern [Gamma et al 1995].
Investigating how our usability patterns may be implemented by design patterns or architectural patterns
is considered as future work.

In addition to the patterns that we identified, there are some techniques that can be applied to the way
that the development team designs and builds the software and that may lead to improvements in
usability for the end user. For example, the use of an application framework as a baseline on which to
construct applications may be of benefit, promoting consistency in the appearance and behavior of
components across a number of applications. For instance, using the Microsoft Foundation Classes when
building a Windows application will provide “common” Windows functionality that will be familiar to users
who have previously used other applications build on this library. This is not a pattern that can be applied
to the architecture in the same way as those presented in section 5, but it is nonetheless something
which will be considered during the further study of the relationship between software architecture and
usability during the remaining parts of this project.

9. Acknowledgements
This work was sponsored by the IST STATUS project. We would like to thank the partners in the STATUS
project for their input and their cooperation.

References

 [Abowd et al, 1992]

Abowd, G.; Coutaz, J. & Nigay, L., 1992, Structuring the Space of Interactive System Properties.
Proceedings of EHCI'92, IFIP TC2/WG2.7 Working Conference on Engineering for Human
Computer Interaction.

[Alexander et al, 1977]
 Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S., 1977. A

Pattern Language, Oxford University Press.

[Bass et all, 1998]
 Bass, L., Clements, P., Kazman, R., 1998. Software Architecture in Practice, Addison Wesley

Longman.

[Bass et al, 2001]
 Bass, Lenn; Kates, Jessie & John, Bonnie. E. Achieving Usability through software architecture,

2001, http://www.sei.cmu.edu/publications/documents/01.reports/01tr005.html

[Bosch, 2000]
 Bosch, J., 2000. Design and Use of Software Architectures: Adopting and Evolving a Product Line

Approach, Pearson Education (Addison-Wesley and ACM Press).

[Brighton, 1998]
 The Usability Group at the University of Brighton, UK., The Brighton Usability Pattern Collection.

http://www.cmis.brighton.ac.uk/research/patterns/home.html

[Buschmann et al, 1996]
 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996. Pattern-Oriented

Software Architecture: A System of Patterns, John Wiley and Son Ltd.

[Common ground, 1999]
 Tidwell, J., Common ground: Pattern Language for Human-Computer Interface Design,

http://www.mit.edu/~jtidwell/interaction_patterns.html

[Constantine et al, 2003]
 Constantine, L. L.; Biddle, R. & Noble, J., 2003, Usage-centered design and software engineering:

models for integration., ICSE Workshop "bridging the Gaps Between Software Engineering and
Human-Computer Interaction".

[Constantine and Lockwood, 1999]
 Constantine, L. L., Lockwood, L. A. D., 1999. Software for Use: A Practical Guide to the Models

and Methods of Usage-Centered Design, Addison-Wesley, New York NY.

[Coplien and Schmidt, 1995]
 Coplien, J. O., Schmidt, D. C., 1995. Pattern Languages of Program Design, Addison-Wesley

(Software Patterns Series).

[Cuomo and Bowen, 1994]
 Cuomo, D. L. & Bowen, C. D. Understanding usability issues addressed by three user-system

interface evaluation techniques. Interacting with Computers86-108, 1994.

[Ferre, 2003]
 Ferre, X., 2003, Integration of Usability techniques into the software development process, ICSE

Workshop "bridging the Gaps Between Software Engineering and Human-Computer Interaction.

[Folmer and Bosch, 2002]
 Folmer, E. & Bosch, J. Architecting for usability; a survey. Journal of systems and software issue

70-1, 2002.

[Gamma et al 1995]
 Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns Elements of Reusable

Object-Orientated Software., Addison -Wesley.

[Granlund et al, 2001]
 Granlund, Å.; Lafrenière, D. & Carr, D. A., 2001, Pattern-Supported Approach to the User

Interface Design Process, Proceedings of HCI International 2001 9th international Conference on
Human-Computer interaction.

http://www.sei.cmu.edu/publications/documents/01.reports/01tr005.html
http://www.cmis.brighton.ac.uk/research/patterns/home.html
http://www.mit.edu/~jtidwell/interaction_patterns.html

[Gurp & Bosch, 2002]
 Gurp, J. v. & Bosch, J. Design Erosion: Problems & Causes. Journal of systems and software105-

119, 2002.

[Hix and Hartson, 1993]
 Hix, D., Hartson, H. R., 1993. Developing User Interfaces: Ensuring Usability Through Product

and Process., John Wiley and Sons.

[Holcomb and Tharp, 1991]
 Holcomb, R. & Tharp, A. L., 1991, What users say about software usability., International Journal

of Human-Computer Interaction, vol. 3 no. 1.

[ISO 9241-11]
 ISO 9241-11 Ergonomic requirements for office work with visual display terminals (VDTs) -- Part

11: Guidance on usability., 1994,

[IEEE, 1998]
 IEEE Architecture Working Group. Recommended practice for architectural description. Draft

IEEE Standard P1471/D4.1, IEEE, 1998,

[ISO 9126-1]
 ISO 9126-1 Software engineering - Product quality - Part 1: Quality Model, 2000.

[Landauer, 1995]
 Landauer, T. K., 1995. The Trouble With Computers: Usefulness, Usability and Productivity., MIT

Press.

[Lederer and Prassad, 1992]
 Lederer, A. L. P. J. Nine Management Guidelines for Better cost Estimating. Communications of

the ACM51-59, 1992.

[McKay, 1999]
 McKay, E. N., 1999. Developing User Itnerfaces for Microsoft Windows, Microsoft Press.

[Milewski, 2003]
 Milewski, A., 2003, Software Engineering overlaps with human computer interaction: A natural

Evoluation, ICSE Workshop "bridging the Gaps Between Software Engineering and Human-
Computer Interaction".

[Nielsen, 1993]
 Nielsen, J., 1993. Usability Engineering, Academic press,San Diego CA.

[Nielsen, 1994]
 Nielsen, J., 1994. Heuristic Evaluation., in Usability Inspection Methods. Nielsen, Jacob and Mack,

R. L., John Wiley and Sons, New York, NY..

[Nigay and Coutaz, 1997]
 Nigay, L., Coutaz, J., 1997. Bridging Two Worlds Using Ergonomics and Software Properties., in

Formal Methods in Human-Computer Interaction. Palanque & Paterno', Springer-Verlag..

[Norman, 1988]
 Norman, D. A., 1988. The Design of Everyday Things, Basic Books .

[Perzel and Kane 1999]
 Perzel, K. & Kane, D., 1999, Usability Patterns for Applications on the World Wide Web.

[PoInter, 2003]
 Lancaster University, PoInter: Patterns of INTERaction collection,

http://www.comp.lancs.ac.uk/computing/research/cseg/projects/pointer/patterns.html

http://www.comp.lancs.ac.uk/computing/research/cseg/projects/pointer/patterns.html

[Polson and Lewis, 1990]
 Polson, P. G. & Lewis, C. H., 1990, Theory-based design for easily learned interfaces.

[Preece et al, 1994]
 Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., Carey, T., 1994. Human-Computer

Interaction, Addison Wesley.

[Pressman, 1992]
 Pressman, R. S., 1992. Software Engineering: A Practitioner's Approach, McGraw-Hill, NY.

[Ravden and Johnson, 1989]
 Ravden, S. J., Johnson, G. I., 1989. Evaluation Usability of Human-Computer Interfaces: A

Practical Method., Ellis Horwood Limited, New York.

[Rubinstein and Hersh, 1984]
 Rubinstein, R., Hersh.H., 1984. The Human Factor: Designing Computer Systems for People.,

Digital Press, Bedford, MA.

[Scapin and Bastien, 1997]
 Scapin, D. L. & Bastien, J. M. C. Ergonomic criteria for evaluationg the ergonomic quality of

interactive systems. Behaviour & Information Technology, 16 220-231, 1997.

[Shackel, 1991]
 Shackel, B., 1991. Usability - Context, Framework, Design and Evaluation, in Human Factors for

Informatics Usability. Shackel, B. and Richardson, S., Cambridge University Press.

[Shaw and Garlan, 1996]
 Shaw, M., Garlan, D., 1996. Software Architecture: Perspectives on an Emerging Discipline,

Prentice Hall.

[Shneiderman, 1998]
 Shneiderman, B., 1998. Designing the User Interface: Strategies for Effective Human-Computer

Interaction, Addison-Wesley.

[Swanson, 1976]
 Swanson, E. B., 1976, The dimensions of maintenance, proceedings of the 2nd international

conference on software engineering.

[Tidwell 1998]
 Tidwell, J., 1998, Interaction Design Patterns, Conference on Pattern Languages of Programming

1998.

[Walenstein, 2003]
 Walenstein, A., 2003, Finding Boundary Objects in SE and HCI: An approach through engineering

oriented design theories, ICSE Workshop "bridging the Gaps Between Software Engineering and
Human-Computer Interaction".

[Welie, 2003]
 Welie, M., GUI Design patterns, http://www.welie.com/

[Welie and Trætteberg, 2000]
 Welie, M. & Trætteberg, H., 2000, Interaction Patterns in User Interfaces, Conference on Pattern

Languages of Programming (PloP) 7th.

[Welie et al, 1999]
 Welie, M.; van der Veer, G. C. & Eliëns, A., 1999, Breaking down Usability, Proceedings of

Interact 99.

[Willshire, 2003]
 Willshire, M., 2003, Where SE and HCI meet: A position paper, ICSE Workshop "bridging the

Gaps Between Software Engineering and Human-Computer Interaction".

http://www.welie.com/

[Wixon & Wilson, 1997]
 Wixon, D., Wilson, C., 1997. "The Usability Engineering Framework for Product Design and

Evaluation. I, in In Handbook of Human-Computer Interaction. Helander, M. G., Elsevier North-
Holland, 1997.

