
Abstract

The ever growing size and complexity of software sys-
tems is making it increasingly harder to build systems that
both meet current and future requirements. During archi-
tecture design, a lot of important design decisions are
taken. In this paper, we present an architecture design
notation based on UML's activity diagrams. The notation
allows for the specification of architecture fragments and
supports composition of these fragments as well as super-
imposition of the fragments on each other. This notation
allows us to make various compositions of architecture
fragments (reflecting design decision alternatives) to
adapt the architecture to new requirements. We have found
that our notation is very suitable for modelling separate
concerns at the architectural level.

1 Introduction

The ever growing size and complexity of software systems
is making it increasingly harder to build systems that both
meet current and future requirements. In earlier work [10],
we identified that development of systems consists, to a
large extent, of taking design decisions. Typically, these
design decisions accumulate and consequently it is often
hard to discard decisions taken early in the development
due to the consequences such an action would have on the
subsequent design decisions. Eventually, new require-
ments will invalidate some of these decisions. The process
of incorporating new requirements properly can be expen-
sive. Consequently, a less than optimal solution is often
preferred to preserve the architecture that resulted from
the earlier design decisions. The use of such quick-fixes
erodes the architecture and adds to the problem rather than
solving it.

Currently, there is ongoing research that focuses on
separation of concerns. E.g. Aspect Oriented Program-
ming (AOP) [18], Subject Oriented Programming
(SOP)[12] and Multi Dimensional Separation of Concerns
(MDSC)[29]. However, considering that the most impor-
tant design decisions are those taken early in the develop-
ment, these approaches share a flaw: they all operate on
the implementation level and detailed design level only. In
this paper we propose an architecture level design notation
that is specifically designed for modelling concerns on an
architectural level while preserving information about the
design decisions taken during the architecture design.

1.1 Problems

Lack of architectural separation of concerns. Many
important design decisions are typically taken early in the
development of a system. Especially during architecture
design, many important decisions are taken. However,
despite this, few architecture design techniques take sepa-
ration of concerns into account. Such techniques do exist
for the detailed design and implementation phases (e.g.
[18][12][29]). Methods and techniques for achieving sepa-
ration of concerns at the architecture level are lacking,
though.
Poor support for withdrawing design decisions. A sec-
ond problem is that many architecture design methods
work in an iterative fashion and accumulate design solu-
tions as the architecture evolves. Because of this, each
new design solution added to the architecture becomes
dependent on all of the previous decisions. However, some
decisions do not really affect all of the system and could
be imposed on an early version without affecting later ver-
sions. 

If, for instance, we have a set of design decisions, D1,
D2 and D3, that are applied in that order to an architecture
A, the normal course of development would be to first
change the architecture to incorporate D1, then D2, and
then D3. However it would be difficult to first do D2 and
then D3 and then apply D1 to the original architecture (i.e.
without D2 and D3 applied). With stepwise refinement,
D1 has to be applied to the full architecture because the
only architecture available is that with D2 and D3 already
applied. The original architecture is lost in the process.
This causes problems when there exists a variant of D1:
D1’ that needs to be inserted instead of D1.
Imposing new design decisions. Often, design decisions
need to be taken that have an effect on design decisions
already taken. A good example of this is imposing a cach-
ing algorithm on an architecture to improve efficiency of
the communication. After a building a first version of the
architecture without caching, testing might show that com-
munication needs to be improved. Typically caching can
be added to a system in a transparent fashion. However,
expressing this on an architectural level may be cumber-
some since the component structure is changed. Ideally,
we would like to model the architecture without caching
and then specify how caching can be added to this archi-
tecture rather than re-specifying the architecture to include
caching. In addition, when taking future design decisions,
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we do not want to add dependencies tot the caching design
decision unless this is required or cannot be avoided (i.e.
further design decisions are dependent on the architecture
without caching). 

1.2 Running example

As a running example, we will use a fire alarm system that
we used in an earlier case study [5] and [21]. In the origi-
nal version of this fire alarm system, a number of design
decisions are taken to optimize behavior of the architec-
ture for real time and performance requirements.

1.3 Solutions

We address the identified issues by introducing a UML
based notation for defining and composing architecture
fragments. Since the composition of fragments is made ex-
plicit, to a large extent, it does not suffer from the prob-
lems outlined above. Of course some mixing of concerns
is necessary to express the functionality of the system.
However, this mixing of concerns is limited to constraints
on the composition of fragments. 

1.4 Remainder of the paper

In Section 2 we introduce our approach. Section 3 discuss-
es an extensive example where this approach is used. In
Section 4 we provide an analysis of the use of our ap-
proach on the case presented in Section 3. In Section 5 re-
lated work is discussed. And we conclude our paper in
Section 6.

2 Notation

In [11], we outline the development process as a process
of constraining variability. The process starts with collect-
ing and interpreting requirements, creating an architecture

design, a detailed design, an implementation, a compiled
system, a linked system and a running system. At each
phase decisions are taken about the design of the system.
For instance, during requirements analysis, decisions are
taken about which features to include and which features
to exclude from the system. 

In this paper we focus on the architecture design phase.
While this phase can be revisited later in the development
(which is common in iterative development methods),
most of the architecture design is created very early in the
development process. The reason for this is that as the
development process progresses, the legacy of the later
phases (e.g. detailed design and implementation) starts to
become an obstacle for radical architectural changes. Rad-
ical architectural changes have a strong effect on this leg-
acy and are therefore not very cost effective. 

The architecture design process gets most of its input
from the requirements analysis and previous experience
with building similar systems. The latter knowledge is
available as architectural styles [6], design patterns [8] and
the developer’s personal experience. Using this informa-
tion, software architects construct the architecture by tak-
ing design decisions. An architecture design decision may
have one or more of the following effects on an architec-
ture:
• It can introduce new design rules.
• It can impose constraints on the existing architecture.
• It can introduce new structural elements to the archi-

tecture.
• It can remove structural elements from the architec-

ture.
• It can superimpose new behaviour on some or all ele-

ments of the existing architectural structure. 
The notation we introduce in this paper primarily supports
the latter three types of design decisions and can easily be
extended to provide support for first two types. 

2.1 Formal Notation

Table 1: Notation

Graphical notation Semantics Pseudo code
action1 ; action2

if B
then action1
else action2
fi

fork
action1

||
action2

end

fork
action1 ; s

||
action2 ; s

end

action1 action2
action1 action2•

action2 action3

action1 action2↔

action1 action2

action1 action2||

action1 action2
action1 s•( )
action2 s•( )

||



The notation we use is based on UML activity dia-
grams (also see [22]). Activity diagrams are used to model
the dynamic behavior of a system as a series of activities
that take place in a specified order. The activities can be
loosely grouped into so-called swimlanes to indicate that
they are related. Such swimlanes can, for example, be used
to identify architectural components. By specifying com-
positions of these swimlane-fragments different architec-
tures can be created.

In order to specify the composition of fragments, we
use a formal notation that is equivalent to the graphical
notation. The formal notation (also see [13] and [20]) first
appeared in the trace theory approach of [27]. In this nota-
tion, a trace structure consists of an alphabet (a set of
activities) and a trace set (all sequences of activities that
are allowed in the structure; including their prefixes). We
adopt the weaving and blending composition function of
trace structures. In addition to this algebra, we also pro-

fragment Example1
(in in1; out out1, out2)
begin
in1 ;
A ;
fork
B ;
if condition then out1
else s
fi

||
C ; s

end ;
D ;
out2

end

fragment Example2
(in inX; out outY)
begin
inX ; X ; Y ; outY

end

(where inX = outY ),
The result is:

fragment Composition
(in inX; out out1, out2)
begin
fork
example (in1, out1, out2)

||
example2 (inX, outY)

with in1 = outY
end

end

The Composition is given by

fragment Observable
(in change, done;
out notify, proceed)
begin
change ; notify ; done ; proceed

end

fragment ObservableExample2
(in inX, done ; out outY, notify)
begin
fork
Example2(inX, outY)

||
Observable(change, done, notify,
proceed)

with X.after = change
and Y.before = proceed

end
end

Table 1: Notation

Example1
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D
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out2
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in1 A
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(

)

••

D out2•
•
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Example2 inX outY;( )
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Example1
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X Y
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Example2 inX s,( )
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vide a pseudo code notation for enhanced readability. We
use the formal notation only to define the semantics of our
notation.

In this paper we use  for atomic activities and
 for sequences of activities. The operator 

denotes concatenation: activity b follows after a. The
operator  denotes choice: either P or Q will be the
next sequence of activities. Concurrency is denoted by

 and means that P and Q can run in parallel. Com-
mon activities in P and Q are used for synchronization.
For example  uses b for synchroniza-
tion. P and Q can only proceed with such a common activ-
ity if both P and Q are ready to do so at the same time. The
resulting order of activities in our small example is

. This composition function is called weav-
ing in trace theory. When the common b is an internal
activity for synchronization purposes only, we use the
composition function blending. With blending, the internal
activity is left out the resulting behaviour. In the above
example the blending results in  (i.e. first a and
then c and d in parallel). We use blending to formally
describe the internal synchronization (see Example1 in
Table 1) and for composition of fragments.

UML activity diagrams use so-called swimlanes to
group related activities. In our notation, swimlanes can be
formally described by using the above operators together
with internal activities defining the in-going and out-going
triggers of the swimlane. Such a representation of a swim-
lane is called a fragment (see Table 1 for an example). 

2.2 Composition 

Composition of a number of fragments can be accom-
plished by using the ||-operator together with the synchro-
nization mechanism. Common activities are used as
internal activities for synchronization. In Van de Snep-
scheut [27] this is called blending (weave both behaviours
by synchronizing on the common events and omit the
common events in the result).

As an example consider the composition of
Example1 and Example2 that is created by connect-
ing outY with in1 (we map an out-going trigger with an
in-going trigger). outY (or in1) is used as the common
internal activity and is left out of the resulting composition
since we use the blending function. The resulting compo-
sition is again a fragment in the sense that it can be used
for further compositions as well. 

 The connection operator is both symmetric and asso-
ciative i.e.  and 
Van de Snepscheut [27] proves that the corresponding
blending-operation is also both symmetric and associative.
It should be noted, though, that blending is only associa-
tive as long as internal activities are common to at most
two of the involved fragments. This rule applies to our
notation because we explicitly declare internal activities as
equal, pairwise for each || operation. Associativity makes
it possible to compose fragments in any particular order.
Only the activities denoted by in and out in the parame-
ter list of the fragment are used for the composition. 

2.3 Superimposition

A second form of composition that is supported in our
notation is superimposition (also see [3]). Superimposition
allows for composition of a fragment with activities inside
a fragment (i.e. the fragments internal behaviour is
enhanced, unfortunately this breaks associativity as
defined in the previous section). In order to express super-
imposition in our notation, all arrows in the UML-swim-
lanes are considered to be anonymous internal activities.
Formally, we assume that instead of , the concatena-
tion consists of a finite and suitable number of internal
activities, e.g. , where each  is an
anonymous activity. In our pseudo code notation these
anonymous activities are present at each semicolon. We
can indicate  by writing a.after and  by writing
b.before.Both these internal activities can then be used
as if they were listed in the parameter list with in or out.
The keywords before and after are also used in the
pseudo code notation. If the internal activity goes just
before, or just after a decision-node, we use the condition
X together with the if to denote the internal activity, for
example ifX.before denotes an anonymous activity just
before the decision-node and ifXtrue.after an anony-
mous activity just after the decision-node following the
true-arrow. Many reflective OO languages (e.g. CLOS
[17]) use a similar mechanism.

2.4 Interfaces

When composing fragments the internal description is not
needed, except when using superimposition. Therefore we
introduce fragment interfaces that allow us to abstract
from a fragment’s internals. A fragment interface is a frag-
ment without internal activities. Fragment interfaces can
be used in compositions instead of real fragments. The ad-
vantage of this is that different fragments ‘implementing’
the fragment interface can be substituted in that composi-
tion. 

When associating a fragmentinterface with a concrete
fragment, the fragment must have the same in- and out-
parameters. The fragmentinterface only describes the out-
side of the corresponding fragment in the activity dia-
grams. The pseudo code notation for fragment interfaces is
fragmentinterface IName (parlist). By convention,
we add a prefix (I) to the name to distinguish it from ordi-
nary fragments. To indicate that a fragment is a realization
of one or more fragment interfaces, we use the following
syntax: fragment Name implements IName1,
IName2, ...

2.5 Deriving a detailed design

Our notation is intended for use on the architectural level.
While our notation is UML based, we feel that it is neces-
sary to elaborate on how to use the resulting composition
as a starting point for detailed design. An important thing
to realize is that there may be more than one possible de-
tailed design for a given architecture design. When creat-
ing the detailed design additional design decisions are
made.

The UML diagrams, typically used during detailed
design, are class diagrams and collaboration diagrams.

a b c, ,
P Q R, , a b•

P Q↔

P Q||

a b• c•( ) b d•( )||

a b• c d||( )•

a c d||( )•

a b|| b a||= a b c||( )||( ) a b||( ) c||( )=

a b•

a e1• e2 … en b•••• ei

e1 en



Since architecture level diagrams lack certain information
present in a detailed design, we do not consider such
things as implementation inheritance or class variables.
Specifying such information really is part of the detailed
design. Consequently, we use a subset of the constructs
typically found in a class diagram. Rather than specifying
classes, we specify interfaces. A straightforward method
to derive a detailed design from a fragment composition is
to interpret the fragments as UML-interfaces and the
activities as method calls. The composition of the frag-
ments then serves as information about collaboration and
can be used to derive aggregation and containment rela-
tions between the fragment interfaces. 

Furthermore, the information from the various compo-
sitions provides us with the information about how these
UML interfaces relate to each other. Every time an out-
going activity is mapped to an incoming activity in
another fragment, we are dealing with some form of dele-
gation (either a method call or a return from a previous
call). In the composition, the out-going operation is
mapped to an incoming operation, so, in a UML class dia-
gram this results in a call to one of the public methods on
an interface (the in and out activities are lost in the blend-
ing process). 

UML uses several types of relations, which can all be
used to model delegation. The weakest form is defining an
association relation. An association relation says nothing
more than that one end of the association is associated
with the other end in some way. By specifying cardinali-
ties, it can be expressed that, for instance, one end is asso-
ciated with multiple entities on the other end. Information
about these cardinalities may be present in the fragment
definition in the form of constraints. Since the control flow
is unidirectional in the fragment definition, navigability
can be used on the associations (this makes the association
uni-directional).

More advanced forms of delegation-like relations in
UML include aggregation and composition relations.
However, our fragment notation does not provide enough
information to derive this type of relation. We consider
making decisions regarding this type of relation to be
important design decisions that are part of the detailed
design. However, sometimes it is obvious that e.g. an
aggregation relation is intended, so specifying such rela-
tions during derivation may be done if possible but in gen-
eral the architecture design does not provide the necessary
information to make such a decision.

Inevitably, superimposition information is lost in the
process since we do not have similar detailed design con-
structs available. It may be necessary to take additional
design decisions such as splitting/merging interfaces and
specifying additional methods. We have found that the dis-
tinction between an architecture design and a detailed
design is a very grey area. In fact the derivation process
outlined in this section could be considered to be part of
either development phase. 

Once a class diagram has been derived, additional
object collaboration diagrams may be defined as well.
Doing so is rather straightforward and boils down to fol-
lowing the arrows in the activity diagram notation we use. 

3 Examples: The Fire Alarm system

In the introduction we already mentioned the fire alarm
case briefly. To illustrate our technique, we applied it to
this case. The subject of the case is the creation of an ar-
chitecture for a fire alarm system. In the earlier case stud-
ies [5][21] we described an architecture for this domain. In
this paper we will use the requirements that were associat-
ed with this architecture and use them to create various ar-
chitectures for the domain. We will interpret the
requirements liberally to allow for different architectures
and design decisions.

A fire alarm system consists of sensors, actuation
devices, communication devices and so on. In an indus-
trial setting there may be hundreds or even thousands of
these devices. The purpose of the software system is to
manage these devices and their software representations.
In addition, the communication between these devices
needs to be handled. Since it is vital that a fire alarm is
activated within a predetermined time interval after the
sensors detect that there is fire, there are a number of real-
time and security requirements on the operation of the sys-
tem. It would be dangerous, for instance, if there would be
much delay in time between the detection of a fire and the
activation of the alarm. Because of this, a fire alarm sys-
tem must comply with government-enforced regulations
for such delays. Another important element in this case is
that the software has to be able to deal with large industrial
setups, meaning that there may be thousands of sensors
and actuators.
Functional Requirements. 
• Read sensor values
• Evaluate sensor values and determine if they deviate

from preset trigger values.
• Trigger actuators when appropriate.
Quality Requirements. 
• Real-time behaviour. The performance of the system

has to scale in such a way that the predetermined
period of 3 seconds between detection and alarm is
never exceeded. 

• Scheduling. The software will run on a simple OS,
meaning that we will have to implement our own
scheduling.

In the remainder of this section we discuss a number of
different approaches to modelling this architecture. We
have used the architecture design method presented in [4]
to design the various versions of the architecture. In this
method, the design starts with a functional design. In sub-
sequent design iterations, changes are incorporated to ad-



just the architecture to the quality requirements.

3.1 Functional design

The first version of the architecture does not take the qual-
ity requirements into account and is based on the function-
al requirements only. The functionality can be described as
follows: A sensor can be requested to measure itself; It
then compares its value to some trigger and establishes
whether it deviates from the trigger. When a deviation oc-
curs, an actuator (e.g. an alarm bell) needs to be activated
(see Figure 1 for both fragments). 

An actuator can be associated with multiple sensors.
To establish whether actuation is needed it has to check for
deviations in all its sensors. The actual actuation strategy
is left to the actuator (e.g. all sensors must have deviation
or one deviating sensor can trigger the actuator). 

By composing the actuator and the sensor as in Figure

2, a simple version of the fire alarm can be made. In this
version of the fire alarm, an actuator requests all its sen-
sors for deviations and then decides whether to trigger the
alarm. 

As an example we also provide the composition in
pseudo code. In the remainder of the paper we will omit
pseudo code examples.
fragmentinterface ISensor
(in request; out returnDeviation)

fragment Sensor implements ISensor
begin

request ; measure ; process ; returnDeviation
end

fragmentinterface IActuator
( in start, receiveDeviation;
out request, notActivited, activated)

fragment Actuator implements IActuator
begin
start ; sendRequest {do this for all sensors} ;
request ; receiveDeviation ; collect ;
if alarm then activate ; activated
else notActivated fi

end

fragmentinterface IFireAlarm(in start; out
notActivated, activated)

fragment FunctionalFireAlarm implements IFireAlarm
begin
fork
IActuator(in start, receiveDeviation;
out request, notActivited, activated)

||
ISensor(in request; out returnDeviation)

with IActuator.request = ISensor.request
and IActuator.receiveDeviation =

ISensor.returnDeviation
end

end

3.2 Fire alarm with cached sensor deviations

The simple approach outlined above works for small sys-
tems. However, when multiple sensors and actuators are
used, the communication grows exponentially. Especially,
when one sensor is used by more than one actuator. A con-
sequence of this may be that the system no longer com-
plies with the regulations. To address this issue a caching
mechanism (Figure 3) may be introduced to reduce the re-
dundant communication between sensors and actuators. 

We are then faced with the choice whether to compose it
with the sensor and actuator or whether to superimpose
this on our previous simple fire alarm composition. Our
notation allows for both approaches so we demonstrate
them both (Figure 4 and Figure 5).

The first approach uses ordinary composition however,
the second composition (that uses super imposition) has
the advantage that it reuses the FunctionalFireAlarm com-

Figure 1 The Sensor and Actuator
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Figure 2 The Functional Fire alarm
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Figure 4 The Composed Caching Fire Alarm
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Figure 5 The SuperImposed Caching Fire alarm
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position (at the cost of exposing its internal activities
because of the use of superimposition).

3.3 Scheduling

An additional requirement from the domain of fire alarm
systems is that the system has to do application level
scheduling. The scheduler (Figure 6) can be composed
with either of the compositions outlined above. As an ex-
ample we will compose the scheduler with the fragment in
Figure 5. The ScheduledCachingFireAlarm meets with all

the requirements outlined before. In the remainder of this
section we will discuss alternative solutions and demon-
strate the flexibility of our notation by reusing as much as
possible from what we have defined up till now.

3.4 Blackboard solution

The ScheduledCachingFireAlarm may potentially poll a
lot of Sensors (if they have not been polled before). Also,
there is no way for the cache to determine whether the
cached value is still correct. To solve this a blackboard ar-
chitecture can be used. In a blackboard architecture (Fig-
ure 8), sensors update their deviations on a central
blackboard at regular intervals. The actuators poll the
blackboard and receive the latest value.

In combination with the scheduler, a replacement for
ScheduledCachingFireAlarm can be made. This is done by
first composing Scheduler with Sensor and Actuator to
create ScheduledSensor and ScheduledActuator. Since this
is a trivial composition, we leave it as an exercise to the
reader and just present the composition with the Black-
board in Figure 9.

Once again, the fragment has the same parameters as
the previous compositions. This means that it can be used
in any place the previous compositions are used. Unfortu-
nately, it is not possible to reuse the FunctionalFireAlarm
since the control flow is reversed (i.e. the sensor updates
the blackboard rather than that the blackboard polls the

sensor). However, the BlackboardFireAlarm implements
the same interface as the previous alarm fragments so they
can be used interchangeably.

It should be noted that in the above composition we
have coupled the Scheduler’s tick-activity to both the Sen-
sor’s request activity and the Actuator’s start activity. We
have declared an activity in three fragments to be equal
and this conflicts with the restriction for the formal blend-
ing operator from trace theory to be associative. Since the
Scheduler is put in front of the Sensor and the Actuator,
we still have the associative property, however (proof is
left to the reader). In general, however, this may not be the
case.

4 Analysis

Using our architecture modeling notation approach, we
have created a number of different compositions of frag-
ments. In this section, we will provide an analysis of the
application of the notation on the case in Section 3. Also
we will reflect on the issues outlined in the introduction.

4.1 Problems and Solutions

In the introduction we identified a number of problems. In
this section we will argue how the notation addresses the
issues outlined in the introduction.
Separation of Concerns. Our notation provides support
for superimposition. This means that we can alter a frag-
ment by imposing another fragment on it. The superimpo-
sition mechanism can be used to separately define
concerns and impose them where necessary. An example
of this is the way we impose caching on the functional
firealarm in Section 3.2. The caching fragment is fitted be-
tween the actuator and sensor fragment, transparently
changing the way these two fragments interact. The result-
ing caching firealarm has the same externally visible frag-
mentinterface so any composition it is involved in will be
unaffected by the change.
Withdrawing design decisions. Compositions of frag-
ments can be altered easily by replacing parts with similar
parts. An example of an application of this feature would
be to design a system with a fire alarm embedded. Initially
the FunctionalFireAlarm could be used. Later on, it could
be replaced by one of the other fire alarm fragments easily

Figure 6 The Scheduler
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Figure 9 The Blackboard Fire alarm
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(see also substitutability). 
Substitutability. Substitutability (i.e. a is-a relation) is
one of the three properties Szyperski identifies as essential
of inheritance (the other two are inheritance of interfaces,
inheritance of implementation) [28]. Since our notation is
an architecture level notation, it does not provide imple-
mentation inheritance. However, by providing an interface
construct we can support the other two. An example of this
is the IFireAlarm interface we provide. In our example,
several fragments are defined that implement this inter-
face. However, when using the fire alarm in a composition
it doesn’t really matter which one is used (i.e. the different
variants are substitutable).
Superimposing new decisions. We have used superimpo-
sition to add caching to the functionalfirealarm in
Section 3.2. Superimposition is transparent to the frag-
ment that is subjected to it. Consequently, no unnecessary
dependencies are created between design decisions. This
allows us to use the functional fire alarm architecture in
some composition and then later we are still able to add
caching to this larger composition in exactly the same
way.

4.2 Lessons learned

Abstracting from data. Our notation deliberately has a
strong focus on functionality. We have found that abstract-
ing from such details as data format and types allows us to
capture the essence of an architecture. A Sensor is thus
reduced to an entity that returns something when asked for
it. What exactly is returned (and how) is an implementa-
tion detail. The fact that there will probably be different
kinds of sensors with varying properties like what is mea-
sured, what kind of information is returned and how accu-
rate the measurement is, is not an architectural concern
and should therefore not be specified or constrained in the
architecture design. What matters at the architectural level
is that there is an entity called sensor (i.e. the sensor frag-
ment) which performs the archetypical behaviour of sen-
sors and fits in with the other architectural entities in a
certain way.
No clear boundary between architecture and detailed 
design. Our intention was to create a representation that is
simple yet expressive enough to capture common architec-
ture idioms and patterns (e.g. the architectural styles from
[6]). We believe that our notation meets these criteria,
however, in trying to keep things simple we have had to
ask ourselves the question whether modelling a particular
aspect of a design was an architecture design issue or a
detailed design issue (in which case our notation would
not need to support it). We have found that this is a rather
grey area and we are aware that architecture and detailed
design are not independent activities. Rather the architec-
ture design evolves with the detailed design and often new
requirements, requiring architectural changes, become
apparent when working on the detailed design. This notion
is also a motivation for our future work plans.
Graphical support is essential. In this paper, three nota-
tions ranging from very formal to a UML diagram have
been discussed. We have found that it is generally much
harder to understand one dimensional text representations
than two dimensional graphics. Traditionally, things like
separation of concerns and composition have been

expressed using source code primarily. An important con-
tribution of our paper is that we have shown how to do it
by manipulating diagrams. 

4.3 Remaining Issues

Traceability of design decisions. Considering that soft-
ware development is generally an iterative process (as
opposed to the waterfall model of software development),
architecture notations, such as ours, share a common prob-
lem: important information is lost when progressing from
one phase to another. Our notation is not different in that
respect. For instance, a feature of our notation is the ability
to define superimposition of fragments onto existing frag-
ments. When a detailed design is derived however, this
information is lost (the full composition is used to derive
the detailed design). When later changes in the evolving
detailed design need to be propagated to the architecture
design, the original architecture design may no longer be
accurate and it will have to be recovered from the detailed
design. Since the detailed design notation has no means to
express such things as superimposition, this information is
lost. Note that this is not just an issue with our notation. To
the best of our knowledge, any ADL available today suf-
fers from this problem. This problem used to also apply to
the detailed design phase vs. the implementation phase.
However, the emergence of sophisticated CASE tools that
integrate source code and UML notations has addressed
this to a large extent. We believe that the solution to the
issue lies in extending the support of such tools to archi-
tecture level notations, such as ours. The UML based
nature of our notation may be helpful in achieving this.
Non-deterministic derivation. An issue that also needs to
be considered in order to do so is that the detailed design
derivation process is not deterministic. A consequence of
specifying architecture fragments in a generic way is that
there are multiple detailed designs that conform to such an
architecture. Consequently, the derivation process has to
allow for multiple derivations. Which derivation process is
chosen, largely depends on design decisions that we con-
sider to be part of the detailed design phase, however.
Separation of concerns in the Detailed Design. Our
notation can be used to express separated concerns at the
architectural level. Existing approaches towards separa-
tion of concerns mostly work on the implementation level.
This leaves the detailed design as an area where support
for separation of concerns has yet to be added. Once this is
accomplished, it is possible to trace concerns throughout
the whole development process. Currently this informa-
tion is simply not included during detailed design due to a
lack of suitable notations. Consequently, concerns are not
designed/implemented until work on the implementation
has started.

5 Related Work

Architecture. The notion of software architecture was
already identified in the late sixties. However, it wasn’t
until the nineties before architecture design gained the sta-
tus it has today. Publications such as [26] and [2] that dis-
cuss definitions, methods and best practices have
contributed to a growing awareness of the importance of



an explicit software architecture. The IEEE currently pro-
vides the following definition: “the fundamental organiza-
tion of a system embodied in its components, their
relationships to each other and to the environment and the
principles guiding its design and evolution.“ [14].

More in line with our view on architecture is the fol-
lowing definition: “Software architecture is a set of con-
cepts and design decisions about the structure and texture
of software that must be made prior to concurrent engi-
neering to enable effective satisfaction of architecturally
significant explicit functional and quality requirements
and implicit requirements of the product family, the prob-
lem, and the solution domains.” [16]. This definition sup-
ports our notion that it is possible to compose an
architecture from such basic components as domain com-
ponents and architecture fragments.
Patterns. At the same time the notion of an architecture
was developed, the notion of a design pattern also became
important [6][8]. Design patterns and architectural pat-
terns isolate particular design solutions that can be applied
during detailed or architectural design. The resulting pat-
tern is a generic solution to a recurring problem. The nota-
tion discussed in our paper could be used to model
architecture patterns. The example we discuss in
Section 3, for instance, uses the blackboard architectural
style discussed in [6].
Architecture Erosion. A motivation for writing this paper
was the idea that due to requirement changes, architectures
tend to erode over time. In [10], we presented a case study
that demonstrates how architecture erosion works. One of
the conclusions in this paper is that due to requirement
changes, particular design decisions may need to be recon-
sidered. Since the architecture is the composition of all
design decisions [16], any changes in these decisions will
affect the architecture. The notion of architecture erosion
was first identified in [24]. In [15], a set of characteristics
of architecture erosion is presented.
Separation of Concerns. An approach to prevent archi-
tecture erosion is to pursue separation of concerns. By sep-
arating concerns, the effect of changes can be isolated.
E.g. by separating the concern synchronization from the
rest of the system implementation, changes in the synchro-
nization code will not affect the rest of the system. Exam-
ples of approaches that try to improve separation of
concerns are AOP [18], SOP [12] and Multi Dimensional
Separation of Concerns [29]. A problem with these
approaches is that they focus on the implementation level
whereas important design decisions are taken prior to the
implementation. Our approach addresses this issue by pro-
viding an architectural level notation that allows for sepa-
ration of concerns.
Composition. Our composition technique bears some
resemblance to the notion of super-imposition discussed
by one of the co-authors [3]. In this approach, program
fragments are imposed on an existing program structure.
The main advantage of superimposition compared to
existing techniques such as inheritance or wrapping is that
the change is transparent to users of the original program
structure. However, whereas the approach by Bosch [3]
suggests an implementation/detailed design technique, our
notation is intended for use on the architectural level.
Scripting. In [23], scripting languages are characterized
as a simple means to glue together objects and compo-

nents. Our notation could be viewed as an architectural
scripting language. Our notation, and especially the asso-
ciated pseudo code notation, is not concerned with such
details as Classes, Types and Properties. It describes com-
ponents purely in terms of the functionality they provide.
This simplifies the composition and the graphical notation
makes it very readable. An explicit goal of our notation is
to facilitate describing architectures while reusing existing
architecture fragments. So in a way it is very similar to a
scripting language. It also shares the same benefits. Since
distracting details like types and data format are omitted,
the notation is very flexible.
Notations. Our notation is based on UML’s Activity Dia-
grams [22]. The reason we use this notation instead of, for
instance, ACME [9], Rapide [19] or WRIGHT [1], is two-
fold. The first reason is that we need a more fine-grained
notation in order to do compositions of architecture frag-
ments. Notations like ACME apply a boxes and arrows
approach to modelling architectures. However, the seman-
tics of individual components are determined by how the
box works internally rather than how it cooperates with
other components. A second reason is that UML’s activity
diagrams can be seen as a means of identifying domain
components and complementary to Use Case diagrams
typically used in the early phases of development [7].

Rapide is an ADL that allows one to specify systems in
terms of partially ordered sets of events and can simulate
architecture designs; ACME is a common interface format
for architecture design tools. Unlike most ADLs, our nota-
tion also describes the control flow inside the components
(rather than just the externally visible behaviour) and
allows for composition of different components, or frag-
ments as we prefer to call them. Therefore, our notation
uses a white box approach (we describe internal function-
ality of components as well as communication between
components) while the ADL’s uses a blackbox approach
(only the communications between components are taken
into consideration). With our white box approach [25] we
can describe superimposition [3]. WRIGHT is close to our
approach because it is based on CSP [13]. In our approach
a more subjective notation is used and it is based on trace
theory [27] that has less basic principles but is sufficiently
expressive, nevertheless.

6 Conclusion

In this paper we have provided a notation for defining ar-
chitecture fragments and defined its semantics using a for-
mal notation. To illustrate how the notation works, we
have used a pseudo code notation. However, we expect
that in practice the graphic notation may be preferred as a
more efficient means of communicating design decisions
whereas the pseudo code notation may be used to provide
additional details and prototyping. Also we have found the
graphical way of doing composition and superimposition
is quite intuitive.

The main advantages of our notation are: 
• It abstracts from distracting details that really belong

to the detailed design.
• It provides support for both composition and superim-

position.
• It allows for some flexibility in the order in which

design decisions are applied.



Because of this, it is easy to define different variants of the
same architecture, apply an architectural style and com-
pose existing architecture fragments. 

6.1 Future Work

Our approach is an architectural level approach. We chose
to operate on this level first because decisions made dur-
ing this phase have a large impact on the subsequent de-
velopment of a system. Now that we have this approach in
place we can start thinking about extending it to the de-
tailed design level. We feel that such a step is necessary as
information is lost in the derivation process outlined in
Section 2.5. This makes it hard to evolve a system in an it-
erative fashion since this requires a continuous effort to
keep the architecture design in line with the detailed de-
sign. 

In addition, we would like to do a more extensive case
study to learn more about the effectiveness and applicabil-
ity of the notation. In addition we would like to learn more
about what concerns drive the architecture design using
conventional techniques. At the moment of writing, we are
preparing a case study at a local company that will provide
us some feedback.
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