
Service Grid Variability Realization

Jilles van Gurp, Juha Savolainen
Software and Application Technologies Laboratory

 Nokia Research Center
 P.O. Box 407, FI-00045 NOKIA GROUP, Finland

{jilles.vangurp|juha.e.savolainen}@nokia.com

Abstract

Variability management has long been recognized
as a key part of software product family development.
This article builds on this notion by presenting a set of
web service related technologies in the context of
variability management. Additionally we adapt an
existing process for planning variability for use with
our technologies. We expect that web service
technology, already very successful in the domain of
enterprise applications, will emerge as the integration
technology of choice for constructing so called product
family populations, i.e. populations of products
constructed from multiple, independently developed
product families.

1. Introduction
This article presents techniques and a process for using
them that together may be used to implement variant
features in web service grid architectures.
An important reason for using web services and service
grids is to abstract away from implementation details
such as data persistence, implementation language, etc.
so that external applications may use them with the
bare minimum of assumptions about implementation
and internal behavior of the web services in the
architecture. Web services are now commonly used in
enterprise software systems to, for example, integrate
software from different vendors, or to integrate legacy
systems in new applications.
Web service technology is also likely to be used for
integrating product family products to create a
population of product families [19]. Previous research
has already focused on planning variability in software
product families [4, 6, 10, 17]. This article extends this
research so that it may be used in combination with
web service technology to create populations of
product families with a specified level of variability
using web service technology.

1.1 Service Grids
Service grids combine web services and grid
computing. In grid computing, software is run on a
distributed computer consisting of multiple, general
purpose computers connected by a network. The
distributed computer is referred to as a grid and the
individual computers in the network are referred to as
nodes.
Grid computers have some nice characteristics that
make them interesting for application development:
• They are low in cost because they can be created

from ordinary server hardware (or even existing
desktop machines).

• They provide fault tolerance. If one node fails, the
other nodes can compensate for the loss.

• They provide scalability. The capacity of the grid
can be increased simply by adding nodes. This
only works for software that can be implemented
in a distributed fashion, though.

• They provide flexibility because grids can change
and adapt dynamically to changing circumstances
(e.g. adding new nodes, moving software services
between nodes, etc).

Strictly speaking, the techniques discussed in this
article are not specific to service grids. However, the
assumption that services are deployed across many
machines makes the techniques more useful because
the address of the service is run-time variable as the
service grid dynamically changes the service grid
configuration to match demand for particular services.
Unlike clustering where identical servers share the load
and a load balancing router acts as a facade, the nodes
in a grid are not identical. The grid management
software starts and stops web services on nodes as
required by the run-time context.
1.2 Web Services
Web services, on the other hand, have been adopted on
a large scale since the introduction of SOAP and XML
in the late nineties. A Web service is a software system
designed to support interoperable machine-to-machine
interaction over a network. It has an interface described

in a machine-processable format, usually WSDL (Web
Service Description Language). Other systems interact
with the Web service in a manner prescribed by its
description using SOAP messages, typically conveyed
using HTTP with an XML serialization in conjunction
with other Web service related standards [3]. Within
the scope of this article, we adopt this narrow
definition of a web service provided by the World
Wide Web Consortium (W3C). There are also non
W3C means of implementing web services. For
example, XMLRPC and REST [7] based protocols are
used in industry as well.
Web services are stateless. Between SOAP message
exchanges, no state is maintained on the server-side.
The grid node receives the soap request, processes it
and sends a message back. While the processing may
include storing data in a database, the server itself is
stateless. Being stateless makes it easy to provide
scalability (e.g. by adding more nodes to the grid).
1.3 Problem Statement
The identification of variant features during
requirements gathering and the subsequent realization
of them in the realization phase is the backbone of
software product family development [20][4]. Software
product family development has been characterized as
the most successful reuse strategy so far.
Van Ommering makes a distinction between product
families and product populations [19]. A product
population consists of multiple, independently
developed product families that need to be integrated.
Unlike product lines where products share the same
architecture in which variability can be planned,
product populations do not have an overall
architecture. To tackle the problem of integrating
components from different product families, Van
Ommering introduces an architecture language,
KOALA that can be used to specify configurations of
components. A KOALA configuration consist of
provided & required component interfaces and so
called switches that are used to translate the internal
provided variability to the KOALA level where it may
be exploited in product configurations. Essentially,
KOALA is an integration platform that provides a set
of variability realization techniques that may be used to
construct product configurations. KOALA is specific
for the Philips context of embedded, C based consumer
electronics software.
In recent years, web services have emerged as a means
to integrate independently developed software
components (often from different vendors). The
problem tackled by web services is remarkably similar
to the problem tackled by Van Ommering's KOALA.
In order to construct software products from web
service technology, multiple, independently developed
software components are web service enabled and

hooked up in a service grid (which may cross
organizational boundaries). Service grids are
distributed software systems consisting of
independently developed software systems whose only
commonality is that they can be accessed as a web
service.
Since web services and service grid technology are still
rather new technologies, relatively little research has
been done into how to develop software with these
technologies. We argue that designing service grid
applications is very similar to designing software
products in a software population, as described by van
Ommering. The service grid software architect has to
combine multiple software products, each enabled with
web service technology and capable of being executed
in a service grid context. Effectively, the various
services in a service grid form a product population
from which new products may be created by simply
combining them. Building software applications in a
service grid involves selecting, adapting and reusing
existing services; adding new services and
implementing glue code and client code.
Despite the similarities, there are also some
differences. The ADL and technical solutions van
Ommering proposes are appropriate for the domain of
embedded system software, not for web services in a
service grid.
So, there is a need for new methodology and
techniques to address intra organization reuse in a web
service context. Web service technology is the
platform of choice for this type of reuse and there is a
need for methodology and technology to adjust
software engineering practice.
We claim that existing variability management
techniques that have already been used successfully in
the context of product families and product populations
are well suited to fill this need. Service grids have their
own specific ways of implementing variability.
In this article, we explore a set of variability realization
techniques specific for service grids. We present a list
of readily applicable service grid specific technologies
that may be use to realize variant features in service
grid applications. Additionally we present a process for
using them based on our earlier work [17]. In this
earlier article, we presented a taxonomy of variability
realization techniques from which software product
family architects may select when designing software
product family architects with specified level of
variability. This article specializes that approach for
use with service grids.
1.4 Remainder of This Paper
Section 2 presents concepts and terminology our
categorization used for presenting the variability
realization techniques. Section 3 presents nine
techniques; section 4 outlines a process for using them.

Section 5 presents related work and we conclude the
article in section 6.
2. Variant Features in Service Grids
Variability management is considered to be of great
importance to maximize the reuse in software product
families [1][4]. The goal of the product family
approach is to simplify product development by
providing a flexible, reusable product family core.
Product development is then a matter of exploiting the
provided variability in the product family core
(selecting from existing components, implementing
new components, etc).
2.1 Terminology
In an earlier publication [17], we introduced
terminology and a taxonomy for classifying variability
realization techniques: techniques that may be used for
the technical realization of variant features. In this
paper we apply the terminology and, to some extent,
the taxonomy. Our earlier work positions variability
management as a means to identify, plan, design and
realize variant features in software product families.
However, the terminology mostly applies to other
types of software as well.
During the requirements phase it is identified that a
particular feature needs to be variant (e.g. the feature is
optional or alternative variants of the same feature are
identified). Then the variant feature is constrained.
This means that the requirements engineer determines
when the variant feature should be bound to a specific
variant. Binding time refers not to the development
phases but to very specific transitions any software
system goes through:
Architecture Derivation. In software product family
development, new software products may be based on
an existing software architecture. This software
architecture can support variability at the design level
and can present the designer with design decision such
as which components to use, redesign or omit in the
product design. In a service grid application
architecture, architecture derivation consists of
selecting service implementations and WSDL
descriptions. Some services may be reused; some may
require product specific implementations. Additionally,
there are various standardized service components that
may be incorporated into the application. Essentially,
the set of web service specifications provided by, for
example, the W3C and OASIS provide a high-level
web service product line architecture from which web
service based product architectures may be derived.
Toolkits and libraries such as the Globus toolkit,
Microsoft's WSRF.Net or Apache Muse that
implement these specifications may be used as reusable
assets. The selection of which components of what

toolkit to use is of course a very important architecture
decision.
Compilation. During compilation source code written
by the software developers, is translated into
executable code. The build process generally is
configurable. In the context of a web service,
compilation includes generating stub code from a
WSDL file. Any variability technique requiring
changes to the WSDL is thus bound during
compilation.
Linking. Linking is a process where it is decided
which software libraries/classes/objects are used.
Linking can be static (as part of the compilation
process) or dynamic (which means that linking takes
place during application startup or during run-time).
For a web service, linking is similar to looking up the
web service endpoint for a particular service using e.g.
an UDDI (Universal Description, Discovery and
Integration) registry.
Software startup. When an executable software
system is started, parameters, configuration files, etc.
are read. The purpose of a service grid is, amongst
others, reliability. Restarting the grid is, or should be, a
rare event. However, web services may be installed
into the service grid dynamically and have their own
lifecycle (start & stop of the service).
Run-time. Finally while a software system is running,
parameters may set, plugins may be loaded, etc. For a
web service this would mean calling it (by sending a
SOAP message) with specific parameter values that are
defined in the WSDL description of the service.
Deciding on a binding time is said to constrain the
variant feature.
A second way to constrain a variant feature is to
associate stakeholders with the various stages a variant
feature goes through:
• Identification & introduction. It is identified that

there is a need for variation; a variability
realization technique is selected and variation
points (i.e. a concrete representation (or
representations) of the variant feature in the
development artifacts.) are added to the software.

• Population. Variants of the variation points are
added to the software.

• Binding. Specific variants are selected and bound
to the variation points.

In the context of service grid applications, three
different types of stakeholders are involved:
• Service provider. This stakeholder provides a

specific service and is responsible for its design
and implementation.

• Service consumer. This stakeholder uses the
services offered by the service provider.

• Service mediator. Service mediation is the
process of connecting the provided service to its
consumer. In a service grid, service mediation may
involve looking up the service endpoint,
reconfiguring the grid to adjust dynamically for
changing capacity needs, delivering asynchronous
messages to subscribers, etc.

2.2 Categorization of Techniques
This article presents variability realization techniques
for use in service grid applications. As we argued in
[17], managing variability involves identifying &
constraining the variant features and then selecting a
suitable technique. To facilitate this selection we
present the techniques in this paper using the following
categorization:
• Intent. A brief description of the purpose of the

technique.
• Motivation. Discusses why the technique should

be used.
• Solution. A brief overview of how the technique

works.
• Constraints. Answers the constraint questions

listed above.
• Consequences. Discusses positive and negative

impact of using the technique.
• Example. An example of applications of the

technology.
This categorization is similar to the categorization we
used in [17]. In addition, it is very similar to but not the
same as the formats used in the design pattern
community (e.g. [5] and [8]. We believe this format is
best for the problem at hand: selecting a technique
based on analysis of variant features.
3. Variability Realization Techniques
In this section, we present an overview of variability
realization techniques that are specific for service
grids.
3.1 Service Lookup

Service Consumer Service

Lookup

<<calls>>

<<publish>><<uses>>
client context server context

message

Fig 1. Consumer looks up the service endpoint and sends message.
Intent. Allow a variable implementation of a particular
service to be used by a particular application.
Motivation. Service lookup makes it possible to
implement the consumed web service separately from
the calling application. An additional advantage is that
the web service implementation may be replaced by a
new implementation without changing the calling
implementation.
Solution. Select the web service implementation by
looking up the endpoint for the service at run-time
using a lookup service. Service lookup is a crucial

component of the broker pattern that is discussed in
[5]. The broker pattern underlies technologies such as
CORBA, DCOM, RMI, etc.
Constraints. New variants in the form of alternative
service implementations for a particular service
interface are the responsibility of the service providers.
However, the variation point these variants bind to is
owned by the service consumer. The binding happens
at run-time when the mediator looks up the service
provider endpoint on behalf of the service consumer.
Consequences. A service interface (usually a WSDL
interface) must be agreed upon before creating the
client application that will consume the service. This
interface will need to be registered in a lookup service
which complicates deployment (service must be
registered; clients must be configured with the lookup
service endpoint), system architecture (the lookup
service is an extra component) and usage of the service
because the client must contain extra functionality to
do the service lookup of the service.
Example. UDDI (Universal Description, Discovery
and Integration) registries are commonly used to
provide this type of variability. Service providers
register new services at the UDDI registry. Service
consumers look up the services in the UDDI by name
or by interface. Much of the complexity of registering
services in UDDI and using UDDI registries is
typically handled by application servers and generated
code from integrated development kits such as
Microsoft Visual Studio.
3.2 Client-side Proxy

Service Consumer Service<<calls>>

client context server context

Proxy<<calls>>

Fig. 2 The service consumer calls a client-side proxy, which makes
the call to the service on its behalf.
Intent. Allow service lookup without exposing it to the
client code in order to make (dynamic) changes in the
service operation transparent to the client.
Motivation. Having service consumers explicitly take
part in the lookup functionality, partially ties the choice
of which variant implementation is chosen to the
service consumer implementation. Additionally, as
noted previously, some complexity is introduced when
the service consumer has to perform a service lookup
before using the service. In cases where there is a one-
to-many relation between the service on one hand, and
the service consumer on the other hand, changing the
service consumer implementation, or even
configuration is undesirable.
Solution. Use a proxy library to insulate service
consumers from the service lookup and binding.
Embed the service lookup functionality in the library.
Constraints. Essentially this technique is very similar
to the lookup technique with one important difference:

service lookup becomes implicit. The client is
presented with a client proxy by the service provider
that performs the lookup on behalf of the client as part
of using the service rather than that the client initiates a
lookup and then calls the server. From the point of
view of the service consumer, there is no variation it
just calls the web service through the proxy. The
variation is embedded in the proxy and adding new
variants requires replacing it. The binding of the
available variants happens at run-time (though
transparent to the service consumer).
Consequences. As with the lookup service, some
functionality is required to do the lookup. The main
difference is that the functionality is part of the client
stub rather than the client itself. An additional
disadvantage is that the client has no control over the
lookup. In general, there may be multiple, suitable
service implementations conforming to the same
interface with different behavior that may be looked up
with an appropriate query. Using this technique,
however, hides the lookup from the client and makes it
impossible influence the lookup.
Example. An example of where this technique is
beneficial is mobile devices. Such devices have
limited, unreliable connectivity depending on the
quality of the connection different lookup strategies
may apply. Rather than embedding this logic in client
applications, it may be better to implement a smart
proxy. For example, an application that sends
information to a remote service may still be usable
when the device is out of range of a base station if an
intermediate proxy stores the information locally until
it can be sent when the device is connected again.
3.3 Façade / Gateway

Service Consumer Service<<calls>>

client context

server context

Facade<<calls>>

Lookup <<publish>><<uses>>

Fig. 3 The service consumer calls a façade, which looks up the
correct endpoint and passes the call to it.
Intent. Allow single point of entry to the service grid
to hide that the grid has multiple instances of the same
web service running on multiple nodes.
Motivation. A service grid typically hosts a large
number of web services that can be mapped to service
endpoints in the grid dynamically. The service
consumers must somehow connect to a specific service
on a specific service endpoint in the grid. Normally a
lookup service can facilitate this. However, as
discussed in the lookup technique, this complicates
using the service. Additionally, SOAP enabling clients
is not always feasible or desirable. E.g. in resource
limited devices such as mobile phones more efficient
simple binary protocols may be preferred to the

relatively bandwidth and processing intensive SOAP
protocol. So using a client side proxy is not an option.
Solution. Use a gateway that provides load balancing
and routing capabilities for the service grid clients. The
gateway provides a single point of entry for clients.
This gateway may itself be a SOAP service but it may
also provide other means of access. For example, it
might implement the XMLRPC
(http://www.xmlrpc.com/) protocol or a REST based
protocol [7].
Constraints. This technique is similar to the client side
proxy. The main difference is that the façade is server
side instead of client side.
Consequences. This creates a single point through
which all requests pass. This single point may become
a bottleneck. Additionally, as noted in [7], introducing
new layers in a network architecture generally
introduces additional latency because the data has to
pass through an extra layer.
Example. Google offers several web services to its
customers. For example, their ad words functionality is
exposed as a web service at
https://adwords.google.com/api/adwords/v3. This
convenient address is easy to remember and unlikely to
change. However, it is unlikely to be the actual
endpoint for the web service. Google is known to use a
very large cluster of computers to host its various
services. The computer at the endpoint cited here is
likely to be just a gateway. Even though the Google
cluster is probably not based on service grid
technology, as discussed in this article, it is similar
enough to serve as an example.
3.4 Configuration Parameter

Service Consumer <<call (String param=”A”>>

client context server context

behaviour X

behaviour X

param==”A”

param==”B”

Service

Fig. 4 A parameter in the service call determines which behavior is
executed.
Intent. Provide information to the web service to select
the right variant
Motivation. Some variation does not require elaborate
mechanisms that introduce configuration &
management overhead. For this type of variation, client
code may simply specify what variant to use by
passing it that information in the form of a simple
parameter.
Solution. Add a parameter to the operations defined in
the WSDL interface to pass the configuration
information.
Constraints. The variation point is provided by the
service provider. The logic for interpreting the value
and binding to the right value is executed at run-time.
Depending on how this logic works it may be

necessary to modify this functionality to support new
variants.
Consequences. The semantics of the interface are
obscured by the additional parameter which exposes
implementation details (i.e. related to the selection of
variants).
Example. The Google web service, which may be used
by application developers to include Google search in
their applications, includes a boolean parameter in the
API to enable safe search, i.e. the filtering of
inappropriate search results.
3.5 Turn Parameters into WSRF Resources

Service Consumer Service

Lookup

<<calls>>

<<publish>><<uses>>

client context server context

Resource Instance

message

<<refers>>

<<uses>>

Fig. 5 The message refers to a resource endpoint instead of including
a parameter with a id.
Intent. Convert the entity identified by a parameter
that is present in several web service interfaces to
separate web service.
Motivation. The parameter is used to refer to an entity
known to both the web service and the web service
consumer. The presence of the same parameter in
multiple web services indicates that the entity is a
shared resource. Making that entity available through a
standard interface makes this more explicit and makes
the resource available for manipulation by other web
services as well. Additionally, having a standard
interface prevents service implementations from
including implementation specific technology for
accessing the entity denoted by the parameter.
Solution. Convert the entity denoted by the parameter
into a WSRF resource. The WSRF (Web Service
Resource Framework) provides a standardized
interface for manipulating (lifecycle management,
reading, and setting properties) resources such as
database objects, devices or even the service grid itself.
The web service accesses the WSRF resource through
its web service interface. This keeps the service
implementation free from implementation specifics of
the resource implementation. Consequently, new
resource types may be added without requiring any
change to the services that use them.
Constraints. The variation points in this case are
references to resource endpoints in the services that use
them. These references consist of functionality to send
and receive message to and from resource endpoints
(i.e. the variants). So the variation points are
introduced by the service producer. Services may
create new resource instances at run time (through the
WSRF interface) so the service provider is also

responsible for populating the variation point. Finally
binding a service to a particular resource instance is
done by embedding a reference to the resource
endpoint in the service call. This is done at run-time by
the service consumer.
Consequences. Client code will have to look up the
right WSRF resource. In practice, this means that a
WSRF enabled web service toolkit is used for
generating client stubs, for example Apache WSRF
(http://ws.apache.org/wsrf/) or the Globus toolkit
(http://www.globus.org). Then toolkit specific glue
code provides the interaction with the resource. Using
a web service interface instead of embedding the
functionality in the web service also involves some
overhead. A call to a web service interface is many
times slower than, for example, calling a Java method.
Example. A simple example of this technique is the
common use case that a web service is used to
manipulate a business object that persists to a database.
The business object is identified by a primary key
which the web service consumer provides to the web
service using one of the web service parameters.
Likely, the logic implemented by the web service
involves reading & writing the properties of the
business objects (e.g. using SQL statements). Other
related web services may implement similar
mechanisms so it is beneficial to make this
functionality available in a separate web service.
Instead of inventing a custom interface, the WSRF
interface should be used for this. At a later stage, new
resource implementations in the form of an alternative
database backend (e.g. different table layout) may be
added. Also by encapsulating legacy components as a
WSRF resource, these components may be integrated
into new applications.
3.6 Service Grid Level AOP

Service Consumer

Service

client context

server context

<<calls>>

Lookup <<publish>><<uses>>

Intercepting Service

<<calls>>

Fig. 6 The lookup for the service results to an endpoint to an
intercepting service which makes the call to the actual service. All of
this is transparent to the service consumer.
Intent. Insert new functionality in existing web service
configurations without modifying service consumers or
service providers.
Motivation. As noted earlier, modifying client code is
not always feasible or desirable, especially in the case
of many deployed service consumers that are hard to
upgrade. Additionally, modifying existing service
providers to implement new functionality may not be
desirable either for several reasons:

• There may be service consumers that need the
existing behavior.

• The service is provided by an external entity.
• Not all service consumers need the new

functionality.
Yet, there may be a need to modify the functionality of
the web service.
Solution. Redirect the web service calls through a third
proxy web service that processes the message, calls the
target end point on behalf of the service consumer,
intercepts and processes the response and sends the
processed response back to the caller. This mechanism
is very similar to Aspect Oriented Programming [12]
where programmers 'intercept' program execution to
insert extra functionality.
Constraints. This technique has an implicit variation
point: the connection between service provider and
consumer. These connections are established, at run-
time, by the service mediator. Variation is achieved by
rerouting messages through a third service, also at run-
time.
Consequences. The level of indirection may have a
performance penalty since the number of web service
calls increases for each proxy added.
Example. This type of message interception is
supported by many SOAP stacks. For example,
Apache Axis has the notion of handlers. A SOAP
message may pass through many handlers before
arriving at its destination. But even without relying on
this kind of support, it is possible to just set up an
intermediate web service. A simple example could be
verifying if the client is properly authenticated before
passing the SOAP message on to a service that should
only be used by properly authenticated clients but does
not have any functionality for this it self.
3.7 Service Adaptation or Mediation

Service Consumer Service<<calls>>

client context server context

Mediator<<calls>>
interface Binterface A

Fig. 7 The service consumer calls a mediating service implementing
interface A. This service makes a call to another service using
interface B that the service consumer is incompatible with.
Intent. Allow an incompatible service consumer and
web service to work together.
Motivation. The situation that an independently
developed software component provides the required
functionality but is not compatible (e.g. because the
interface does not match) is quite common. Especially
in a service grid, where multiple, independently
developed web services need to be combined into
service grid application this scenario, this is quite
likely.
Solution. Introduce a mediating web service to work
around the incompatibility. The mediating web service
implements an interface that the client understands and
it implements this interface by using the incompatible

web service in the appropriate way. It encapsulates the
mediation logic required.
The problem that service mediation solves is not
unique to web services. In Koala, the architecture
description language Van Ommering describes [19],
components are connected through 'glue modules'
intended to mediate interface incompatibilities between
components. Service mediation is an important concept
in any web service architecture
Constraints. Service mediation adapts the provided
variability (by the service provider) to the required
variability (by the service provider). A mediating
service provides an alternative interface to an existing
service. The variation point is the original service
interface. The variants, consisting of mediator service
interfaces are added by the mediator. Binding of a
service consumer to the service provider through the
mediating service happens at run-time.
Consequences. Service mediation may not always be
possible (or desirable). The resulting functionality is
similar to glue code or script code mentioned in [13]
and is likely to be specific for the service consumer -
provider combination.
Example. Synapse
(http://incubator.apache.org/synapse/), an open source
framework for service mediation, provides
functionality for implementing service mediation
services. The framework facilitates such things as
message transformation; message routing and even
load balancing.
3.8 Role-oriented Web Services

Service Consumer 1

Service

client context server context
A B

C

A B

C

Service Consumer 2

<<calls interface C>>

<<calls interface A>>

Fig. 8 Two service consumers use the same service but through a
different (subset of) the interface.
Intent. Make it possible for existing software to
interact with a new web service.
Motivation. The API (application programming
interface) of a web service component allows the
service to be used in various interactions with other
web services or service consumers. Some of these
interactions follow a pattern that is not specific for the
web service implementation. Using a standardized
interface for these interactions enables any clients that
understand these interfaces to use the web service.
Solution. The WSDL (Web Service Description
Language) describes the full interface of the web
service.
The WSDL import functionality allows developers to
import WSDL fragments. Alternatively, the relevant
portions of WSDL can be pasted into the web service
description. Either method allows the reuse of existing

specifications for parts of the web service interface.
Reusing existing interfaces allows existing web service
clients that are already compatible with these interfaces
to interact with the new service as well. This
mechanism is similar to role based programming
popularized in e.g. [14] and commonly used in e.g.
Java and .Net based computer systems.
Constraints. The variation points in this technique are
references to services that implement the role interface.
The decision to include such references is the
responsibility of the service consumer. The variants
consist of any service that implements an interface that
includes the role interface. New variants may be added
at run-time by the service provider. Binding, i.e.
selecting an interface implementation is done at run
time, e.g. through a lookup service.
Consequences. The current version of the WSDL
specification has limited support for importing external
WSDL interfaces. The upcoming 2.0 version will
improve this but meanwhile a certain amount of copy
paste reuse cannot be avoided, when applying this
technique.
Example. Many of the web service specifications
standardized by the World Wide Web Consortium
(W3C) or OASIS standardize common interfaces. For
example WSRF (discussed earlier) standardizes
interfaces for the manipulation of resources; WS-
Notification standardizes interfaces for publish
subscribe type interactions. The benefit of conforming
to such standardized interfaces is interoperability with
other, independently developed software that conforms
to these specifications as well. Currently available
tools for creating web service based applications all
include some level of support for the before mentioned
standardized interfaces. Consequently, web services
implemented using these tools are likely to expose
multiple standardized interfaces and be accessible in a
standardized way.
3.9 Alternative Service Interfaces

Service Consumer Service<<rmi call>>

client context server context

SOAP stubSOAP stub <<http>>

SOAP message

Fig. 9 The service consumer has two options for using the service: a
SOAP interface and a second interface (e.g. Java RMI based). If the
service consumer is implemented in Java and running in the same
local network as the service, it may use the more lightweight RMI
instead of the SOAP interface.
Intent. Improve performance by avoiding the use of
heavy weight protocols such as SOAP.
Motivation. SOAP is an integration technology. Using
SOAP makes sense when calling other applications on
different network nodes, implemented using different
technologies. It is known to introduce significant
overhead, however. Therefore, web services interacting

with each other might benefit from alternative means
of interaction.
Solution. These alternatives means of interaction may
range from XMLRPC to more traditional remote
procedure forms such as RMI, CORBA, etc. The use of
the SOAP service interface then becomes optional,
required only if the other techniques are not supported.
Constraints. The service provider needs to provide an
alternative ways to access the functionality. The
variation point in this case is the native interface of the
functionality (e.g. a Java interface or a C header file);
the variants are the various means of accessing this
interface (e.g. a SOAP server stub, an XMLRPC
handler, etc).
Consequences. The client and server functionality
needs to be extended with functionality that decides
when to use what form of remote procedure calls.
Example. Recently, the reference implementation of
the Java Business Integration (JBI) standard was
finalized (http://java.sun.com/integration/). The aim of
this technology is to separate the binding of web
services from specific web service protocols. Web
service implementations use a lookup mechanism (part
of the JBI infrastructure) to find each other. The JBI
middleware then takes care of delivering messages
from one service to another using an appropriate
protocol (e.g. SOAP, Java Remote Method Invocation
(RMI), CORBA, etc.).
4. Selecting the Right Technique
The list of techniques in the previous section may all
be used to realize required variability in a service grid
application. In this article, we suggest that one of the
things to consider in this decision is the variability
constraints associated with the variant feature under
consideration. The process we propose for this (based
on our previous work [17]) is:
• Identify the variant features relevant at the web

service architectural level. There are several ways
to do this. There appears to be a lot of consensus
that domain analysis and feature diagrams in
particular are suitable for identifying and
documenting variability. FODA [10], for example,
includes a feature diagram notation, which we
specialized informally in [17] Riebisch et al.
present a similar UML based notation [15]. All of
these notations organize the requirements into a
feature hierarchy where the nodes in the hierarchy
represent variability (i.e. the variant features).

• Constrain the variant features. Using the
terminology from section 2 related to introduction
of the variation point(s), population of the
variation point with variants and binding of the
software to a particular variant.

• Using the list of provided techniques and the
constraints, select a technology that satisfies the
constraints. The constraints listed with the
techniques above may be of use for this purpose.
However, additional issues such as whether the
added complexity is worth the benefit of exactly
fitting the constraints should also be taken into
account. Other quality attributes such as
performance, maintainability, etc. should also be
taken into account. Our list of technologies does
not explicitly include a discussion on quality
attributes.

• Minimize the number of techniques used unless
the constraints require their usage. Minimizing the
number of techniques is required to keep the level
of complexity under control. If necessary,
flexibility should be traded off for uniformity and
simplicity.

5. Related Work
Product families & Variability. Various recent
publications, e.g. [20] [9] [6] [4], have established
product family research as a separate discipline in the
software engineering community. Product families are
seen as one of the most successful ways of achieving
reuse when developing in the large. Recognizing that
modern software development is increasingly about
integrating large software components across
organizational boundaries, Van Ommering et. al.
developed KOALA, an architecture development
language designed to create products from product
populations [19]. Our article focuses on specific
integration technology (web services and service grids)
that the authors believe is going to be as important in
the software product family community as it already is
in the enterprise application arena where all large
vendors (Sun, Microsoft, IBM, etc.) have made large
investments in web service technology. A key
component of product family development is planning
for variability (e.g. [4] and [20] claim this).
Additionally, as noted earlier, approaches such as
FODA [10] and derived approaches such as FORM
[11] and the UML based notation in [15].
In [16], a feature diagram notation is used to identify
variability in web service architectures. However, their
approach focuses on the user's point of view instead of
integrating web services from multiple sources, such as
in this article.
Architectural styles. As such, the technologies
presented in this article are not new and should in fact
be very familiar to software architects who most likely
employ most of these techniques in practice. Most of
these techniques are variations of techniques that are
also used in other types of architectures. Nearly all of
the techniques are in one form or another derivatives or

instances of the patterns and architectural styles
popularized in [8] and [5]. However we present them
in the context of variability management, an angle that
is generally not considered in the pattern community
and focus on service oriented architecture which is
emerging as the common architectural style for
programming in the large. For this reason our way of
presenting the techniques is also slightly different.
In his dissertation on network architectural styles [7],
Fielding, co founder of the Apache Foundation and
author on, amongst others, the HTTP specification,
outlines the architectural principles of the WWW that
he helped build. He refers to this architectural style as
REST (Representative State Transfer). Most of the
REST concepts that Fielding apply to service grids as
well. For example, Fielding discusses gateway and
proxy components, both of which are in our overview
of techniques.
Role oriented programming. The notion of role
oriented programming was popularized first in the
object oriented programming community. For example
Reenskaug et al. [14], published about their OORAM
methodology where classes extend multiple role
classes, each representing a specific role in an
interaction with other objects. Catalysis [18] is a
similar method that works on the same principle. Role
oriented programming recognizes that objects can be
used in different types of interactions with other
objects. Each of these interaction types is associated
with a subset of the interface of the object. This
principle extends to web services where a number of
standardized role interfaces are emerging (e.g. WS-
Notification, WS-Security, etc). Our role oriented web
services technique is based on this notion.
6. Summary
In this article, we have presented list of techniques and
accompanying process intended for realizing
variability in service oriented architectures. Strictly
speaking, most of our techniques are not specific to
service grids. However, service grids introduces a lot
of variation (e.g. in endpoint location) that makes using
our techniques a necessity since e.g. hardwiring
endpoint addresses (which is common in stand alone
web service implementations) ceases to be an option.
Variability management has proven to be an essential
component of most software product family
approaches. We expect that this will continue to apply
when web service technology is adopted as the primary
integration technology for defining product
populations of service enabled components distributed
in corporate service grids that may even cross
organizational boundaries.
Our work contributes to promoting this by relating a
set of web service technologies to the variability

terminology that is already used in the context of
product family development. Thus, the process such as
outlined in section 4, which is already a part of some
traditional product family development methods such
as described in e.g. [20] and [4], may be used to
explicitly design for variability and make informed
decisions based on the requirements with respect to
technology selection and usage.
Future work. The process outlined in section 4 must
be extended and embedded in existing product family
methodology. Validating such methodologies should
be part of such research. Furthermore, our list of
techniques is far from complete (nor is it intended to be
at this point). Similar to the pattern community more
work could be done to investigate, categorize, and
describe web service variability realization techniques.
Finally, the currently emerging set of web service
standards still has a large number of issues with respect
to usability, performance, complexity etc. We expect
that there will continue to be rapid improvements and
innovations in this area for the next few years.
7. References
[1] F. Bachmann, L. Bass, “Managing variability in
software architectures”. proceedings of the ACM Symposium
on Software Reusability: Putting Software Reuse in Context,
pp. 126-132, 2001.
[2] M. Baker. "Ian Foster on Recent Changes in the
Grid Community", IEEE Distributed Systems Online, 5(2),
February 2004.
[3] David Booth, Hugo Haas, Francis McCabe, Eric
Newcomer, Michael Champion, Chris Ferris, David
Orchard. "Web Services Architecture", Web Services
Architecture Working Group, http://www.w3.org/TR/ws-
arch/, February 2004.
[4] Jan Bosch, “Design & Use of Software Architectures -
Adopting and Evolving a Product Line Approach“, Addison-
Wesley, 2000.
[5] F. Buschmann, C. Jäkel, R. Meunier, H. Rohnert, M.
Stahl, “Pattern-Oriented Software Architecture - A System of
Patterns“, John Wiley & Sons, 1996.
[6] P. Clements, L. Northrop, “Software Product Lines -
Practices and Patterns”, Addison-Wesley, 2002.
[7] R. T. Fielding, " Architectural Styles and the Design of
Network-based Software Architectures", Ph. D. thesis,
University of California, Irvine, 2000.
[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides. "Design
Patterns - Elements of Reusable Object Oriented Software".
Addison-Wesley, 1995.
[9] M. Jazayeri, A. Ran, F. Van Der Linden, “Software
Architecture for Product Families: Principles and Practice”,
Addison-Wesley, 2000.
[10] K. C. Kang, S. G. Cohen, J. A. Hess, W.E. Novak, A.S.
Peterson, “Feature Oriented Domain Analysis (FODA)
Feasibility Study“, Technical report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.
[11] K. Kang, S. Kim, J. Lee, E. Shin, M. Huh. FORM:
A Feature-Oriented Reuse Method with Domain-Specific

Reference Architectures, "Annals of Software Engineering",
5(5), pp. 143-168, September 1998.
[12] Kiczalez, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J-M. Loingtier, J. Irwin, "Aspect Oriented
Programming", Proceedings of ECOOP 1997, pp. 220-242,
1997.
[13] J. K. Ousterhout, "Scripting: Higher Level Programming
for the 21st Century", In IEEE Computer Magazine 1998 ;
31(3):23-30.
[14] Reenskaug, T., P. Wold and O.A. Lehne "Working with
Objects; The OORam Software Engineering Method",
Prentice Hall, 1995.
[15] M. Riebisch, K. Böllert, D. Streitferdt, I. Philippow,
Extending Feature Diagrams With Uml Multiplicities,
proceedings of Integrated Design and Process Technology,
IDPT-2002, 2002.
[16] Silva Robak, Bogdan Franczyk, "Modeling Web
Services Variability with Feature Diagrams", In Web, Web-
Services, and Database Systems, pages 120--128. Akmal B.
Chaudrin, Mario Jeckle, Erhard Rahm and Rainer Unland,
2002.
[17] Mikael Svahnberg, Jilles van Gurp, Jan Bosch. "A
taxonomy of variability realization techniques", Software
Practice & Experience, 35(8), pp. 705-754, 2005.
[18] D. D’Souza, A.C. Wills, Composing Modeling
Frameworks in Catalysis. in Building Application
Frameworks - Object Oriented Foundations of Framework
Design, M. E. Fayad, D. C. Schmidt, R. E. Johnson (eds.),
John Wiley & Sons, 1999.
[19] R. van Ommering, Building product populations
with software components, proceedings of the 24rd
International Conference on Software Engineering, pp. 255 -
265, 2002.
[20] C. T. R. Lai, D. M. Weiss, “Software Product-Line
Engineering: A Family Based Software Development
Process”, Addison-Wesley, 1999.

