Software Variability Management
Workshop, February 13™ & 14" 2003

Proceedings

Editors: Jilles van Gurp & Jan Bosch

This workshop is sponsored by:

The European Science Foundation (ESF)
The ESF RELEASE network
Philips Medical Systems
The IST CONIPF project
The RUG Institute of Mathematics and Computing Science

Table of Contents

Preface 1

Long Papers 4
B. Tekinerdogan, M. Aksit, "Managing Variability Product Line Scoping" 5
K. Schmid, I. John, "Generic Variability Managemant Its Application to 13
Product Line Modelling”

M. Becker, "Towards a General Model of VariabiityProduct Families" 19
A. Maccari, A. Heie, "Managing Infinite Variability 28
K. Koskimies, "Supporting Variability ManagementfivL" 35
S. Demeyer, "Extensibility via a Meta-level Arclutere” 42
T. Weiler, "Modelling Architectural Variability foSoftware Product Lines" 53
S.A. Roubtsov, E.E. Roubtsova, "Modeling Evolutaord Variability of 62
Software Product Lines Using Interface Suites”

D. Beuche, H. Papajewski, "Variability Managemeithweature Models" 72

T. Asikainen, T. Soininen, T. Mannisto, "Towardsmging Variability using 84
Software Product Family Architecture Models andd@ici Configurators™

T. Ziadi, J. M. Jézéquel, F. Fondement, "ProduntlDerivation with UML" 94
Short Papers 103
A. Ramdane-Cherif, S. Benarif, N. Levy, “Softwaranability Management 104
using a Platform Based Autonomous Agents”

H. Baerbak Christensen, “Software Testing Requ¥iasability” 116
E. Dolstra, G. Florijn, E. Visser, “Timeline Varidéiby: The variability of 119
Binding Time of Variation Points”

J. Matevska-Meyer, W. Hasselbring, "Enabling Rempiition of Component-123
Based Systems at Runtime”

N. Loughran, A. Rashid, “Supporting Evolution inf@a@re using Frame 126
Technology and Aspect Orientation”

C. Thomson, “Managing Software Change for Vari&pili 130
T. Widen, Supporting Variability Management at Noki 131

J. Eriksson, O. Lindeberg, Y. Dittrich, “LeavingetNariability Management to 133
the End-User; A Comparison Between Different TaigrApproaches”

L. Hotz, A. Gunter, T. Krebs, “A Knowledge-basea&uct Derivation Process136
and Some Ideas How to Integrate Product Develogment

Preface

Welcome to the °L workshop on Software Variability Management. Dugritthis
workshop we hope that interesting discussion taksse. We have received a number of
very interesting long papers, which are includedthese proceedings, as well as a
number of short papers that may be used as anstartiint for the discussions. About
two thirds of the workshop is dedicated to the papesentations. However, there will be
ample opportunity for discussion during the brelakehes and dinner. Also we hope that
the paper presentations themselves will spark dsson.

What is variability

Most modern software needs to support increasinguats of variability, i.e. locations in
the software where behavior can be configured. Wrbisd leads to a situation where the
complexity of managing the amount of variabilitycbenes a primary concern that needs
to be addressed. Two causes for the increasing ranadwariability are the delaying of
design decisions to the latest point that is ecooaliy feasible and the transfer of
variability from mechanics and hardware to thewaft in embedded systems. Examples
of the first category include software product féesi the configuration wizards and
tools in most commercial software, the configunatisterface of software components in
component-based software engineering and evenyth@ntdc, run-time composition of
web-services. Examples of the second category edaumd in many embedded systems,
including car electronics, telecommunications aoiscimer electronics.

Software variability is the ability of a softwarg/ssem or artifact to be changed,
customized or configured for use in a particulantemt. A high degree of variability

allows the use of software in a broader range oitecds, i.e. the software is more
reusable. Variability can be viewed as consistiigwo dimensions, i.e. space and time.
The space dimension is concerned with the use fblva®@ in multiple contexts, e.g.

multiple products in a software product family. Timae dimension is concerned with the
ability of software to support evolution and charggrequirements in its various contexts.

The reason for identifying software variability nag@ment as a core topic is twofold.
First, within the software engineering research womity, we have come to realize that
the fundamental issue in a range of reuse appreacimeluding object-oriented
frameworks, component-based software engineeridgsafiware product families, is the
management of the provided variability. Basicailhe reusability of any software artifact
is determined by its ability to support the varigpirequired from it. Second, in several
industrial organizations, the complexity of varidaimanagement is becoming such that
more systematic approaches are required as theatioms of ad-hoc approaches
experienced daily. For instance, the number ofatiam points for industrial software
product families may range in the thousands.

Workshop Program

We have put together a very interesting progranecoy a wide variety of variability
related topics. We are very pleased to have attles® much response from the research
community. On day one of the workshop, there walitlwvo plenary sessions where the
authors will present their papers. The format efphesentations will be a short 10 to 15
minutes presentation followed by discussion. Tieosd half of the day is reserved for
workgroup sessions. On day two we will start witlo tmore plenary sessions. After that
we will discuss the results from the workgroup s@sson day 1.

February 13th
9.00-9.30 Workshop Registration
9.30-10.00 Introduction by Jan Bosch
10.00 - 11.25 Plenary Session 1
1 B. Tekinerdogan, M. Aksit, "Managing Variability Product Line Scoping”
2 K. Schmid, I. John, "Generic Variability Managemanid Its Application to Product
Line Modelling”
3 M. Becker, "Towards a General Model of VariabilityProduct Families"
11.25-11.30 Coffee break
11.30 - 12.45 Plenary Session 2
4 A. Maccari, A. Heie, "Managing Infinite Variability
5 K. Koskimies, "Supporting Variability ManagementXL"
6 S. Demeyer, "Extensibility via a Meta-level Arclutere"
12.45-14.00 Lunch
14.00 Workgroup sessions
18.00 Dinner

February 14th
8.45-9.00 Start of day 2
9.00 - 10.15 Plenary Session 3
7 T. Weiler, "Modelling Architectural Variability foSoftware Product Lines"
8 S.A. Roubtsov, E.E. Roubtsova, "Modeling Evolutiamd Variability of
Software Product Lines Using Interface Suites"
9 D. Beuche, H. Papajewski, "Variability Managemeithvwreature Models"
10.15-10.30 Coffee
10.30 - 11.20 Plenary Session 4
10 T. Asikainen, T. Soininen, T. Mannist6, "Towards Mdging Variability using
Software Product Family Architecture Models anddeid Configurators"
11 T. Ziadi, J. M. Jézéquel, F. Fondement, "ProduntlDerivation with UML"
11.20-12.15 Reports from workgroups
12.15-12.30 Conclusion
12.30 Lunch

End of Workshop
15.45 Ph.D. defense Jilles van Gurp

Conclusion

We hope that you will enjoy the workshop very mugk.you may know we are also
involved in a special issue of Elsevier’'s Scienc€omputer Programming on Software
Variability Management. We may invite individualthars to submit their paper. In
addition, we would like to draw your attention beetupcoming ICSE workshop on
Software Variability Management.

Editors:
Jilles van Gurp
Jan Bosch

Full Papers

Managing Variability in Product Line Scoping
using Design Space M odels

Bedir Tekinerdogan

Dept. of Computer Engineering,
Bilkent University,
Bilkent 06800, Ankara, Turkey
bedi r @s. bi | kent . edu. tr

Abstract

Product-line engineering aims to reduce the cost of
manufacturing of software products by exploiting
their common properties. Obvioudy, to define a
product line, the product alternatives that need to be
produced must be identified first. This is generally
realized either by a product requirements analysis or
a domain analysis process. Product requirements
analysis focuses on specific products or product
characteristics and therefore may fail short to
identify those products that are not explicitly stated
in the product requirements. Domain models on the
other hand are inherently too abstract to identify the
product alternatives and reason about these
explicitly. To provide a balanced scoping we propose
to integrate both approaches and present the so-
called design space models (DSMs) as a
complementary technique to existing product line
scoping techniques. We explain our ideas using an
illustrative example for scoping the product-line of
insurance systems.

1. Introduction

Product-line engineering aims to reduce the costs of
manufacturing of software products by exploiting
their common properties and by managing the
variabilities [1]. Obviously, to define a product line,
the product alternatives that need to be produced
must be identified first. A core activity of software
product line development is therefore product line
scoping, which seeks to define the right set of
product alternatives.

An often-used approach for product line scoping is to
define a domain model that includes reusable assets
to configure the products. The advantage of adopting
a domain model is that it is genera enough to
represent a large set of products. Due to this

M ehmet Aksit

TRESE Software Engineering,
Dept. of Computer Science, University of Twente, P.O.
Box 217, 7500 AE,
Enschede, The Netherlands
aksit @s. utwente. nl

character, however, it may be difficult to identify and
derive specific products from it. To tackle this
problem, product requirement analysis techniques
can be used in which the specific products and their
characteristics are explicitly specified [6]. This
provides a concrete product-line scope but may fail in
short in identifying those products that are not
explicitly stated in the product requirements.

It appears that the adoption of only domain anaysis
or product requirements anaysis techniques is not
sufficient to define the right product line scope. In
spite of this, both gpproaches are not sufficiently
integrated yet. Although there are some approaches
that aim to scope the domain model by considering
the product requirements [6][7], their main focus is
on the scoping process rather than deriving product
dternatives. Approaches that mainly focus on
product requirements on the other hand, however, can
be too restrictive, because they may not cover a
sufficient set of product dternatives. Moreover, both
approaches usualy do not address the
implementation aspects of the products. Products
may be implemented in various different ways and
different implementations of the product may behave
differently with respect to the aimed quality factors,
such as adaptability and performance. It may, for
example, appear that several implementation
aternatives are not required or even not possible and
therefore need to be ruled out. Other implementation
aternatives may be favorable by the stakeholders due
to some implementation specific requirements such
as the choice of the platform, the implementation
language, or quality criteria such as adaptability and
performance. We therefore believe that in addition to
the product line (specification) scoping, the product
line implementation scoping (PLIS) is needed as well.

In this paper a systematic product line scoping
approach is presented in which the products are

gradually derived from the abstract domain models
based on the specific product requirements. To
represent the product line scope the concept of
Design Space Models (DSMs) is introduced. Design
spaces represent a set of aternatives for a given
design problem. Design space modding as such
consists of representing a design space and defining
the semantic information for configuring and
depicting the selection and dimination of aternatives
within that space. For product line scoping we
represent domain models as design space models,
define the constraints and reduce the set of product
aternatives with respect to the corresponding product
requirements using the operations tha we have
defined for design space models. For product line
implementation scoping the domain model is mapped
to a design space that includes the set of possible
implementation alternatives, and which can be
reduced again with respect to the product
requirements and the corresponding anaysis and
design heuristics. The utilization of design space
models in product line scoping results not only in a

more precise product line scope but aso supports the
reasoning on the product aternatives.

We will illustrate our ideas using an example from a
real industrial project in which we have defined both
the product line specification scope and the product
line implementation scope using the design space
modeling. Hereby we will aso illustrate the tool
environment Rumi that includes a set of tools for
supporting the techniques of design space modeling.

The outline of the paper is as follows. In the
following section we will describe the problem
statement and describe the example from a real
industria project on the scoping of a product line for
insurance systems. In section 3, the concept of design
space models and its application to product line
scoping is described in more detail. Section 4
describes the related work and section 5 provides the
conclusions.

Insurance Product

Insured Object

Coverage

lliness

Payment ‘ ‘Conditions‘ ‘ Premium ‘

Person || Corporation

‘Acceptance‘ ‘ Exception ‘

Movable
Property

‘ Service ‘

‘ Own Risk ‘

Direct Periodical

Person

Unemployment

Amount

Legend:
A\ alternative feature
/A or-feature

—— mandatory feature
O optional feature

Figure 1. (Top-level) feature model for a product family of insurance systems

2. Problem Statement

2.1 Example: Domain Model of insurance
systems

In the following section, we will describe a red
world design example, which was developed in an
industria project between our faculty and a software
company’. The god of the project was to develop a
software product-line for insurance systems. Over the
years, the software company has developed an
increasing number of insurance systems, whereby

! This project has been carried out together with Utopics,
The Netherlands [12].

each system was practically developed from scratch.
This resulted in unnecessary repeating similar design
and coding efforts. To save costs, a software product
line approach for insurance systems was launched.
The fundamental challenge hereby was the decision
on the set of products that were to be deivered, i.e.
the product line scope.

Numerous and various insurance systems exist,
which share some common features that can be
exploited for reuse [12]. Figure 1 shows the feature
model of a product-line, which was defined through
an extensive domain anaysis effort. Each insurance
product consists of the following (mandatory) sub-
concepts (features): Insured Object, Coverage,
Payment, Conditions, Premium and Payee. An
insured object can either be a person, a corporation,

realty or some moveable property. The feature
Coverage defines the risk that is to be insured, which
can be either risks of Illness, Life, Unemployment,
Damage or Loss. The feature Payment includes the
mandatory features for the gpproach of payment and
an optiona own-risk feature. The feature Conditions
includes the acceptance and exception conditions for
the insurance. Premium defines the approach of
payment of the premium. Finally, Payee defines the
features that will benefit in case of the occurrence of
the risk that is insured. This feature model defines a
product family of insurance systems from which a
broad set of insurance products can be derived.

2.2 Problem Description
2.2.1 Balanced Product Line Scoping

A domain model is an intentional representation of
the products in the domain in the sense that it
specifies the product aternatives in an implicit way.
A product is derived from a set of domain concepts
and as a composition of domain instances. Not all
products that can be derived from the domain model,
however, are usually interesting. To reason about the
rdevance of each product the product aternatives
must be derived from the doman model and
represented in an explicit way. Enumerating the
individual products in the product line and the
individual requirements relevant to the products [8],
however, may become cumbersome because of the
large size of the domain. On the one hand the domain
model must be expressive enough to support a large
set of product dternatives, on the other hand the
combinatorial overhead of the broad set of irrelevant
product aternaives must be avoided. In the given
example we would be interested in the possible set of
insurance systems, and would like to depict these to
reason about them explicitly. Finding the baance
between an intentiona and an extensona
representation, however is not trivial.

InsuranceProduct Coverage

InsuranceProduct

insuredObject()
insuredObject() coverage()

coverage()

Payment

InsuredObject

payment()
conditions()
premium()
payee()

conditions()
premium()
payee()

payment() k>

Conditions

Premium

Payee

]

2.2.2 Scoping Product

Alternatives

Implementation

Product models are generaly derived from more
abstract domain models, and can be implemented in
many different ways. Similar to the fact that a
domain model may express a broad set of products, a
product model may aso express a broad set of
product implementations. After having selected the
set of products from the domain models one may
choose to implement these using, for example,
object-oriented abstractions. The various object-
oriented abstractions enable the software engineer to
derive different implementation aternatives for the
same product and each implementation may, for
example, display different quaity characterigtics. To
explain this in more detail consider Figure 2 that
depicts, for example, three different implementation
aternatives that can be derived from the domain
model. In the design alternative of Figure 2a the
concept InsuranceProduct of Figure 1 has been
mapped to a class InsuranceProduct and the sub-
concepts have been mapped to the operations
insuredObject(), coverage(), payment(), conditions(),
premium() and payeg(). This means that the various
instances of the sub-products are al hidden in the
implementation of the corresponding operations. In
Figure 2b each sub-concept has been mapped to a
class, which ae encapsulated by the class
InsuranceProduct. Finally, Figure 2c shows another
aternative whereby for each type of InsuredObject a
separate class is defined that includes the other
subconcepts as operations.

These three implementations are not the only
aternatives and actualy a considerable number of
implementation alternatives may be derived from the
same product. We may use a separate class for each
sub-concept, define these as abstract methods, map
these to single methods etc. Currently, appropriate
techniques for systematicaly identifying and
describing the possible product implementation
aternatives, is unfortunately missing.

InsuranceProduct

coverage()
payment()
conditions()
premium()
payee()

| T |

Lifelnsurance Carlnsurance Travellnsurance

coverage() coverage() coverage()
payment() payment() payment()

conditions() conditions() conditions()
premium() premium() premium()

payee() payee() payee()

Figure 2. Three different implementation alternatives of I nsuranceProduct

3. Utilizing Design Space Models

To provide solutions for the problems as defined in
the previous section, we propose design space models
for supporting product line scoping processes.
Informally, design spaces represent a set of
aternatives for agiven design problem. Design space
modeling consists of representing a design space and
defining the semantic information for configuring
and depicting the selection and €imination of
aternatives. By representing the domain model as an
explicit design space and by providing operations for
combining and reducing design spaces, the product
line scoping can be defined more precisdly. In the
following we represent the process for scoping the
product line from the product specification to the
product implementation levels:

1. Representing Design Spaces

The domain analysis process will result in a domain
model that represents both the commonality and the
variability of the set of products that need to be
included in the product-line scope. We will describe
the domain model using design algebra, which
provides a formal representation to define the set of
aternatives of a given domain. This is explained in
section 3.1.

2. Defining constraints of alternatives.

The next step will be to defining the set of rules for
identification of vaid and invalid aternatives within
the specified domain model. This is specified similar
to the composition rules as defined in [3]. These
congtraints will be utilized to €eiminate the
aternatives within the domain model that are not
viable. Thisisexplained in section 3.2.

3. Unfolding design spaces

To reason about individual dternatives an
extensional view of DSMs will be given. This is
supported by the operation unfold() in design algebra
and implemented in the tools of Rumi. The unfold
operation will derive all the possble aternatives
from the design space. This is explained in section
3.3.

4. Reducing design space

Because the set of aternaives may be too large,
design agebra includes selection and eimination
operations to reduce the design space. This is
explained in section 3.4.

5. Mapping design space to implementation domain

Once the product line scope has been defined, the
implementation dternatives of each product in the

product line will be considered. For this, the product
line will be mapped to the implementation domain,
which will consequently result in anew design space.
The product implementation space will be reduced
with heuristics and constraints. This is explained in
section 3.5.

3.1 Representing Design Spaces

Before reasoning about the individual aternatives we
will represent the domain model using the concept of
design spaces as supported by the formalism called
design algebra. A design space in this context is
defined as a multi-dimensiona space from which the
set of aternatives for a given design problem can be
derived. The design space is spanned by an
independent set of dimensions. We define a
dimension as a mandatory feature of a concept. As
such the dimensions of | nsuranceProduct are the
sub-features | nsur edObj ect , Cover age, Paynent ,
Condi ti ons, Premium and Payee. The set of
dimensions of a concept is defined as its dimension
set. In design agebra, we define the moded of
I nsur ancePr oduct of Figure 1 asfollows:

I nsuranceProduct = (InsGj 0O Cov O Paym O
Cond O Prem O Payee)

Here, | nsj , Cov, Paym Cond, Pr em Payee, represent
the features InsuredObject, Coverage, Payment,
Conditions, Premium, and Payee respectively. The
symbol ‘[T defines the composition relation in the
feature diagram. A design space for
I nsur ancePr oduct consists of 6 dimensions that
are represented by these features. To be able to
reason about the alternatives we introduce the
concept of coordinate. We define a coordinae as a
sub-feature of a dimension. The set of coordinates of
adimension are defined as the coordinate set of each
dimension. The coordinates of a dimension may be a
mandatory feature, alternative feature, optiond
feature or an or-feature [3]. These different feature
properties are represented using the following
symboals:

0 mandatory ; dternative
O or ? optiona

In the example, the dimension |nsuredbject
includes the coordinates Corporation, Realty,
Moveabl e Property and Person. We represent this
asfollows:

I nsuredObj ect = (Corporation; Realty;
Moveabl eProperty; Person)

This indicates that only one of them can be selected.
In design agebra we also use symbols to express the
other feature properties. Consider for example the
concept Cover age that is expressed as follows:

Coverage = (lllness O Life O Unenpl oynent O
Loss [Damage)

In this case for Coverage either I11lness, Life,
Unenpl oynent , Loss Or Damage can be seected. The
concept Paynent isrepresented as follows:

Payment = ((Service; Anpunt) 0O OmRi sk?)

The tool environment Rumi includes tools for
defining features but we will not present these due to
space limitations.

3.2 Defining Constraints

Similar to composition relations [3] in feature models
we adopt constraints to express the constraints
between various features in the moded. These
constraints define the semantics between features that
are not expressed in the feature diagram. Basicaly
we apply the mutex-with and requires composition
rules. The mutex-with rule defines a mutual exclusion
relation between two concepts or features, whereas
the requires rule defines which features the selected
feature requires (interdependent relations). In the
insurance product systems, for example, we may
identify the following set of constraints (the symbol
‘. is used to denote the bindings):

1. InsuredObject.Person mutex-wth
Cover age. Damage

If the ensured object is a person then the
insurance product cannot include coverage of
damage (for physical objects)

2. Coverage.Loss requires
I nsur edObj ect . Moveabl eProperty

If the insurance product includes coverage for
loss then the insured object can only be a
movesble property

3. Coverage. ||l ness nutex
I nsur edObj ect . Cor porati on

If the insurance product includes coverage for
illness then the insured object cannot be a person.

4. InsuredQObject. Corporation requires
Payee. Cor por ation

If the insured object is a corporation then the
claimer should also be a corporation.

Besides of these constraints from the domain aso
constraints imposed by stakeholders can be defined in
asimilar way. In Rumi these can be defined, updated
and eliminated using various tools during the scoping
process.

3.3 Unfolding Domain Model

Once the domain model, the corresponding feature
models and the constraints have been defined we
need to derive the corresponding aternatives. For

this, in design algebrathe operation unfold is gpplied,
which results in the total set of alternatives that can
be derived from the given feature model. The model
I nsur ancePr oduct Scope in the following
specification defines al the product aternatives that
can be derived from | nsur anceProduct :

I nsur ancePr oduct Scope: =

I nsurancePr oduct . unfol d()

An dternative is defined by binding the variant
features (optional-feature, or-feature, aternative-
feature) to the dimensions of the model. For example,
based on the feature model in Figure 1 we can bind
four dternative features to the sub-concept
I nsuredObj ect. The sub-concept Coverage can be
bound in 2°-1 or 31 ways. The sub-concept Paynent
can be bound in 4 ways (two alternatives and one
optiona feature). For sub-concept Conditions we
can bind features in one way since its both features
are mandatory. Finally, Preni um can be bound in 2
ways, and Payee in 2%-1 = 3 ways.

The total set of aternatives that that can be derived
from this (simplified) feature diagram is thus
Ax31x4x1x2x3 = 2976 aternatives. In design algebra
we provide the operaion numAlternatives() to
automaticaly compute the number of product
aternatives from a given domain mode:

I nsur ancePr oduct Scope. numAl t ernati ve()

For exampl e one of these 2976 product alternativesis
the following hedth insurance product that covers
illness with own risk and adirect premium:

(I nsCbj.Person O Cov.|llness O Paym (Anmount
0 OmRi sk) O Cond.(Acc O Exc) O Prem D rect
0 Payee. Person) }

The unfold() and numAl ternatives() operations
have been implemented in the tools of Rumi. Figure
3a shows a screenshot of the tool for defining domain
models. Hereby the radio button extensional has been
selected, which results in the execution of the
operation unfold for the selected domain model. In
tandem the totd size of the product line is computed
which is dso shown in the figure (2976). The unfold
operation aso checks whether each possible
dternative is vaid with respect to the defined
constraints and as such the total set of alternatives
will be reduced when the constraints are also defined.
In the tool every individual product can be selected
and the description will be provided in the text field.

Conditions: Acceptance and Exception
Premium: Direct
Payee: Parson

Payment
Conditions
Pr m

ner
Constraint Definer = = =l
Product Scoping IS @ 2976
gent and & client who pays the agent a certain j
uations (risks) happen to the object that is

|

= | Insured Ohject: Corporation
Coverage: llines and Life
Payment: Amount
Conditions: Acceptance and Exception
Premium: Direct

Payee: Person

Query
InsuredObject.Person and (Coverage.liness or Coverage. Life)

[le

b)

Figure 3. a) Extensional representation of product alternatives and b) Product Line Scoper Tool

3.4 Reducing Design Spaces

In principle, it is possible to list al the aternatives
and anayze and select them separately. However, for
large design spaces, the number of alternatives may
soon lead to a combinatoria explosion and likewise
the identification and reasoning about individua
aternatives may become very difficult. Moreover,
not all the alternatives may be feasible or possible at
al and it would be worthwhile to reduce the design
space so that only the relevant alternatives are
considered. To support this we introduce a query-
based approach whereby the domain engineer
specifies an expression that includes a condition for
either selecting or diminating part of the design
space:

Sel ect from Model where <condition>

Hereby condition can be made up of severa (logical)
functions: The query will result in a reduced design
space that includes the set of alternatives that meets
the specified condition. The following query reduces
the space of insurance products to include only health
insurance products:

Heal t hl nsuranceProduct ::

Sel ect from | nsuranceProduct

Wier e <Insbj.Person and (Cov.|ll ness or

Cov. Life)>

The reduction of the design space, i.e. the scoping of
the product line is implemented in the Product Line
Scope tool, which is shown in Figure 3b. In this tool,
for the same domain modd different scoping projects
can be defined. In the example a product line of
health insurance has been scoped from the domain
mode | nsurance Product .

35Mapping domain alternatives to

implementation

At this point it is decided on the set of products that
needs to be produced and delivered. The product
aternatives have been derived from the abstract
domain model but the product portfolio consists of a
very precise and concrete set of products. However,
each individual product in the product line can be
implemented in different ways dependent on the
sdected quality criteria and the computation models.
This results in a different dternative space and
scoping at this level becomes necessary. This product
implementation scoping will be applied by the
software engineer who will continue the scoping
from the domain engineer, but now a the anaysis
and design level.

Implementing products can be considered as a
mapping from one domain to an implementation
domain. We can specify this in the following general
form:

Mbdel . weave(Property)

Here the operaion weave maps the properties to the
products of the model. A property can be considered
as a tag to the elements of a corresponding model to
denote a specific design decison. Similar to the
bindings of the domain features to the dimensions of
the model we can bind features of the implementation
model to the dimensions. As such Property isa set
that includes either a model of the computation
model in which the product will be implemented or
the quality model that will be evaluated. property
can pecify issues such as hardware platform,
implementation language or various quality factors
such as adeptability and reusability. Assume, for
example, that the product dternatives will be
implemented using object-oriented abstractions. In

10

the object-oriented model [2] concepts may be
mapped to a class, operaion or an attribute. In the
same way as for modeling the domain we can define
the property set j ect asfollows:

Ghject = (A ; O ; At)

Hereby, cL, op and At refer to class, operation and
atribute respectively. The symbol ;" is used to
denote aternative features. The following
specification defines a new space bject-
Heal thi nsuranceProduct that includes al the
possible object-oriented implementations of the
aternatives in Heal t hl nsur ancePr oduct :

bj ect - Heal t hl nsuranceProduct : =

Heal t hl nsurancePr oduct . weave(Obj ect)

This set Obj ect - Heal t hi nsuranceProduct includes
al the dternative object-oriented implementations of
the InsuranceProduct Scope. This se includes
512000 implementation aternatives. The following
represents an example of a specification of the
product i mplementation:

(I nsCbj.Person.CL O Cov.Illlness.OP O
Paym (Payment 0O OwmRi sk).OP O

Cond. (Acc O Exc).OP O PremDirect. AT O
Payee. Person. AT) }

Hereby, cL isbound to | nsbj ect, meaning that the
latter will be mapped to a class. cov, Paym and Cond
are bound with op, meaning that they will be
implemented as an operation. Finaly, Prem and
Payee are bound with AT, meaning that they will be
represented as an attribute in the fina
implementation. This is only one aternative, and
because the space of implementation aternatives is
too large we might decide to reduce the space to
define the product implementation scope. This may
be supported by the utilization of heuristic rules. For
example, for design spaces including the dimension
Cbj ect we may utilize the heurigtic rules from the
object-oriented andysis and design methods [5] for
deciding whether an entity has to be sdected as a
class, operation or as an attribute. Most methods
define rules in an informal manner. Nevertheless,
method rules can be expressed using conditional
statements in the form IF <condition> THEN
<consequent> [11]. The consequent part may be an
identification or eimination action and as such
heurigtic rules may be gpplied both to support the
sdection and the dimination operations of the
reduction of the design spaces. To sdlect aternatives
from Qbj ect- I nsuranceProduct, for example, we
may utilize the following heuristic rules:

IF an entity is rel evant
THEN sel ect the entity as a class (CL)

IF an entity describes a structural action or
behavi or of an object
THEN sel ect entity as an operation (OP)

IF an entity descri bes another entity
THEN sel ect entity as an attribute (AT)

Note that these are only examples of heuristic rules
and many more rules may be extracted from the
corresponding methods [11]. The software engineer
can gpply these heurigtics, provide a decision and
describe these into queries. Rumi provides tools to
model these heuristic rules and apply these for design
space reduction. The result of these rules is defined
as a constraint and is utilized to reduce the scope of
the implementation aternatives. Assume, for
example, that according to these rules it is decided to
include only dternatives in which | nsur edj ect,
Paym are mapped to a class, premto operaion and the
other features to attributes. This may be again
specified in aquery:

bj ect - Heal t hl nsur anceProduct ::

Sel ect from Heal t I nsuranceProduct
Wiere <Insoj.CL and Paym CL and Prem OP>

Using the operation numAl ternatives() we can
compute the set of aternatives from this set, which is
20. We may further reduce this space by applying
other heuristic rules and stakeholder constraints.

4. Related Work

In [8] software product line scoping is categorized in
product line scoping, domain scoping and asset
scoping. Hereby asset scoping identifies the various
elements tha need to be made reusable to produce
the product alternatives in the product line scope. In
this paper we have provided an approach to integrate
domain scoping and product line scoping. We did not
explicitly consider asset scoping but since every asset
can be considered as an alternative € ement we could
describe the asset alternative space using design
space models in the same way that we did for domain
models. In addition we can use the same mechanism
for defining the constraints and heuristics to reduce
the set of assets. The different issue here is that the
applied congraints and heuristics will be specific to
the assets. In our future work we will aim to
explicitly integrate this asset dternative scoping with
the other two scoping processes. It should be noted
that in addition to the three categories of scoping in
[8] we have aso introduced another different type of
scoping, which is the product implementation
scoping. To the best of our knowledge there have not
been any attempts that explicitly deal with this.

Composition and customisation of design spaces with
multiple dimensions has also been addressed in [4]
whereby so-called hyperspaces span a concern space
that includes various concerns. Hyperspaces are
similar to the concept of design space that we have
introduced. Hyperspaces contain different set of so-
cadled hypermodules that integrates a set of

11

hyperslices, which are selected concerns from the
hyperspace. The hyperslices are integrated using so-
cadled composition rules. Because the same
hyperspace can be used to define hypermodules
different systems can be composed. Hypermodules
resemble the reduced set of the design space models,
which result after applying the various design algebra
operations.

5. Conclusion

Product line scoping is one of the key activities for
ensuring the success of a product-line engineering
approach. Currently, product line scoping is generaly
realized either by a product requirements anaysis or
a domain anaysis process. Product requirements
analysis may miss the products that can not explicitly
be derived from the product requirements. Domain
models on the other hand are inherently too abstract
to identify the product alternatives and reason about
these explicitly. We have introduced the concept of
design space models (DSMs) as a complementary
technique to existing product line scoping techniques.
As an example we have explained the scoping
process for insurance products that we have carried
out within an industrial project.

We have distinguished between product line
specification scoping (PLSS) and product line
implementation scoping (PLIS). In the PLSS we have
scoped the insurance products by formally
representing the domain model using design agebra,
specifying the congraints between the various
features and reducing the product dternative space
using unfold operation and selection queries. In the
PLIS we have mapped the existing product line to the
object-model that has been specified in design
algebra. This resulted in a new aternative space that
we have reduced using heuristics from the object-
oriented model. The corresponding ideas have been
illustrated using the tool environment Rumi that
includes a set of tools for supporting the techniques
of DSMs.

The techniques of DSMs are based on well-defined
formalisms. This alowed us building tools within the
development environment caled Rumi. We have
verified the approach by applying it for various
industria applications such as insurance products and
transaction systems[11][12].

Our future work includes the explicit consideration of
scoping from the economic point of view that we
have deliberately not considered in this paper since
we think that it requires careful study by its own.
Once these cost models are developed we think that
we can use design agebra, design space modeling,

and the related tool Rumi to scope the product
aternatives based on these cost models.

ACKNOWLEDGEMENTS

This research has been financed by the Dutch
National Organization for Science (NWO) for the
IMOORA project.

References

[1] P. Clements & L. Northrop. Software Product Lines
Practicesand Patterns, Addison-Wesley, 2002.

[2] G. Booch, J. Rumbaugh & I. Jacobson. The Unified
Modding Language User Guide, Addision-Wedey,
1999.

[3] K.C. Kang, SG. Cohen, JA. Hess, W.E. Novak &
A.S. Spencer Peterson. Feature-oriented Domain
Analyss (FODA) Feasibility Study. Technical Report,
CMU/SEI-90-TR-21 ESD-90-TR-222, Software
Engineering Inditute, Carnegie Mellon University,
Pittsburgh, November 1990.

[4] H.Ossher & P. Tarr. Multi-Dimensional Separation of

Concerns using Hyperspaces. IBM Research Report
21452, April, 1999.

[5] AJ. Riel. Object-Oriented Design Heuristics.
Addison-Wesley, 1996.

[6] Software Productivity Consortium. Reuse-Driven
Software Processes Guidebook, Version 02.00.03.
Technical Report SPC-92019-CMC, November 1993.

[7] Software Technology for Adaptable, Reliable Systems
(STARS). Organization Domain Modeing (ODM)
Guidebook, Version 2.0. Technical Report STARS
VC-A025/001/00, June 1996.

[8] K. Schmid. Scoping Software Product Lines, in: P.
Donohoe (ed.), Software Product Lines. Experience
and Research Directions, Kluwer Academic
Publishers, pp. 513-532, 2001.

[9] M. Shaw & D. Garlan. Software Architectures
Per spectives on an Emerging Discipline. Englewood
Cliffs, NJ: Prentice-Hall, 1996.

[10] B.Tekinerdogan. Synthesis-Based Software
Architecture Design. PhD Thesis, University of
Twente, Dept. of Computer Science, The Netherlands,
March, 2000.

[11] B. Tekinerdogan & M. Aksit. Providing automatic
support for heurigtic rules of methods. In: Demeyer,
S., & Bosch, J. (eds), Object-Oriented Technology,
ECOOP '98 Workshop Reader, LNCS 1543, Springer-
Verlag, pp. 496-499, 1999.

[12] R. Willems. Design of an Object-Oriented Framework
for Insurance Products (in Dutch), Msc. Thess, Dept.
of Computer Science, University of Twente, 1998.

12

Generic Variability Management and
Its Application to Product Line Modelling

Klaus Schmid and Isabel John

Fraunhofer Institute for Experimental Software Engineering (IESE)

Sauerwiesen 6, D-67661 Kaiserslautern, Germany
+49 (0) 6301 707 - 158, +49 (0) 6301 707 - 250
{Klaus.Schmid, Isabel.John}@iese.fraunhofer.de

1 INTRODUCTION

Variability Management is a concern that arises in Product
Line development throughout all lifecycle phases [6]. It can
actually be seen as the key feature that distinguishes product
line development from other approaches to software devel-
opment.

While the basic concerns are similar throughout the differ-
ent stages of a software lifecycle, the means for addressing
them are typically different in the various stages: in the
analysis phase mechanisms related to the specific analysis
technique are used, typically text-based [21] or UML-
related techniques are proposed [10, 13, 19, 4, 26] specific
design-based approaches have been proposed [8, 5], and of
course implementation mechanisms have been studied [16,
9, 20].

In this paper, we will focus on an approach for the system-
atic management of variability in the specification phase. In
this product line modelling (or domain analysis) phase, a
model of the requirements of the product line is developed
which expresses the variability required from the product
line. Many different notations are in practical use for
requirements engineering [22]. While especially text-based
and use-case/UML notations are used in the product line
context [23], it is desirable that an approach supporting the
specification of product lines is open regarding the notation
[7]. This lead us to the idea for the approach presented in
this paper. This approach aims to support the modelling of
variability for arbitrary specification techniques.

Our approach can actually be extended into an approach
which is sufficient as a basis for variability management
across the various lifecycle phases. However, we will focus
here on the specification phase and will provide case studies
that substantiate our claim.

The key question of course is: why would one want to be
independent of the specification technique? There are two
fundamental reasons motivating such an approach:

» The scientific reason: such a generic approach could be
evaluated in an arbitrary set of contexts, thus facilitating
the growth of a scientific body of knowledge about it.
As the mechanism is applicable in different contexts and
in different domains it can be used in a variety of situa-
tions and can therefore be validated much easier than an
approach that is applicable only with a single specifica-
tion technique.

» The pragmatic reason: Fraunhofer IESE applies its tech-
nologies in many different companies, leading to the
need for highly adaptable techniques. As we do technol-
ogy transfer to companies with different organizational
structures, in different sizes and in different domains the
approaches we develop must be generic and adaptable to
many different contexts.

Particularly the latter reason originally lead to the definition
of the PULSE-CDA! approach [7, 3] as part of the PuLSE™

method? [2]. This approach is a highly customizable
domain analysis approach which can be augmented with the
variability management mechanisms described here.

2 VARIABILITY MANAGEMENT IN THE
SPECIFICATION PHASE

The specific approach to variability management we pro-
pose consists of the following components:

* A decision model as a basis for characterizing the effects
of variability.

* A range of primitives for describing the relation
between variation points and the specific decisions (or
group of decisions) on which their resolution depends.

* A common (maximal) set of variation types.

* An accompanying mapping of the variability types on
the specific specification techniques to express the vari-
ation points.

Only the last point, the mapping, has to be adapted to the
specific representation technique. The other three parts as
well as the semantic interrelation among the four are inde-
pendent of the specific representation approach. We will
now briefly discuss these four elements.

2.1 The Decision Model

The decision model was initially devised in the context of
the Synthesis approach for variability management [11]. In
the meantime, this technique has been widely applied both
in research and industry [13, 14, 1, 12, 15, 17, 24].

The specific kind of decision model we propose is different
from other approaches in two ways:

* It is more comprehensive in terms of the information it

1. CDA = Customizable Domain Analysis;
2. PuLSE is a registered trademark of Fraunhofer IESE

13

contains

» It does not explicitly relate to the variation points, but
rather it defines a decision variable which is then only
referenced at each specific variation point using the
decision evaluation primitives.

Each of the decision variables that is defined in the deci-

sion model is in turn described by the following informa-

tion:

* Name: The name of the defined decision variable; the
name must be unique in the decision model

* Relevancy: The relevancy of a decision variable for an
instantiation may depend on other decision variables.,
e.g. the decision variable describing the memory size
is only valid if the decision variable describing the
existence of memory is true. This can be made explicit
by the relevancy information.

* Description: A textual description of the decision cap-
tured by the decision variable

* Range: The range of values that the decision variable
can take on. This can be basically any of the typical
data types used in programming languages. However,
instead of a real or integer often only a range is impor-
tant. Moreover, probably the most common type is the
enumeration, as the relevant values are often domain
dependent. Further, Boolean variables are quite com-
mon.

* Cardinality: As opposed to other approaches, we do
not emphasize the difference between variables which
can only assume a single value and variables that can
assume sets of values during application engineering.
Rather, we define a selection criterion, defining how
many of the values of a decision variable can be
assumed by it. This is represented by m—n, where m
and n are integers and give the upper- and lower-
bounds for the cardinality of the set representing the
value of the decision variable in the context of a spe-
cific application. Thus, basically, all decision variables
get a set of values during application engineering.
However, we use / as a short-hand notation for /-/
and in this case we also write the value of the decision
variable as a single value (without curley brackets) and
treat it for the purpose of decision evaluation like a
non-set value.

* Constraints: Constraints are used to describe interre-
lations among different decision variables. This is used
to describe value restrictions imposed by the value of
one variable onto another variable. We use this
approach also to describe the requires relationship, as
this simply results in a special case in our framework.
This constraint can of course also contain domain
knowledge. Consider for example the following con-
straint: the value of the decision variable describing
the memory size has to be > 16384 if the decision vari-
able describing the existence of memory is true. This
constraint at the same time represents the domain
knowledge that in the product line the minimum mem-

ory size is 16KB.!

* Binding times: A list of possible binding times when
the decision can be bound. This can be sourcetime,

1. Of course, this would usually be represented with ade-
quate constants (e.g., 16384 := Min_Mem_Size).

compiletime, installation time, ctc. [FODA]. Addi-
tional binding times may exist, and can be product line
specific. As opposed to the FODA work and many
related approaches, we allow several binding times,
meaning depending on the specific product the vari-
ability may be bound at any of these times. This tech-
nique was first introduced in ODM [18] as “binding
sites”.
Depending on the specific context of our industrial
projects, we sometimes used slight variations of this
approach to decision modeling. However, regarding the
information content, it was always a subset of this infor-
mation (if only product line modelling had to be sup-
ported) [17].

Using this description of a decision variable, we can
define a decision model simply as a set of decision vari-
able definitions. For practical reasons we usually represent
them as a table.

2.2 Decision Evaluation Primitives

The way we defined the decision model, it is completely
independent of the variation points in a variability model.
In order to relate a decision to a variation point we must
explicitly describe it. This is done using the decision eval-
uation primitives together with the variation point repre-
sentation as discussed below.

The reason why we do not directly relate the impact of a
decision variable to the variation points is that the same
decision may easily have many different forms of impact
on the variation points. This allows us to decouple the
decision itself from its impact on the product line model.

Our approach to decision evaluation is very similar to
expression evaluation in existing program languages, the
main extension being that we may need to deal with set
values.

The following list provides some examples of relations we
use for decision evaluation:

sub real subset C

subeq subset or equal C

cardinality of a set

in is element of a set

=> logical implication
<=> mutual implication (iff)

Using these primitives, logical expressions can be built
that can be used to denote in which way a specific vari-
ability must be resolved. It is also possible to build value
expressions. We will discuss this further in the following
section.

2.3 Supported Variability Types

Many different variability types have been mentioned in
literature: optionalities, alternatives, set-optionalities (a set
of options may be selected), etc.

From our practical experience we deem the following
variabilities to be the most relevant:

» optionality: a property either exists in a product or not

+ alternative: two possible resolutions for the variabil-
ity exist and for a specific product only one of them
can be chosen

* multiple selection: several variabilities may be

14

selected for inclusion in a product

» single selection: only a single variability out of a
group of variabilities may be selected for inclusion in a
product

* value reference: the value of the decision variable can
be directly included in the product line model. (This,
of course, only makes sense with decision variables
that only assume a single variable in application engi-
neering.)

The optionality and variability refer by nature to a logical
expression as constructed using the decision evaluation
primitives. Further the multiple and single selection refer
to a value expression, as this is used to differentiate among
the different possibilities. The value reference, finally,
takes an arbitrary decision variable with a single value.

2.4 Representation-Specific Mapping of
The Variation Points

As we discussed above, the decision model is basically
representation independent. However, we need to repre-
sent the variation points in the domain model, which
employs a specific specification technique. Therefore we
need to map the different types of variabilities to the target
specification technique.

As we will see in the next section the specific notation for
the variation point may be graphical, textual based, or on
any other basis. In order to simplify the adaptation pro-
cess, we did so far always use the standard description
approach for referring to values of decision variables
described in Section 2.2.

The different variability types should be mapped in a
homogenous manner to the specification language. For
each variability type a unique mapping has to be found.
This mapping has to take a form so that confusion with
other legal expressions in the target specification language
can be minimized.

Only this mapping from elements of the decision model to
the specification formalism has to be adapted when the
approach is applied with a new specification formalism. If
the specification formalism uses graphical models, the
mapping can be done using extra graphical elements with
the decision variables as attributes of these elements. If the
UML or a similar modelling approach is used as specifica-
tion formalism, the model elements can be extended (e.g.
with stereotypes, cf. [10]). If the specification formalism
is text, markers for the different kinds of variabilities can
be introduced into the textual description.

2.5 Discussion of the Approach

The approach outlined above is sufficient to describe all
common forms of variabilities and dependencies among
them. For example alternatives that are mutually exclusive
can be represented using an alternative or a single selec-
tion, which refer to a decision variable (in the case of the
single selection, this is only sufficient if the decision vari-
able can take on only a single value).

The requires dependency can also be modelled, and it is
actually modelled on the level we believe to be the most
adequate: it is made explicit on the level of the decision
model in the form of constraints on the possible values of
the variable.

3 EXPERIENCES USING THE APPROACH

The approach to variability management in product line
modeling described above has already been applied in sev-
eral cases, most notably two industrial applications, where
one used a graphics-based approach, while the other uses
as a text-based approach. We will now briefly discuss the
implementation of our approach in these two vastly differ-
ent contexts, as this nicely illustrates the different forms of
mappings that are made.

3.1 Experiences with a Graphical Representation

We applied our approach to the variability management in
the context of product line modelling in an environment,
where a graphical notation was required. This notation
was the basis for a business process notation (ARIS),
which was in turn the basis for requirements definition for
systems of the customer [17].

The ARIS notation, which provides the basis for this
application of the approach focusses on business pro-
cesses. The basic notational elements are shown in
Figure 1. In this specific case additional elements had to
be defined in order to represent also system internal infor-
mation and control flows [17]. Our approach focussed on
augmenting this notation with additional variability ele-
ments that could be used both in business process as well
as control flow modelling.

In order to describe selections the ARIS modeling notation
uses two notational elements: the connector together with
the event. The connector defines the form of selection, the
event defines the different cases that can occur and under
what circumstances each of these paths is taken. Figure 2
shows such an example business process with a selection.
As defined by our approach the first three parts of our
approach could be taken verbatim. We only made some
minor pragmatic modifications:

* The decision model had the same entries as defined
above, with the exception of the binding times. There
was no need to capture the binding time as this was
always implicitly the modeling phase. Further there
was one additional entry: the actual values for the vari-
ous systems could also be defined as part of the deci-
sion description. This had pragmatic reasons, as in this
case the number of decision variables was limited and
especially the number of systems was small. The deci-
sion model was then simply written as a web page, as
much documentation in this environment was kept in
an intranet-based manner.

* The decision evaluation primitives were used as
described in Section 2.2.

* Regarding the different forms of wvariability, we
decided to not support the value-reference, as we did
not find a case where we would need this approach.
Also the alternative is always described as a single
selection.

Based on these decisions we defined the mapping of the

® = DDOW

Function Event Process-guide Connectors

Figure 1. Basic notation for business processes (eEPK)

15

Ru standsauflb: ng
o priiten o

Figure 2. An example business process

basic variability types onto the representation mecha-
nisms. In order to enable the users of the approach to
clearly differentiate between the basic notation and any
variability information, we defined completely different
notational elements, which, however, fit into the overall
approach. Figure 3 shows the different notational elements
we introduced. We also adopted the differentiation
between decision symbol (connector) and selectors for a
specific flow (event), which is typical of ARIS.

When mapping the various variant discriminators it is key
to keep in mind that we are using here a notation that
imposes certain restrictions, for example, by removing
some variation the overall flow may not fall apart. Thus,
we can only remove certain (alternative) paths from the
control flow. Based on these restrictions, we mapped the
variability types optionality, multiple selection and single
selection, we selected for representation, in the following
manner:

Optionality: This implies that a certain path may either be
part of a system variant (an instantiation), or not. Thus,
we need to attach two forms of information to it: the
situation in which this path is part of the final model
and if it is part of the final model, the (runtime) situa-
tion in which it is actually taken. The second part obvi-
ously corresponds to the event mechanism in the ARIS
business modeling approach, while the former is the
optionality-specific addition. We thus added the
optional variant decision to the modelling language.
As shown in Figure 3 it consists of a runtime decision
and a domain decision part. The domain decision part
in turn uses the decision evaluation primitives as
described in Section 2.2 in order to describe whether
the branch started with this decision should be part of
the instantiated model. The runtime decision part in
turn is annotated using the ARIS-notation in order to
describe what will happen in case this branch is
selected.

Single Selection: The single selection is mapped to the

domain decision
Bedingung Bedingung
unique variant general variant optlona.l yarlant) Vf}m}nt
decision decision decision discriminator

Figure 3. Symbols added for variants

unique variant decision (cf. Figure 3), which works
similar to a runtime decision in ARIS, with replacing
connectors by the unique variant decision, and the
events to the variant discriminator (cf. Figure 4). In
this case we restricted the expression for selecting
among the various paths to a decision variable, with
the variant discriminators showing the different values.
Note, that upon resolution of the variability none of the
notational symbols for variability will remain in the
instantiated flow.

Multiple Selection: The multiple selection has been
mapped in very much the same way as the single selec-
tion. The main reason for having both of them was
clarity of the instantiation semantics. In a work flow
(or control flow) representation like ARIS, a runtime
decision must remain upon resolution of the specifica-

tion variability in the case of a multiple selection.’
This is different from the single selection where all
variability symbols are removed upon instantiation.
Here, they are transformed into run-time variability (if
more than one option is chosen).

This approach to modeling was used for modeling several
systems in the domain of merchandising information sys-
tems and about ten e-commerce shops. We found this
approach to be easily applicable to these systems. Espe-
cially in the e-commerce context it was also well accepted
by the development personnel.

3.2 Experiences with a Text Based Representation

Our variability management approach has been applied in
practice also with text-based requirements in an embedded
systems company. A textual representation was chosen
because the stakeholders in the domain were very familiar
with textual representations and not with other forms of

:

1

WE .
prifen !
1

1

1

1

Figure 4. Example for the description of variants

1. Note, that in the context of this case study [17], we differ-
entiated only between specification time and runtime.

16

requiremetns documents. They had also invested consider-
able effort into the improvement of their approach to tex-
tual requirements documentation.

In order to be able to model and manage variability, the
existing mechanisms for writing textual requirements had
to be extended into a product line modelling approach.
According to our approach, only the mapping of the vari-
ability types onto the target representation formalism had
to be adapted. However, to be complete, we will now
briefly describe the specific realization of all four compo-
nents of our approach.

* The decision model as described in section 2.1 was
introduced. This was realized using an Excel-table. A
sanitized version of such a table excerpt is shown in
Figure 5.

* We used the decision evaluation primitives shown in
Section 2.3.

* We did decide to not support the single selection, as it
is a special case of the multiple selection. Moreover, so
far most instances we found during our work in this
domain were instances of the multiple selection any-
way.

This shows that, as expected, we could transfer our con-

cepts in a straight-forward manner to this domain. This

leads to the most interesting part of the case studies: how
was the mapping of the variation point types performed.

For this mapping the variability types onto the textual
specification we decided to use textual constructs framed
with “<<* “>>”_as these are text fragments which did so
far never occur in this domain.

Thus, we wrote optional variability in the following way:
<<opt exprl /text >>.
Similarly, for alternative variability, we used the term:

<<alt expr2 /value-1/ textl
/value-2 / text2 >>.

Here exprl and expr2 are logical expression as discussed
above. These expressions could be constructed using the
primitives described in Section 2.2.

For multiple alternative variability we restricted the
expression to a decision variable instead of a value expres-
sion and introduced the keyword mult:

<<opt Memory /
Section 3 Memory

The system can save settings in its memary.
The amount of memory of the systemis <<value memory sizes-.

Settings can be stored and deleted by the user
<<alt memory size > 100/ TRUE / the memory is divided into 16k blocks

/ FaLgE/ the memory is divided into 8k blocks ==
B

Figure 6. An example using the textual notation

<<mult decision-variable / value-1 / textl

/ value-2 / text2
Finally, for values the term <<value decision-variable>>
was used.

Using this approach we described the product line model.
Figure 6 shows a sanitized excerpt of such a product line
model document which includes optional, alternative, and
value variability.

In this company, we identified so far during modeling
about 50 decision variables and about 100 variation points
had to be introduced into the documentation. We expect
that once the product line model is complete, it will con-
tain more than 100 decision variables and several hundred
variation points. The resulting domain models went
through inspection by the company and were well
accepted by the development team. In particular the nota-
tion was considered to be well readable and the resulting
models to be well understandable.

4 CONCLUSION

In this paper we described an approach to variability mod-
elling for product line models. The development of this
approach was driven from the need for an approach that
can be easily applied in a wide range of practical contexts
and in combination with many different specification tech-
niques. Based on our experiences in applying this
approach, we found that

Our approach to variability management is suffi-
ciently expressive to support modeling variability

Relevance |Description Range SelectiConstraints Binding
Name ion times
Memory [System_Mem|Does the TRUE/ 1 Compile time
= TRUE system have FALSE
memory?
Memory_ The amount [0, 10, 100, |1 Memory = Installation;
Size of memory 1000 TRUE == System
the system Memory_Size |initialisation
has = 0
Time_Me How is time [Hardware, |1 Compile time
asureme measurement Software
nt done?

Figure 5. Example for the description of variants

17

for arbitrary specification techniques.

Moreover, we could already apply this approach as part of
the PuLSE approach in different industrial contexts, dem-
onstrating that it provides sufficient expressiveness for
these situations.

Based on these encouraging results our next steps will be
to extend this approach to cover the whole life-cycle and
to improve the formal basis upon which it rests.

5 REFERENCES

[1] C. Atkinson, J.Bayer, C.Bunse, E.Kamsties,
O. Laitenberger, R.Laqua, D.Muthig, B.Paech,
J. Wiist, and J. Zettel. Component-based Product Line
Engineering with UML. Component Software Series.
Addison-Wesley, 2001.

[2] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig,
K. Schmid, T. Widen, and J.-M. DeBaud. PuLSE: A
Methodology to Develop Software Product Lines. In
Proceedings of the Fifth ACM SIGSOFT Symposium
on Software Reusability (SSR’99), Los Angeles, CA,
USA, May 1999. ACM.

[3] J.Bayer, D. Muthig, and T. Widen. Customizable Do-
main Analysis. In Proceedings of the First Interna-
tional Symposium on Generative and Component-
Based Software Engineering (GCSE '99), Erfurt, Ger-
many, Sept. 1999.

[4] A.Bertolino, A.Fantechi, S.Gnesi, G.Lami, and
A. Maccari. Use Case Description of Requirements
for Product Lines. In Proceedings of the International
Workshop on Requirements Engineering for Product
Lines (REPL’02), Sept. 2002.

[51 J. Bosch. Design and Use of Software Architectures.
Addison-Wesley, 2000.

[6] J.Bosch, G.Florijn, D. Greethorst, J. Kuusela,
H. Obbink, and K. Pohl. Variability Issues in Software
Product Lines. In E. S. Institute, editor, Proceedings of
the Fourth International Workshop on Product Family
Engineering (PFE-4), Bilbao, Spain, Oct. 2001.

[7]1 J.-M. DeBaud and K. Schmid. A Practical Compari-
son of Major Domain Analysis Approaches - Towards
a Customizable Domain Analysis Framework. In Pro-
ceedings of the Tenth Conference on Sofiware Engi-
neering and Knowledge Engineering (SEKE’98), June
1998.

[8] O. Flege. System family architecture description using
the uml. Technical Report IESE Report No. 092.00/E,
Fraunhofer IESE, 2000.

[9] C. Fritsch, A. Lehn, and T. Strohm. Evaluating Vari-
ability Implementation Mechanisms. In Proceedings
of the Second International Workshop on Product Line
Engineering - The Early Steps: Planning, Modeling,
and Managing (PLEES’02), Nov. 2002.

[10]1. John and D. Muthig. Tailoring Use Cases for Prod-
uct Line Modeling. In Proceedings of the Internation-
al Workshop on Requirements Engineering for
Product Lines (REPL’02), Sept. 2002.

[11]M. Kasunic. Synthesis: A Reuse-Based Software De-
velopment Methodology, Process Guide, Version 1.0.
Technical report, Software Productivity Consortium
Services Corporation, Oct. 1992,

[12]C. Krueger. Variation Management for Software
Product Lines. In G. Chastek, editor, Proceedings of

the Second Software Product Line Conference, LNCS
2379, San Diego, CA, Aug. 2002. Springer.

[13]M. Mannion, B. Keepence, H. Kaindl, and
J. Wheadon. Reusing Single System Requirements for
Application Family Requirements. In Proceedings of
the 21st International Conference on Software Engi-
neering (ICSE’99), May 1999.

[14]A. Mili and S. M. Yacoub. A Comparative Analysis of
Domain Engineering Methods: A Controlled Case
Study. In P. Knauber and G. Succi, editors, Proceed-
ings of the International Workshop on Software Prod-
uct Lines: Economics, Architectures, and
Implications, Limerick, Ireland, June 2000.

[15]1D. Muthig. A Light-weight Approach Facilitating an
Evolutionary Transition Towards Software Product
Lines. PhD Theses in Experimental Software Engi-
neering; Fraunhofer IRB Verlag, 2002.

[16]D. Muthig and T. Patzke. Generic Implementation of
Product Line Components. In Proceedings of the
Net.ObjectDays (NODE’02), Erfurt, Germany, Oct.
2002.

[17]1K. Schmid, U. Becker-Kornstaedt, P. Knauber, and
F. Bernauer. Introducing a software modeling concept
in a medium-sized company. In Proceedings of the
22nd International Conference on Software Engineer-
ing (ICSE 2000), Limerick, Ireland, 2000.

[18] Software Technology for Adaptable, Reliable Systems
(STARS). Organization Domain Modeling (ODM)
Guidebook, Version 2.0, June 1996.

[19]T. van der MaBlen and H. Lichter. Modeling Variabili-
ty by UML Use Case Diagrams. In Proceedings of the
International Workshop on Requirements Engineering
for Product Lines (REPL’02), Sept. 2002.

[20]J. van Gurp, J. Bosch, and M. Svahnberg. On the No-
tion of Variability in Software Product Lines. In Pro-
ceedings of the Working IEEE/IFIP Conference on
Software Architecture (WICSA’01),2001.

[21]1D. M. Weiss and C. T. R. Lai. Sofiware Product-Line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

[22] A. Davis. Software Requirements: Objects, Functions,
and States. Prentice Hall PTR, 1993

[23] Birgit Geppert and Klaus Schmid (Eds.). Proceedings
of the International Workshop on Requirements Engi-
neering for Product Lines, Sep. 2002.

[24] M. Coriat, J. Jourdan, and F. Boisbourdin. The SPLIT
Method. In P. Donohoe, editor, Proceedings of the
First Software Product Line Conference, pp. 147-166,
Kluwer Academic Publishers, 2000.

[25] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son. Feature-Oriented Domain Analysis (FODA) Fea-
sibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, 1990.

[26]M. Morisio, G. Travassos, and M. Stark. Extending
UML to Support Domain Analysis. 2000.

18

Towards a General Model of Variability in Product Families

Martin Becker
System Software Group, University of Kaiserslautern
Kaiserslautern, Germany
mbecker@informatik.uni-kl.de

Abstract

The increasing amount of variability in software systems
meanwhile leads to a situation where the complexity of
variability management becomes a primary concern dur-
ing software development. Whereas sound methodic sup-
port to analyze and specify variability on an abstract level
is already available, the corresponding support on realiza-
tion level is still lacking. The goal of this paper is to pave
the way towards more systematic and consequently more
efficient approaches to manage variability. To this end, it
discusses the different motivations for variability in prod-
uct families and the interrelationships between the specifi-
cation and realization of variability. The paper further
identifies appropriate concepts and interrelates them in
form of a general model of variability in product families.
In addition to this meta-model, the paper outlines an in-
stantiation of the model: our language to specify variabil-
ity in product family assets.

1. Introduction

During the past few years a noticeable shift towards an
increased amount of variability' in software systems went
through the software industry. The reasons for the in-
crease of variability are twofold. First, variability has been
recognized as the key to systematic and successful reuse.
Especially in family-based approaches as software product
lines or software product families, variability is a means to
handle the inevitable differences among the systems in the
family while exploiting the commonalities. In this case,
variability enhances the reusability of software. Second,
by providing more variability in software systems the
flexibility and maintainability of those systems can be
improved, as features can be added or adapted — even at
runtime — without releasing new products. This can con-
siderably increase the usability of the products.
Meanwhile the increase of variability leads to a situa-
tion where the complexity of managing the variability
becomes a primary concern during software development
that needs to be addressed explicitly by the software de-

! the capability to be changed or adapted

velopment methods and tools. Whereas sound methodic
support to analyze and specify variability on the abstract
level — e.g. the feature level — is already available, the
corresponding support on realization level is still lacking
[10]. This holds for the method as well as the tool support.

The realization and management of variability is for
some reasons a non-trivial task. A first fact that hampers
the consistent management of variabilities is that they
often cannot be localized well but have widespread im-
pacts down in the implementation documents. This is
especially true, if the variability represents a varying qual-
ity of the system, as its overall performance, resource
demands or interoperability, for instance. As with invari-
able solutions, a variability has to be addressed on the
different levels of abstraction, e.g. architecture, compo-
nents, subcomponents, classes, etc. to cope with complex-
ity. In addition to this vertical impact, a variability often
shows a horizontal impact, i.e. the variability affects sev-
eral locations spread over the work products on the same
level of abstraction. If the interface of a component is
affected by a variability, for instance, then the calling
components will be affected by the variability in some
way too. However, a widespread impact of a variability
results in interdependencies among the solution frag-
ments? that have to be considered and managed. Further-
more, variabilities may interfere with each other, i.e. the
variants® offered by the variabilities may exclude or re-
quire each other, resulting in further interdependencies.
No matter how, the interdependencies caused by variabili-
ties strongly aggravate the consistent and efficient man-
agement of the variabilities, as they raise the complexity
of the overall solution and have to be considered through-
out the whole lifecycle of the variabilities.

Another fact that complicates the management of vari-
ability is that variability appears in manifold forms and
realizations. Generally, a variability extends the problem
and consequently the solution space covered by the com-
prising system. A system that provides variabilities is
planned to be applicable in a broader range of problems
than its invariable counterparts. Those extensions are

2 the so-called variation points
3 potential incarnation of the variability

19

neither restricted to certain problems nor to special solu-
tions. In principle, every solution in a software system can
be kept variable. A whole string of techniques and mecha-
nisms to realize variability [13][11][17] in the various
solution documents are already available, especially to
handle variability on the code level but also on the upper
levels of abstraction, the architecture for instance. Unfor-
tunately, the impacts of the different realizations are not
completely understood yet and there is consequently only
little methodic support in the realization and management
of variability.

This paper concentrates on the more product-family-
related issues of variability management. The experiences
we have made with variability management in various
domains (building automation, embedded operating sys-
tem, automotive), give us reason to believe, that the man-
agement of variability can be facilitated substantially, if
we find a general model of how variability is realized and
handled in product families that holds for all kind of vari-
ability throughout all abstraction levels. Such a model
should:

provide well-defined concepts to foster a common

understanding of variability and its impacts

identify common issues in the handling of variability,

e.g. traceability, variable binding times and evolution

and thus ease the development of variability aware

software development methods and tools
Unfortunately, such a model is still missing, although the
required terminology has already been defined quite well
[19]. As a consequence, different approaches and slightly
differing notions are used to realize and handle variability
on the diverse abstraction levels, e.g. architecture, source
code, and documentation, which inhibits synergistic ef-
fects to appear and complicates the consistent manage-
ment of variability considerably.

In order to approach such a model, this paper discusses
the interrelationships between the specification and reali-
zation of variability, identifies appropriate concepts and
interrelates them in form of a general model of variability
in product families. In addition to this model, the paper
outlines an application of the model: our language to spec-
ify variability in product family assets.

The remainder of the paper is structured as follows:
Section 2 discusses variability in product families. Besides
the different motivations for variability, the two levels on
which variability is approached are described. Section 3
illustrates the various incarnations of variability in the
product family assets and identifies common properties
among them. These commonalities in the realization of
variability led to our model of variability in product fami-
lies that is presented in section 4. Section 5 outlines an
instantiation of the model: the Variability Specification
Language. The paper closes with a conclusion.

2. Variability in Product Families

Product family* engineering [14] is a commonly accepted
approach to exploit the reuse potential of similar software
systems in a systematic and pre-planned way. The ration-
ale behind this approach is to identify common solutions
parts in a set of envisioned systems, which only have to be
implemented once as so-called assets® and can be reused
afterwards during the construction of the manifold family
members in application engineering processes. This leads
to the characteristic development process (six-pack) with
the two development tracks: domain engineering (devel-
opment for reuse) and application engineering (develop-
ment with reuse).

Commonly, a product family comprises a reference ar-
chitecture and a string of components. In addition to de-
sign and implementation documents, other kinds of assets
as requirement specifications, test processes and data,
production plans or domain knowledge can be supplied
through the family as well depending on their reuse poten-
tial. The overall success of a product family approach,
however, is closely coupled with the capability to handle
the required differences among the family members in a
consistent but also economic way. To this end, the family
and its members are designed to be variable, i.e. they
provide variabilities.

Generally speaking, a variability represents a capability
to change or adapt system [19], i.e. the system facilitates
certain kinds of modifications. Such a change or adapta-
tion can affect the behavior of the system as well as its
qualities. From a more technical perspective of a software
engineer, a variability is a means to delay a (design) deci-
sion to a later phase in the lifecycle of the software system
[19]. If a decision among a set of possible variants cannot
be taken at a certain time during the development of the
system, then a generic solution has to be realized in the
work products at hand that allows to take the decision
later on.

An analysis of the driving forces behind variability in
software systems in general and product families in spe-
cial reveals that two main motivations can be distin-
guished:

Usability. By providing variability in a software
system, the flexibility and maintainability of the sys-
tem can be improved, as features can be added or
adapted — even at runtime — without releasing new
products. This can increase the usability of the prod-
ucts considerably.

4 group of systems built from a common set of assets” [4]

5 partial solution, such as a component, a design document or
knowledge that engineers use to build or modify software
products [21]

20

Reusability. Variability has been recognized as the
key to systematic and successful reuse. Especially in
family-based approaches like software product fami-
lies, variability is a means to handle the inevitable
differences among systems in the family while ex-
ploiting the commonalities and thus increases the re-
usability of software.
The distinction between both motivations is necessary —
although often neglected —, because the respective vari-
abilities are handled differently and influence the software
development processes in different ways. In case of in-
creased usability, which can be generally of interest in any
software development approach, the respective variability
is used to handle an intra-product variation [11] and thus
is a feature of the product, i.e. the product contains a
mechanism to handle the variability dynamically after the
delivery of the product to the customer. Apparently, such
dynamic variabilities in principle require no special treat-
ment during the development of the software systems as
the can be realized and handled like any other feature of
the system. The main issues raised by dynamic variabili-
ties are the mastering of the increased functional complex-
ity and the available implementation mechanisms. The
increased reusability, on the other hand, can be considered
as a peculiarity of family-based approaches. In this case,
variability is used to handle the differences between the
members of a family (inter-application variability). Obvi-
ously, such a variability is not a feature of the family
members but of the comprising family and is handled
statically, i.e. once bound to a distinct variant during the
derivation of a family member, the variability vanishes
and is no longer existing in the family member. Static
variabilities affect the development processes considera-
bly and raise a string of new issues, e.g. configuration and
instantiation support, management of variants, evolution
support etc.

It has to be pointed out, that the above-mentioned mo-
tivations do not exclude each other, but can coincide in
one variability. In this case, the respective variability will
support several binding times®, and the handling of the
variability will therefore depend on the actual binding
time of the variability in the application engineering proc-
esses. If the corresponding decision is taken early enough
in the software development process, then the variability
is handled statically, i.e. the work products will be tailored
according to the decision, otherwise it will be handled
dynamically. A variable binding time allows to handle the
trade-off between tailored, highly efficient solutions on
the one-hand and flexible but more complex ones on the
other. To subsume, from a product family perspective we
have to face two motivations of variability: increased
usability and reusability, whereas the latter considerably
affects the development methods and tools and leads to

¢ phase in the development process in which the variability is
bound to a certain variant

Level Concepts Functions

Variant Dependency
c
o I
§ Variability - = specification
= . Binding time = documentation
S Rationale)
2 = configuration
J

Origin Profile

Asset
a Dependency
o
= VariationPoint = implementation
N . . .
E Resolution Mechanism = application
&

Specific solution Rationale

Figure 1. Two levels of variability handling

peculiar issues. The increased usability is primary of in-
terest if it coincides with attempts to increase the reusabil-
ity of the work products. Consequently, the remainder
focus of this paper focuses on static variabilities.

In family-based engineering approaches, variability is
typically approached on two different levels of abstraction
(cf. fig. 1): on the specification and the realization level. A
distinction between those both levels is sensible, since
they fulfill different functions and use different concepts
to represent variability.

On the specification level, the involved stakeholders
put their focus on the externally visible characteristics of
variability and suppress realization details. The require-
ments and knowledge about the variabilities in the family
are captured and represented by means of feature models
[15] or dedicated variability models [7][20]. These models
comprise information about the variabilities themselves,
e.g. their origins, the range of offered variants, the reuse
potential of the variants and furthermore information
about the interdependencies among the variabilities, and
information concerning the binding of the variability, e.g.
the supported binding times and the roles that can bind a
variability. In most cases, concepts of the problem space
are used to express information about variability. The
main modeling concepts used to represent variabilities are
variable features (in the feature models) or variabilities
themselves. Besides the information about the supported
variabilities, there will also be information about the fam-
ily members that are instantiated in the product family.
This information is captured in application models or
profiles that keep track of the variability-related decisions,
which were taken during the configuration of the family
members and control the resolution of the static variabili-
ties in the application engineering. The information about
variability on the specification level is used for various
purposes. First, it is a means to analyze and specify the
requirements for the implementations. Second, it docu-
ments the capabilities offered by the family on an abstract
level, and thus is the entry point to understand the family

21

and its members. Third, it forms the basis for the configu-
ration and instantiation of family members [12].

On the implementation level, i.e. in the set of reusable
assets provided through the product family’, the software
engineers have to realize and handle the required variabil-
ity that has been specified on the specification level. To
this end, they identify the impact of the variabilities in the
various software assets offered through the product family
and support the demanded variation by using appropriate
mechanisms. In the application engineering processes, the
application engineers deploy the static variabilities to
derive specific solutions. During this derivation, the static
variabilities are resolved to specific solutions. The main
concept that represents variability on the implementation
level is the variation point. A variation point is a spot in a
software asset where variation will occur [13][19], i.e.
where a variability is realized, at least partially. Thus, a
variation point can be considered as some kind of generic
element in a software asset. This is especially true, if the
variability is motivated by reuse concerns.

Whereas sound methodic support to analyze and spec-
ify variability on the specification level is already avail-
able, the situation on the implementation level is quite
different. Although a whole string of variability mecha-
nisms exits to realize variability in the variation points (at
least in the source code assets), e.g. appropriate language
constructs, pre-processors, external generators etc., only
few methodological and tool support is available that
meets the rising demands of variability management.
Thus, the mapping between the two levels (illustrated
through the question mark in fig. 1.) and the management
of variability on the realization level often remains a
highly creative, individual and consequently complicated
task. In order to cope with the rising complexity induced
through variability, more systematic approaches are re-
quired. To this end, a general model of variability in prod-
uct families is required, which identifies concepts, issues
and patterns that can be applied throughout the whole
lifecycle of a product family. Before we present our
model, we first take a closer look at the implementation
level of variability to reveal commonalities in a way vari-
ability is realized in the various asset types.

3. Variability on the Implementation Level

Within a product family any kind of work product used to
construct a software system can be provided as a reusable
software asset. Generally, some of them are not affected
by variability — i.e. they are used as is in every member of
the family —, but they usually form the minor part. Most of

7 the implementation level of variability (all assets affected by
variability on the different levels of abstraction) should not be
confused with the implementation level of the product family
(only code assets).

Requirements

Architecture

= |2 BN E

N VI

010101010101010010
101010010001000100
010100101011010100 jl——

Code —

Figure 2. Various asset types in a product family

the assets are influenced by variability in one or the other
way (illustrated through the grey triangle in fig. 2). Since
the impact of a variability is neither limited to certain
abstraction levels nor to distinct asset types, any asset
provided through a product family can in principle contain
variation points. Examples for such software assets are
generic requirement templates, reference architectures,
components, source code, test cases and even generic
documentation assets (cf. fig. 2).

Apparently, there are different ways to represent the in-
formation contained in the assets. The information can be
expressed through text, diagrams and binary data and each
of these representations can contain variation points (cf.
fig. 2). In recent years, especially variation points in dia-
grams attracted the attention of industry [18][16] and
academia [9][2], as variability had to be implemented on
the architectural level too, in order to allow for reuse in
the large. Regarding the granularity of a variation point it
can be stated, that a variation point can extend from mul-
tiple files, e.g. in case of software components, over
document fragments like blocks, lines or diagram ele-
ments down to single information items, as characters or
bytes. To summarize, variation points can appear in mani-
fold ways in software assets, which complicates the man-
agement of the variabilities considerably, especially if
they show widespread impacts.

Although the various incarnations of variation points
differ substantially (cf. fig. 2), they also share some com-
mon properties. If we abstract from the different asset
contents and the concrete realizations of variation points
we observe the following common functions of variation
points:

22

Localisation. A variation point localizes a variation
in an asset.

Abstraction. From an external point of view, i.e. by
suppressing internal realization details, a variation
point abstracts from the specific realizations of the
variants.

Specialization. In addition to the abstraction, a varia-
tion point supports its specialization to a concrete so-
lution in an appropriate way. To achieve this, it pro-
vides a specification that describes how to specialize
the variation point to a distinct variant and a mecha-
nism that realizes the specialization. In order enable
variation, the specification of the specialization must
be parameterized by the variabilities in some way, i.e.
the specification must be a function of the variabili-
ties.

Besides the aforementioned common functions, also de-
sirable features can be identified that any variation point
should have in order to render its functions and retain
manageable (cf. [1]):
Identification. It should be evident what part of the
asset is immutable and what part is affected by vari-
abilities. That way, the added complexity has only a
limited impact in the asset.
Clear Structure. Variation points in the assets
should be structured as clearly as possible. First, they
should not obscure the structure of the comprising as-
set. Second, if necessary, variation points should be
structured in a hierarchical way, i.e. they should not
overlap partially.
Expressiveness. Along with the variation point its
specialization must be specifiable. This is of special
interest in the case of variation points that implement
static variability, where the specialization is often car-
ried out manually.
Localized. The impact of a variability should be as
localized as possible, i.e. the variation points should
be designed and implemented in a way that concen-
trates the impact of the variability to as few points as
possible.
Tracability. Bidirectional traces between variabilities
and the variation points that implement them must be
maintainable in order to interrelate the two abstrac-
tion levels. Additionally, traces between the variation
points that implement the same variability must be
maintainable as well, in order to allow the consistent
evolution of a variability.

In spite of the considerable differences between the vari-
ous realizations of variability, e.g. in the way a variation
point localizes variability and the way it supports its spe-
cialization in detail, apparently the commonalities among
the variation points are substantial. The realization of this
led to our model of variability, which is presented in the
next section.

4. A Model of Variability in Product Families

In order to pave the way towards more systematic and
consequently more efficient approaches to manage vari-
ability, we have developed a general (meta-)model of
variability in product families that identifies and interre-
lates the concepts on the two abstraction levels mentioned
in section 2. The motivation behind this model was:
to provide concepts to foster a common understand-
ing of variability and its impacts,
to identify common issues and patterns in the han-
dling of variability, and finally
to ease the development of variability aware methods
and tools
In fig. 3. you find an excerpt® of our model, which will be
explained in the following.

The upper box at the right side addresses variability on
the specification level. The main concepts are Variability
and Profile. A Variability represents a variability in the
ProductFamily and provides a Rationale and a Range of
Variants. Between the Variants Dependencies, e.g. re-
quires or excludes relationships, can be stated. As the
Variants are associated with Variabilities, the Dependen-
cies consequently concern the respective Variabilities.
Furthermore, a Variability provides information about its
supported BindingTimes.

A Profile keeps track of the variability-related deci-
sions that were taken during the configuration of a family
member. Thus, it specifies or identifies a member of the
family. A Profile comprises a set of Assignments that can
be accessed via the Variability. Each assignment repre-
sents a taken decision, e.g. Variant A has been chosen for
Variability B at the BindingTime C. If no Assignment is
available for a Variability, then the Variability is unbound
in the profile.

The lower box at the right side addresses variability on
the realization level. The main concept is the Variation-
Point. The Assets provided through the ProductFamily
can contain VariationPoints. A VariationPoint implements
a Variability of the specification level, at least partially.
Usually, a Variability causes several VariationPoints that
are spread over multiple Assets. The concrete number of
VariationPoints caused by a Variability depends of course
on the Variability itself and the Assets provided through
the ProductFamily. On the other side, a VariationPoint can
be affected by more than one Variability. In this case, the
impacts of the Variabilities overlap. Consequently, the
multiplicity of the relationship between Variabilities and
VariationPoints is n:m.

Local dependencies, i.e. Dependencies between the
VariationPoints that are not already expressed through the
Dependencies on the specification level, can be stated on
the realization level. However, in order to keep the num-

8 the complete model will be presented in our PhD thesis

23

ProductFamily

can be bound at »

1.*

1 specification level

BindingTime

formal|1..”
1 parameter Variant
< concerns
<{implements
Dependency
contgins »
controls specialization » L
<« specifies Variability *
FamilyMember Profile I:I ®
27 1 0.*

4 mamages |1..*

AssetType

0.*

StaticAsset

VPManager

1

,_VariationPoint
0.* ZS < handles variability

1
<>LocalDependency|
DymamicVariationPoint|

—| GenericAsset ®

0.*

< defived from

DerivedAsset
2.* 1.%

Figure 3. A general model of variability in a product family

ber of dependencies and the effort to manage them as
small as possible, dependencies should be specified glob-
ally on the specification level, if possible. Dependencies
that result from the fact, that VariationPoints realize the
same Variability, do not have to be expressed explicitly,
they can be derived from the association between Vari-
ability and VariationPoint.

A VariationPoint is associated with a Mechanism that
handles the Variability. Various Mechanisms can be used
to this end. The Mechanisms can be coarsely® categorized
into three classes [5][6]: Selection, Generation and Substi-
tution. By means of a Selection mechanism, an existing
solution can be selected to specialize the variation point.
The corresponding specification of the specialization is
illustrated in fig. 4. Exemplary selection mechanisms are
if/felse or switch constructs in preprocessor and program-
ming languages, or inheritance in object oriented lan-

° more detailed taxonomy of such mechanisms can be found in
[17]

StaticVariationPointI‘—' Specification
|

resolved to »

Specification

Selection

Rationale

ResolutionRule

2.

4|ResolvedVariationPoint

realization level

guages. A generative mechanism allows the generation of
a solution, e.g. through an external generator. The spe-
cialization specification forms the input of the generator
and the generated output specializes the variation point.
Substitution mechanisms are rather simple; they support
the specialization of the VariationPoints by unique, exter-
nally provided solutions. Therefore, the corresponding
variation points can be considered as some kind of gap.

As stated in section 2, two different motivations can be
identified for a Variability. Those motivations lead to
different types of VariationPoints. The first one, the Dy-
namicVariationPoint demarcates a solution in an Asset
that allows to handle the Variability late in the lifecycle of
the product, i.e. after the delivery. Consequently, Dy-
namicVariationPoints are not specialized during the de-
sign of the corresponding FamilyMember. In contrast to
them, a StaticVariationPoint has to be specialized during
the design and implementation of the FamilyMember. The
result of such a resolution is a ResolvedVariationPoint,
which no longer supports variation. In order to support

24

their specialization, StaticVariationPoints provide a Speci-
fication, which contains a Rationale and a ResolutionRule.
The specialization can be automated through an appropri-
ate mechanism. To facilitate the evolution of a variability
realization, the association between StaticVariationPoint
and ResolvedVariationPoint should be maintained in the
ProductFamily, in order to propagate changes in both
directions.

StaticAssets contain no StaticVariationPoints. Thus,
they can be used in the application engineering without
any specialization. GenericAssets on the other hand con-
tain at least one StaticVariationPoint. The specialization
of a GenericAsset results in a DerivedAsset that is used to
construct the FamilyMember. DerivedAssets contain no
StaticVariationPoints but only ResolvedVariationPoints.

Variabilities control as formal parameters the speciali-
zation of the VariationPoints. What serves as actual pa-
rameters depends on the type of the VariationPoint. In the
case of a DynamicVariationPoint, the specialization is
controlled by runtime parameters in the software system.
With StaticVariationPoints the assignments in the profiles
form the actual parameters of the specialization. If the
ProductFamily supports several BindingTimes for a Vari-
ability, then the specialization specification of the result-
ing variation points may also depend on the variability’s
binding time, e.g. the conditions in a selection (cf. exem-
plary condition 3 in fig. 4. above). Hence, the variation
point's specialization specification is not only a function
of the corresponding variabilities but also of their actual
binding times.

As illustrated in the model, the only two associations
between concepts on both levels are the implements asso-
ciation between Variability and VariationPoint and the
association between the Assignments and the Resolution-
Rules. The first association is established during the im-
plementation of the assets and has to be maintained during
the whole lifecycle of the ProductFamily. Along this asso-
ciation, information can be propagated between the both
abstraction levels. The second association does not need
to be maintained explicitly. It can be derived from the first
one. If the actual parameters have to be determined for the
specialization of a StaticVariationPoint, then the corre-
sponding assignments can be retrieved from the profile
through the variabilities associated with the Variation-
Point. Obviously, the first association is of utmost impor-
tance for any product family approach. Bidirectional
traces between the variabilities and the variation points
must be expressible and maintainable in an efficient way.
As a prerequisite, the variation points — static as well as
dynamic ones — must be identifiable in the assets.

To support the management of variability on the im-
plementation level, VPManager instances can and should
be provided for the different AssetTypes of a ProductFam-
ily. A VPManager is a tool that supports the domain and
application engineers in the various variability-related
tasks, as implementation, identification, resolution, as-

Specification of a selection:
if (conditionl) solutionl DL

elif (condition2) solution2

elif (conditionN) solutionN

else default-solution

Exemplary conditions:
1. VariantA B

2. VariabilityA.VariantB and
not VariabilityB.VariantD

3. VariabilityA.BindingTime < BindingTime.IntDes

Figure 4. Specification of a selection

sessment, and evolution of variation points in assets of the
respective types. The VPManager class in the model cap-
tures the management-related issues and solution patterns
or principles, e.g. the resolution in case of variable bind-
ing times or the automated evolution of a variabilty. A lot
of methodical and tool support is conceivable and required
to this end, but only few is available yet.

5. Instantiation of the Model:
Variability Specification Language

Based on the above-mentioned meta-model and the identi-
fied demands for variation points, we have developed a
language to specify variability in product family assets —
the Variability Specification Language (VSL) — and ap-
propriate tools (processor, viewer). VSL is an XML-based
language that can be applied in a broad range of docu-
ments and thus allows to handle variability in a uniform
manner. Besides the previous drivers, VSL has been in-
spired by the frame technology [3] and the popular C pre-
processor. Both of them can be considered as macro lan-
guages and the same applies to VSL — at least partially —
too.

VSL first of all allows to specify the impacts of vari-
abilities in the assets, i.e. the variation points. Besides the
clear identification of the variation points and the vari-
abilities that affect them, the specialization of the varia-
tion points can be formulated as well. To this end, VSL
provides markup to specify the selection of pre-built vari-
ants and the generation (up to now XSLT and JScript are
supported) or the substitution of specific solutions and
hence supports the basic mechanisms to handle variability.

Based upon the VSL-specifications, specialized solu-
tions (XML or text documents) can be derived from the
VSL-based generic assets during the application engineer-
ing. This resolution is controlled by profiles, which can be
expressed by means of VSL too (cf. fig. 5). Besides the
values of the variabilities, VSL specifications can take the
variabilities’ binding time into consideration. Although
the main driving force behind VSL was to support static
variability, VSL can be applied with dynamic variability

25

Profile:

<vsl:profile id="StdCfg" vm="prosekko"> DL
<vsl:set var="Status" bt="RegSpec">extended</vsl:set>
<vsl:set var="PreemptiveMultitasking">yes</vsl:set>
<vsl:set var="ConformanceClass">ECC2</vsl:set>

<vsl:set var="Tasks" bt="IntDes">
<task>.</task> ..
</vsl:set>
<vsl:set var="Resources" bt="IntDes">3</vsl:set>
</vsl:profile>

Asset:

<vsl:import href="../include/debug.h.vsl" once="yes"/> DL

<vsl:select var="Status">
<vsl:option value="basic"/>
<vsl:option value="extended">
int resource occupied[<vsl:subst var=""/>]
[<vsl:subst var="Resources"/>];
</vsl:option>
</vsl:select>

Figure 5. A VSL document and profile fragment

as well. In this case, the VSL markup is not processed by
the VSL-processor, but merely serves for identification
and specification purposes. A more detailed discussion of
the VSL features can be found in [8].

The main advantages in applying VSL to specify vari-
ability in a product family can be seen in the uniform and
explicit treatment of variability. First, the language can be
used to specify the variability in the different asset types.
This considerably eases the development of special vari-
ability management tools, e.g. to facilitate the evolution of
variability, that can be applied throughout the whole prod-
uct family engineering process. Second, due to the explicit
specification of the variability by means of a dedicated
language it gets quite easy to identify and assess the
impacts of a variability down in the assets. A general
advantage of VSL — as with all XML-based approaches —
is the extensibility of the language and the remarkable tool
support. Although still being in a evolving state, VSL has
already proven the feasibility of XML-based variability
management. It has been deployed successfully to handle
the variability in an embedded operating system on the
requirements and the code level (C-Code). In an industrial
context we have deployed VSL to specify variability on
the architecture level in UML-diagrams.

6. Conclusion

The increased amount of variability in software systems
meanwhile requires more systematic approaches to cope
with the rising complexity introduced through variability.
This is especially true in product families, where variabil-
ity is a means to handle the inevitable differences among
the systems in the family while exploiting the commonal-
ities. Widespread impacts of variability and the various
realizations considerably complicate the management of
variability in product families. In order foster more sys-

tematic and consequently more efficient approaches of
variability management we have discussed the commonal-
ities and differences of variability in product families,
identified appropriate concepts and interrelated them in
form of a general model of variability in product families.
The model has been applied to develop a small language
to specify and realize variability in product family assets.
We believe that the management of especially static
variabilities, which can be considered as a main character-
istic of product family approaches, is an issue that can and
should be addressed in an explicit and overall manner to
keep track with the rising complexity. To achieve this, a
common understanding and management of variability is
required across the various asset types. The presented
approaches intent to pave the way towards this.

References

[11 Bandinelli, S.: Product Family Engineering with XML,
Proc. of Dagstuhl Seminar No. 01161 Product Family De-
velopment, Wadern, Germany, 2001

[2] Bachmann, F.; Bass, L.: Managing Variabilities in Soft-
ware Architectures, Proc. of 2001 Symposium on Software
Reusability, Toronto, Ontario, Canada, May 2001

[3] Bassett, P.G.: Framing Software Reuse - Lessons From the
Real World, Yourdon Press Computing Series, 1997

[4] Bass, L.; Clements, P.; Donohoe, P.; McGregor, J.; North-
rop, L.: Fourth Product Line Practice Workshop Report,
http://www.sei.cmu.edu/publications/documents/00.reports
/00tr002.html, November 1999

[5] Baum, L.; Becker, M.; Geyer, L.; Molter, G.: Mapping
Requirements to Reusable Components using Design
Spaces, Proc. of IEEE Int’l Conference on Requirements
Engineering (ICRE 2000), Chicago, USA, 2000

[6] Becker, M.: Generic Components: a symbiosis of para-
digms, 2nd International Symposium on Generative and
Component-Based Software Engineering (GCSE'00), 2000

[7] Becker, M.; Geyer, L.; Gilbert, A.; Becker, K.: Compre-
hensive Variability Modelling to Facilitate Efficient Vari-
ability Treatment, Fourth International Workshop on Prod-
uct Family Engineering (PFE-4), Bilbao, Spain, October
2001

[8] Becker, M.: XML-Enhanced Product Family Engineering,
Proceedings of the Sixth Biennial World Conference on
Integrated Design and Process Technology (IDPT2002),
Pasadena, USA, June 2002

[9] Bosch, J.: Design and Use of Software Architectures -
Adopting and Evolving a Product Line Approach, Addi-
son-Wesley, 2000

26

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Bosch, J.; Florijn, G.; Greethorst, D.; Kuusela, J.; Obbink,
H.; Pohl, K.: Variability Issues in Software Product Lines,
Proc. 4th Int'l Workshop on Product Family Engineering,
Bilbao, Spain, 2001

Czarnecki, K; Eisenecker, U.W.: Generative Programming
- Methods, Tools, and Applications, Addison-Wesley,
2000

Geyer, L.; Becker, M.: On the Influence of Variabilities on
the Application Engineering Process of a Product Family,
Proceedings of the 2nd the Second Software Product Line
Conference, San Diego, USA, 2002

Jacobson, 1.; Griss, M.; Jonsson P.: Software Reuse -
Architecture, Process and Organisation for Business Suc-
cess, ACM Press / Addison-Wesley, 1997

Jazayeri, M.; Ran. A; Van der Linden, F.: Software Archi-
tecture For Product Families: Putting Research into Prac-
tice, Addison-Wesley, May 2000

Kang, K.; Cohen, S.; Hess, J.; Nowak, W.; Peterson, S.:
Feature-Oriented Domain Analysis (FODA) Feasibility
Study, Technical Report, CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, USA, November 1990

Muthig, D.; Atkinson, C.: Model-Driven Product Line
Architectures, Proc. of the Second Software Product Line
Conference, LNCS 2379, Springer, San Diego, USA, Au-
gust 2002

Svahnberg, M.; Van Gurp, J.; Bosch, J.: A Taxonomy of
Variability Realization Techniques, Technical paper,
ISSN: 1103-1581, Blekinge Institute of Technology, Swe-
den, 2002

Thiel, S.; Hein, A.: Systematic Integration of Variability
into Product Line Architecture Design, Proceedings of the
Second Software Product Line Conference, LNCS 2379,
Springer, August 2002

Van Gurp, J.; Bosch, J.; Svahnberg, M.: On the Notion of
Variability in Software Product Lines, Proceedings of
WICSA 2001, August 2001

Voget, S.; Angilletta, 1.; Herbst, I.; Lutz, P.: Behandlung
von Variabilitdten in Produktlinien mit Schwerpunkt Ar-
chitektur, Proceedings of 1. Deutscher Software-
Produktlinien Workshop (DSPL-1),, Kaiserslautern, Ger-
many, November 2000

Withey, J.: Investment Analysis of Software Assets for
Product Lines,
http://www.sei.cmu.edu/publications/documents/96.reports
/96.tr.010.html, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, USA, 1996

27

Managing I nfinite Variability

Alessandro Maccari®, Anders Heie?
"Nokia Mobile Software, P.O. Box 100, FIN — 00045 NOKIA GROUP (Finland)
Nokia Mobile Phones, 12278 Scripps Summit Dr., San Diego, CA, 92131(USA)
alessandro.maccari @nokia.com, ander s.heie@nokia.com

Abstract

Managing variability is an increasingly challenging
task for mobile terminal manufacturers. as new features
are launched more and more quickly and the market
saturates, coping with variability at the software
architecture level is a crucial need for all the companies
that operate in the field.

Variability originates from different requirements and
features. The need to offer a varied range of terminal to
attract different categories of users makes for almost
infinite combinations. We analyze the main challenges
that lie behind the variability problem, both at the
technical and at the organizational level, and illustrate
the solutions we have implemented in our organization.
We also hint to some suggestions for further research.

In general, the variability problem s likely to increase in
complexity, and the ability to successfully tackle it is
likely to be a strong factor for success or failure for all
companies that want to develop and maintain a product
family that addresses different categories of customers
and varied regional markets.

1. Introduction: coping with infinite
variability

As the market matures, and the competition on price
and features becomes harsher, mobile termina
manufacturers are posed with challenges of increasing
complexity. We estimated that, in order to maintain
market share and avoid profit margin erosion, Nokia must
launch and market between 30 and 40 new products every
year. In other words, this means launching one product
every six to eight working days.

Naturaly, diversification among products is necessary
in order to address the needs of different categories of
customers. Products must be segmented according to the
following (rough) criterion.

Low-end products have a simple (often trivial) user
interaction pattern, and their features tend to be oriented
towards gaming, messaging and multimedia, since that is
what the target category (mainly youngsters) are willing to
pay for.

High-end products have an abundance of features, and
the hardware is typically smaller and more lightweight
than in low-end products. The target audience is the
“gadget savvy”.

Fashion products are designed to cater to the latest,
hippest, coolest. An extensive selection of features is
essential, as well as the ability to customize the product to
suit the needs of the owner, who typically wishes to
diversify from the rest of the crowd. Such customization
can be hardware-centered (e.g. with plastic covers of
different colors), but also software-driven (e.g. capability
to support downloadable ring tones, screensavers, etc.).

Business products supply the professionals with tools
to help them in their daily jobs. Features such as long
battery duration, data synchronization and support for
connectivity (email client, infrared, Bluetooth, etc.) are a
must.

Moreover, across products, several features introduce
variability.

1) A varying number of keys are necessary for both
practical and segmentation reasons. For instance, a high-
end phone that can browse the web requires more keys
than a low-end voice only phone, in order to allow an easy
mouse-like navigation.

2) Varying display size and color depth: there are
obvious price benefits to black and white displays with
respect to color, and the market has expressed no
requirement for color until multimedia features (such as
multimedia messages, or MM S) were launched.

3) Different feature sets: we try to launch new features
very frequently to encourage product replacement (a
fundamental drive for profits in a saturated market, such
as Western Europe), and create different sets of features
for each product segment to suit the target customer
needs.

4) Languages: we have to support a very large amount
of languages. While most users utilize only one, a typical
terminal supports between 4 and 12. The active language
must be changeable at run-time.

5) Input methods: these are tightly related to languages.
While most Western languages have a standard input
method, some (especially Asian) languages have so many
glyphs that it is impossible to map each one to a separate
key.

28

6) Backwards compatibility to accessories. mobile
terminal manufacturers get a huge economical benefit by
being able to mass-produce accessories (such as batteries,
handsfree sets, chargers), so that each battery model can
be fit in severa products. This also increases customer
loyalty, as end users are able to use older accessories with
newer products, thus minimizing the cost of terminal
replacements.

7) Different protocols: a basic necessity, as this defines
the network connectivity. Among others, we must support
the following protocols. GSM, CDMA, TDMA, PDC,
AMPS, some of which work in different frequencies. In
some cases we need to support combinations of different
protocols in the same product. Since the way network
services (e.g. call, messaging) work slightly changes with
the protocol, this impacts the user interface (Ul) in subtle
ways.

These variability points impact amost everything in
the terminal. Menus will change if the network changes.
The architecture of our software must support different
languages. The Ul must be compatible with all the input
methods. The introduction of a new key will impact the
way the Ul trandlate key pressesinto glyphs.

The challenge is further complicated by the fact that
each feature must be;

a) Configurable (on, off, various settings). For
instance, the number of characters supported in text
messaging using the CDMA protocol is different than for
GSM, while some protocols (like AMPS) don't even
support text messaging at all.

b) Able to change behavior after product release,
typically because of operator requirements. As the market
is becoming more mature, operators are looking for ways
to differentiate their service from those offered by the
competition, and this feeds back to Nokia as operator-
specific features and behavior. To simplify production,
this variability is most often built into the product at the
time of manufacturing.

¢) Plug-and-playable. There are two aspects of this. 1)
Internally, Nokia benefits from being able to quickly add
or remove features from products. It cuts our devel opment
cycles, and fecilitates reuse. A CDMA product can use the
same features originally designed for a GSM product. I1)
Externally, Customers benefit from being able to
download applications and run them regardless of the
terminal model that they are using. This also creates a
large aftermarket that everyone benefits from.

All the business requirements that we illustrated above
must be fulfilled in order to allow companies like ours to
remain competitive. However, they make the variability
challenge very hard to tackle at the software architecture
level. This is especially true for large organizations that
operate in a continuously changing environment and
where product development is distributed among different
sites located in different countries or even continents.

Practically, the potential combinations of different
features are so many that we often talk about “infinite
diversity” or “infinite variability”. This needs to be
managed in an effective way, avoiding the danger of
losing control of the software development organization
and exponential increase of the workload as the product
set augmentsin size.

In the following sections we report on our experience
with Nokia by illustrating the main variability challenges
that we must face every day. For each, we outline the
solutions we have implemented, with particular emphasis
on software architecture issues. We aim to provide an
industrial, practical point of view on the problem of
software variability. We conclude with some suggestions
on a number of issues where we think academic and
industrial research should focus.

2. Thelanguage challenge

At the time of writing, Nokia's products support
approximately 60 languages. Other than Western
languages (those based on a Latin character set, such as
English, Italian or Danish), these include Arabic, Chinese
(which has severa variants), Thai and Hebrew. These
differ mainly for the input method.

Western languages are typed character by character
(one character for every keystroke), and are displayed
sequentially from left to right.

Arabic is also entered character by character, but must
be displayed sequentially from right to left. The fact that
Western words can be inserted amid Arabic text further
complicates the matter, since the former are displayed
from left to right. Additionally, Arabic letters need to be
connected in the display to form a“single sign”.

Chinese characters have a different meaning than
Western characters. Every character represents a concept,
and is made of a sequence of phonetic sounds. Every
Chinese character is entered by selecting the sounds that
make it up through a series of strokes. This has to be done
through some trandliteration method, since the keys in the
pad correspond to Western characters.

Thai is entered in a similar way than Chinese, but with
adifferent logic.

Hebrew is perhaps the most complicated, since vowels
are usualy not written, and their transliteration may
depend on the context of the phrase.

The popularity of SMS (Short Messaging System) in
the recent years has yielded the need for a dictionary.
Nokia uses the T9 technology [1], which implements a
predictive text input technology, where multiple strokes of
the same key to obtain certain characters are no longer
necessary. For instance, typing the letter “s’ used to
reguire four strokes of the “7” key, but typing a full word
(e.g. “same”) requires as many characters as there are

29

letters (in this case, four characters, specifically 7-2-6-3).
This requires a dictionary to be stored in the terminal, and
the input mechanism is further complicated by the fact
that some words yield the same sequence of keystrokes
(eg. “same” and “sand” both are typed by entering the
above sequence).

The language challenge, however, is not al about
inputting and displaying characters in different languages.
Most maobile terminals can operate in different languages,
i.e. the user can choose which language the menu items,
softkey labels and warnings should be displayed. When
the user changes the default language, the whole terminal
must start operating instantly in the new language (Figure
1).

D—Config. teléfona—1 D—Options téléph.— 1 D—Phone settings —1

Idioma Langue Language
Espafiol Francais English

Elegir Atras Choisir Préc, Select Back

Figure 1. Language change.

Both language challenges are hard to solve in a
scalable way if the code is aware of the selected language.
Therefore, we had to devise a method to isolate the
language knowledge from the code. It is interesting to
note that the semantics of each key press does not change
when the language changes, nor do the order of the menu
items or the functionality thereof. Hence, the language
challenge can be formulated in an abstract way: separating
behavior (i.e. the semantics of each user action) from
appearance (the way the user is alowed to input and is
presented output) solves the language problem.

In detail, we solved the language problem with the aid
of two artifacts

For text input, we split methods into different
components.

a) The physical key press, generated from the
hardware, is passed into the visual trandation.

b) The visua trandation interacts with the user to
convert the physical input into a meaningful
representation. Several key presses might be necessary
before the final logical value (called “glyph”) is complete.

¢) Thefinal glyph is the result of one or more physical
key presses, transated through the visual representation.
This is the interesting part for a software application, as it
represents the users intention.

These components allow us to add a new input method
(whenever needed), without changing the behavior.
Software applications need not know about the physical
key presses, or about the translation. Adding a new
language is now reduced to the simple exercise of adding
anew visua translation.

For text output, we created a text database where every
entry corresponds to a string (one or more words).

Applications that need to display texts call the database by
means of a logical reference, which is independent of the
language used. A certain application has the responsibility
for managing language selection, and possesses the
knowledge of what language is currently active. By means
of this, strings in the correct language can be extracted
from the database. Note that this allows us to add support
for a new language independently from the existing ones.

One additional complication with the output is that the
length of strings can differ radically between languages,
while the available area does not. Thus care needs to be
taken controlling the length of the strings. There are two
methods to solve this:

1) Strings can be truncated. This should be done in any
case as a precaution.

2) The logical strings must be generated with the
knowledge of the available space. This is preferable, as it
will ensure the most pleasant Ul, but it requires a strong
process.

To summarize, the language challenge, as most of the
others that will be presented here, can be solved by
providing a simple abstraction between the way
information is presented and the way it is processed.

3. The hardware challenge

The mobile telephone product concept has evolved
massively from the simple, voice-centered products that
were in the market in the early nineties. At that time, the
display, keypad and hardware features were fairly
standard. Nowadays virtually every product has unique
hardware features. Here we overview the main variability
factors.

a) Keys: products like Nokia's D111 have no keypad
(commands and data are inputted via a connected personal
computer, and the termina acts like a smart modem);
“classical” mobile terminals differ in the amount of “soft”
function keys (in Nokia's product family they range from
one to three); at the high end of the range, communicator-
like products (such as Nokia's 9210) have a full-fledged,
PC-like keypad, complete with some ten “hard” function
keys and afew “soft” function keys.

b) Special keys. in some cases, operators or countries
request the presence of one or more special keys, an
example is the i-mode™ key, which was requested in one
of our products to enable users to easily access mobile
services in Japan.

¢) Scrolling: the small size of displays generates the
need for scrolling. Name lists, menu items, received
messages, profiles and virtually every other long list of
data in the terminal needs to be scrollable. “Classical”
terminals are equipped with bi-directional scrolling
(supporting vertical directions). However, recently 4-way
scrolling was introduced (adding horizontal scrolling), to

30

ease up navigation in tables, such as calendars, and to
improve the game playing experience.

d) Sound Playback: ringing tones and games (among
other features) require a sound player. Support for MIDI
sounds has recently been added to the traditional beeper-
style sound that was present in earlier products.

€) Display size: this is perhaps the biggest source of
variability. We have made an attempt to standardize
display sizes by promoting the Nokia user interface series,
where the display size (as well as some other user
interface features) is constant for every product belonging
to a certain series. For instance, all Series 60 terminals,
such as the Nokia 7650, have a 176 x 208 pixel color
display [2]. Nevertheless, the variation remains large, and
the implications on the user interface software architecture
are extensive and perhaps not yet fully understood.

f) Color depth: once, displays were purely black and
white, i.e. every pixel could be on (black) or off (white) at
any point in time. Gray Scale displays were introduced
recently, alowing for several shades of gray. Color
displays came next, with different resolutions, just like in
PCs. Obvioudly, applications can use higher color depth to
enhance the way they visualize information.

g) Local connections, such as Infrared, Bluetooth, and
RS232. Every type of connection that is supported
requires its own hardware and software, and must be
recognized by all applications that need to use loca
connectivity.

h) Accessory compatibility: as justified in the
introduction, hardware must be kept as backwards
compatible with existing accessories as possible (with
some obvious exceptions, e.g. when stereo sound output
was introduced a new headset was an obvious choice).

Clearly, maintaining software that incorporates all
hardware knowledge would mean having too many
variation points in the software architecture. While
complete hardware abstraction is not possible (and would
not be desirable), we need to decouple physical input and
output from data management. We will look at the
solution we have implemented to overcome this problem
in the following sections.

4. Thefeature challenge

A feature is a chunk of functionality that adds value to
the product. Features are normally requested by customers
(such as operators or countries). The complexity of
today’s terminals has boosted the amount of features in
the terminal to alevel whereit's very hard to handle them.
The sheer amount of countries and operators we sell to
makes for high variability even in the simplest features.
For instance, some operators request a separate high-level
menu item that facilitates the usage of operator services,
or require a different set of call handling features. The

growing number of Operator specific changes is one of
Nokia's greatest challenges today.

The phenomenon of feature interaction further
complicates the matter. In previous publications [3] [4],
we have tried to define the problem, categorize the types
of interaction and propose some solutions. For the sake of
this paper, we will only note that interaction between
features can dramatically increase the amount of
dependencies between the software components that
implement such features. Clearly, software architecture
must be designed in a way that such dependencies are
minimized, and do not increase exponentially with the
number of features.

Also, features evolve and change over time. A typical
example is the Phonebook. In the earliest terminals, it was
amere list of names and numbers, where a name could be
up to 8 characters and could be associated to only one
number. Nowadays, for every phonebook entry (a string
which can be made of dozens of character) the user can
associate several numbers of different types (home, work,
mobile, fax) and even some text (email address, free text
notes). Predictably, not all features change and evolve in
the same way in al products, which brings additional
variability.

5. Solution: client-server architecture

The solution we have devised for this is Client-Server
architecture. Thisis a well-known solution for these kinds
of problems, and it suits our case well. We consider our
system to be made up of resources (Servers) and user
interactions (Clients). A Server represents a basic service
in a product, while a Client implements a feature. Clients
cannot interact, which means they have no internal
bindings. Thus we are able to remove or add a Client
without affecting the rest of the System. Furthermore,
Clients are designed using another abstraction: Ul
Components. Preferably, a Client has no direct knowledge
of the actual physical representation of its data. Thus a
change of the display size would be handled by the Ul
components, and the Client would never get involved.

While this is what we strive for, it is very hard to
obtain that level of separation. We estimate that the
majority of our Client code can be left unchanged if the
display size changes. This means that most of our code
base can remain stable, reducing the possibility of errors.
If a service changes, we can typicaly encapsulate the
change in the Server, again reducing the need for the
Clients to change to the bare minimum.

Another benefit of the Client-Server architecture is the
ability to dynamically add and remove components.
Utilizing sophigticated data-transfer models, we can
connect a product to another device and run parts of the
SW there. This even works across processors, solving

31

known problems with data alignment and endianess (the
pattern for byte ordering in native types, such asintegers).

6. Solution: decoupled Ul architecture

Abstractly speaking, most of the problems we analyzed
in the previous sections have one common solution:
separating behavior from appearance, or, in other words,
enable the decoupling of components from their
environment. In our case we have severa layers of
decoupling. Let’s look at an example of asmall system as
shown in Figure 2.

Keypad Trendate | .| Display Display
Key o Components Server

e f
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Input ! Client | ____! Variation
! Method ! (Feature) Set

Behaviour

Figure 2. Example of small Ul System.

This illustrates the concepts we have been discussing
so far, and indicates some of the variability points and
where their main impact occurs. As a Client runs, the
current variation set determines its functionality. We say
the client implements the behavior of a feature. A typical
Client will interact with the user, in our case through the
Display Server. The Client utilizes a set of display
components to show its data. We say these components
implement the appearance of the feature.

Thus, we've decoupled the Client from the physical
input and output (keypad & display). Although the
appearance might change, the behavior stays the same,
and vice versa. Abstractly speaking, the behavior defines
the data manipulation (logic), while the appearance
represents the visualization of the data. Thisis also known
as the observer pattern [5].

We've taken this approach a step further. We allow the
Client to not only specify a set of display components, but
also basic interactions between them. As it turns out, a
large part of a Ul consists of simple operations. For
instance, playing a beep when a key is pressed, or
changing the text on a button when the end of a list is
reached. These simple interactions can be described very
well by mapping display components input and output
together. As the end of alist is reached, a list component
can generate an output that can be mapped to a button to
change a text. The Client needs not be involved. This
creates an even greater separation between appearance
and behavior.

Another fact to be considered is that the layout of the
display can change from product to product, and even at

runtime if the language changes. Layouts are part of the
appearance, so we've designed them as dynamic entities
that are resolved when the display is updated. The Client
never needs to know about the layout in a particular
display configuration.

Finally, it is worth noting that the physical input (in our
case, mainly the keypad, but also voice recognition, local
connectivity, etc.) has no direct interaction with the Client.
We alow the input signals (e.g. key presses) to be mapped
in the same way as components. Thus, a key press could
trigger a text to change or a button to be pressed, all
without any behavioral impact. This might sound extreme,
but it emphasizes the essence of this model: the behavior
congtitutes the logical operations performed on a set of
data. The appearance congtitutes the manifestation of the
logical operations. A key press is of no interest to the
behavior until is manifests itself as input to a logical
operation.

This concept can be hard to grasp without an example.
Let's assume that a Client wants to allow a user to write
an email. The user can enter the email address, a subject
and a body text. He also has an option to press Send &
Cancel.

In this case, Appearance includes: entering text using
dictionaries or alternate input methods, scrolling in the
body text, inserting special characters, moving between
fields, beeping when a key is pressed. Behavior, instead,
comprises only the following actions. Send, Cancel,
verifying the mail address format after it is entered.

Thus, the only interaction between the Display Server
and the Client would be to support the three behavior
situations. More importantly, the behavior is the same
across physical platforms. For another product that does
not support beeping when keys are pressed, the behavior
of this example client would not change at all. And it
should not!

Defining this separation requires great care, but aso
yields great benefits, in that it allows us to tackle all the
scaling-up problems that originate from having to deal
with alarge and very diversified product family.

7. The organizational challenge and some
solutions

As most organizations of its kind, Nokia is a global
company. It has regional and global research and
development centers scattered across different countries
and even continents. The difficulty in this kind of
geographical arrangement lies in the fact that, despite all
the variability, a large chunk of the software is common
between severa (or even al) products. Common software
must be used in different products, and therefore its
changes must be tightly controlled, to avoid undesired
propagation of the effects.

32

The organizational entity that lies at the basis of our
software development is called a “software line”. A
software line is an organizational entity that is responsible
for developing a specific set of features (called “subject
area’) for a wide range of products. Examples of well-
defined subject areas are Messaging, Phonebook,
Calendar, etc. Software lines regularly publish new
releases of their code.

This way, the code that every software line publishes
has the potential to affect several products. Thisiswhy we
impose that software lines test their code in as many
configurations as possible. Naturally, not al possible
future configurations can be predicted at the moment
when the code is published, and it could well be that some
code release, which has proved to work well with different
products in the past, causes errors when integrated into a
new product with different functionality. However,
requiring fully tested releases certainly minimizes the
amount of product-specific testing to be done during
integration, thus reducing duplicate work.

The feature interaction (dependency) problem that we
outlined before brings another problem at the point of
release. Namely, it is important to know what other
software lines (components, features) are affected by
changes in a certain piece of feature code. We maintain
such knowledge in the form of a global database of
software dependencies. When a certain chunk of software
is changed, the owner software line must look in the
database and send information about the change to all the
interested parties. We are currently considering the
adoption of atool to perform this task automatically.

In addition, software lines must document all interface
and functionality changes. Such documents must be
accessible to all products that are affected by the change
(i.e. al products that use the code in question). This
guarantees that all the products are always up to date with
what has been done to the code. Also relevant parties can
be invited to reviews, ensuring that no one gets surprised
when the new interfaceis released.

Error management is another crucial area for every
global software development organization. Software lines
must document known errors in the same way as the code
functionality, and ensure circulation of the corresponding
documentation (as outlined above). This ensures that all
the products that use a certain piece of code are updated
on the errors as soon as they are detected. In the same
way, error fixes (which usually generate maintenance
releases) must follow the same process, and software lines
have the responsibility to document them as well.

8. Conclusions and further research

We have outlined the main problems relating to
variability that need to be tackled when designing the user

interface software architecture for mobile terminals. The
main challenges are posed by support for multiple
languages, compatibility with different hardware and
support for diversified and interacting features. All these
problems can be solved by abstracting behavior from
appearance, and by decoupling software applications with
the services provided by the terminal and the surrounding
environment (e.g. network, other connected devices).

Moreover, we shortly discussed the issues that arise
when developing software in a distributed, multi-site and
global organization, where the dependencies between
software entities trandate into dependencies between
different sections of the organization. We believe that the
issues represent valuable input for the research community
by providing a practical point of view on large-scale
industrial software development.

In the next few paragraphs we digress through some
issues for further research in the subject. A more extensive
list of issues was presented by one of the authors during a
keynote speech at the SPLC-2 conference, in August 2002

[6].
8.1. Designing for complexity

We noticed one interesting practical problem that arose
when working with this kind of architecture. Namely, it is
generaly difficult for developers to work on a system
where everything is decoupled. People tend to look at this
the practical way, and mainly try to implement a featurein
the fastest possible way. In order for this approach to
work, it is of course essential that each developer
understand the technical aspects. However, this is not
enough: every developer must be able to take a step back
and define interfacesin very abstract terms. While this can
be partly achieved with rules, processes and training,
ultimately people must fully understand the underlying
concepts (that we explained above) in order to produce
efficient code in this framework. If these concepts were
included in Software curricula at universities, we believe
that the software community would see long-term benefits.
We found out that this is often not the case: when seen
isolated from the rest, each chunk of code usualy is
designed in a sensible way. However, when put together,
sensible components do not aways make a sensible
system. Thus, we believe that more training is needed in
the subject of designing code for complex software
systems that have alot of variability.

8.2. Assessing the convenience of redesign

A recurring problem in our software development
world is to figure out to what extent it is convenient to
change a software system as opposed to rewriting it as
branches? For instance, suppose we need to implement 5

33

operator changes that impact ‘a feature’ changing 10% of
the code. In that case it is probably convenient to maintain
5 different versions of the component. But how
maintainable does that become when the changes impact
50% of the code? Obviously, the code quickly becomes
impossible to maintain and errors multiply when too much
variability incurs. We have seen no general methods to
assess at which point it is economically worth changing
and maintaining different versions of a software system, as
opposed to rewriting or redesigning it.

8.3. Highlight variability in requirements

The amount of variability in software is dictated by
requirements. However, our requirements are fed by
numerous business units that operate more or less
independently. So far, we have not been able to implement
a robust requirements process that allows variability to be
transparent straight from the common software
requirements. Often, the case is that common and variable
features are identified only once design, or even
implementation has started. This, of course, increases the
amount of work needed to design proper software
architecture, according to the principles we discussed
above. We believe that research should focus on this issue
in a practical setting, i.e. considering the difficulties that
arise when working in a large and complex organization,
where features and responsibilities change at a high rate.

9. References
[1]: see http://www.t9.com/

[2]: see
http://mww.forum.nokia.com/html_reader/main/1,32611,2
471,00.html ?page_nbr=2

[3]: A. Maccari, and A-P. Tuovinen, “System Family
Architectures: Current Challenges at Nokia”, Proceedings
of the IW-SAPF-3 workshop, Lecture Notes in Computer
Science 1951, Springer&Verlag, Las Pamas de Gran
Canaria, Spain, March 15-17, 2000, p. 107 ff.

[4] L. Lorentsen, A-P. Tuovinen, J. Xu, “Experiences in
Modelling Feature Interactions with Coloured Petri Nets’,
Acta Cybernetica 15(4), Szeged, Hungary, 2002, pp. 621-
632.

[5]: see http://c2.com/cgi/wiki?ObserverPattern
[6]: see

http://mww.sel.cmu.edu/SPLC2/keynote_dlides/keynote 1
.htm

34

CAN XML DOCUMENTS BE TREATED AS COMPONENTS?

Kai Koskimies
Tampere University of Technology
Institute of Software Systems
Tampere, Finland
email: kk@cs.tut.fi
(This work was carried out during the author’s visit at
the University of Groningen, the Netherlands)

ABSTRACT

Many modern systems make use of components which
produce and consume XML documents. Such systems rely
on certain structural definitions of the XML documents.
However, these structural definitions are often subject to
changes and extensions. We argue that the modifications of
the system resulting from changed structural definitions of
the XML documents are poorly managed with current
technology. This is a particularly serious problem in
product-line systems using XML technology, where the
structural specification becomes one of the variation points
of the product platform. We study a possible approach to
solve this problem based on the idea of introducing
provided and required interfaces for XML documents. This
solution makes use of associating attribute grammar like
processing rules with XML schema definitions, describing
how provided and required services are related in the case
of a particular schema.

1 INTRODUCTION

A current trend in information technology is towards
global, heterogeneous systems, comprised of different
kinds of components and applications interacting with each
other directly or over a network. In many cases the
interacting parties have been independently developed, and
have no previous knowledge of each other. Hence the
architectures of those systems must be based on well-
defined standards on data transmission between the
interacting components. XML (eXtensible Markup
Language [W3C02], [Oas02]) provides a natural means for
defining such standards. XML is a metalanguage supported
by W3C (World Wide Web Consortium), designed
originally as a universal format for structured documents
and data on the Web. XML is currently used extensively in
all kinds of software systems, often as architectural glue
integrating components that exchange data expressed in
jointly agreed XML format. The technology around XML,
including particular XML-based languages and tools for
processing XML-documents in various ways, has rapidly
expanded and become widely adopted by the industry.

When used as architectural glue in a software system, XML
often replaces the static interfaces with dynamic interfaces
in the sense that components communicating via XML files

have only a very generic static interface, simply allowing
the receipt of an XML file. All the parameters affecting the
response of the receiving component are given within the
XML file, and thus identified dynamically during the
parsing of the XML file. This makes systems very flexible
and configurable: the functionality of components can be
radically changed without affecting the static interfaces.

However, the problem is that the system becomes
implicitly dependent on the structural specification
(schema) of the XML documents. In many cases this is a
serious drawback in using XML. For example, if the
structural specification of the XML files is changed even a
little, the receiving component may or may not work any
more, and there is no way of knowing which is true without
looking into the code of the component. XML schemata
become crucial software artifacts that cannot be changed
without the danger of invalidating a number of unknown
components that implicitly rely on the structural definition.

A solution to this problem is to use schema extensions,
allowed by the current w3c schema standard [W3CO02].
This facility makes it possible to build schema hierarchies,
analogous to class hierarchies. Thus it is possible to give a
“superschema” that is extended by several “subschemas”.
Any client that is able to process an XML-document
according to the “superschema” can also process
documents that follow a “subschema”. In principle, this
allows the extension of a schema without affecting the
clients of the original version, thus solving some of the
problems originating from schema modifications. However,
this kind of schema polymorphism is not a general solution
in the sense that it only narrows down the schema
dependency, but does not remove it. Any change in the
schema concerning the parts a client is interested in
necessarily implies changes in the client as well. Hence we
need to separate the consumer of an XML-document from
the actual schema definition.

The question of managing changes in the schema
definitions becomes particularly important in the case of a
product-line platform making use of XML. Generally, a
product-line platform has a set of variation points, defining
the range of supported variation and describing how a
particular variant is implemented on the basis of the
product-line architecture. If XML is an essential part of the

35

product platform, there should be techniques to define and
exploit certain variation points in the XML-schema as well.
The schema hierarchies, as explained above, are one way to
support this: in that case the “superschema” belongs to the
platform, and different applications define their own
“subschemata”. This corresponds closely to the use of
inheritance hierarchies as the basis of variation points in
conventional programming. It is a “white-box” speciali-
zation approach in the sense that the internal structure of
the base schema must be known to the specializer. Exactly
as in the case of traditional classes, it becomes difficult to
precisely specify how a “subschema” should be given so
that it would conform to the product-line architecture. The
so-called fragile base class problem [Szy98] of traditional
classes becomes even more difficult to manage in the case
of XML: any change in the “superschema” can lead to a
mismatch in an application.

We argue that a “black-box™ approach would be more
appropriate for the realization of XML variation points. In
this approach, the direct relationship between the schema
and the consumer of an XML-document is removed using
interfaces. The interfaces express precisely, on an abstract
level, what a client can expect of an XML-document, and
what the XML-document can expect of its client. In
conventional terms, these interfaces correspond to the
provided and required interfaces of the “XML-component”,
respectively.

In this paper we will outline a solution based on introduc-
ing interfaces for XML-documents. We emphasize that the
proposed techniques have not been tried in a real case
study, nor have they been implemented. The main contri-
bution of this paper is the formulation of the problem of
variability management in XML, and the discussion con-
cerning the problems and design choices of an interface-
based approach. We have aimed at a practically feasible
solution, but the usability of the solution still has to be
verified.

We proceed as follows. In the following section we will
briefly discuss the types of variability problems. In Section
3 we outline a solution to managing variability in XML,
based on the idea of viewing XML-documents as
components with provided and required interfaces. This
solution is further refined in Section 4, showing how
provided and required interfaces are interpreted in the
context of XML. Some related work is discussed in Section
5, and concluding remarks are presented in Section 6. We
assume only superficial knowledge of XML [W3C02] in
this paper.

2 VARIABILITY ISSUES IN XML

In principle, variability can appear in two forms as far as
XML is concerned: either the schema of an XML-
document consumed by a component is allowed to change,

or the consumer of an XML-document is allowed to change
(or both). These two patterns are illustrated in Figure 1.

To make the variability problems more concrete, assume
that an enterprise information system makes use of XML to
transmit purchase orders among different, independent
subsystems. Since the data represented in purchase orders
is sensitive to various changes in the environment, the
XML schema experiences many changes during the
lifetime of the system. For example, the structure of some
data elements may need to be changed. However, assuming
that the same logical tasks can be performed for XML-
documents following both the new and the old schema, we
may still want to use the old XML-documents together with
new ones, following the revised schema. Thus we have the
situation depicted on the left side of figure 1: a client
should consume various XML-documents constructed
according to different schemata, being dependent only on
the logical operations to be performed on the XML-
documents, rather than on their schemata.

XML-
schemat < file Consumer1
XML- XML-
schema2 (---- file —> Consumer schema K- file Consumer2
_____ XML-
schema3 file Consumer3

Fig. 1. Variability issues in XML. On the left, a single
consumer should be able to process XML-files conforming
to different schemas but providing the same logical
information; on the right, several consumers should be able
to process the same XML-file, varying the actions
performed upon the XML data.

On the other hand, assume that several subsystems process
same XML-documents, but they perform different actions
on certain elements in the documents. For example,
suppose that one subsystem sends a purchase order through
email, while another simply prints the order. Thus these
subsystems will repeat the same or similar XML processing
code, but the actions performed on the data elements in the
XML-file vary. This corresponds to the situation depicted
on the right side of figure 1.

3 OUTLINE OF A SOLUTION

A possible approach to solve the variability problems is to
introduce an interface-based type mechanism for XML.
This implies that an XML document becomes a
component-like entity that conforms to a particular
interface. As long as the interface remains the same, the
schema of an XML document can be freely changed

36

without affecting the processing of the XML documents by
the component. Essentially, the interface defines the
assumptions the users of the document can make about the
tasks that can be carried out with the document.

On the other hand, a different interface is needed to define
the assumptions the XML document can make about the
services that help to carry out those tasks. These two types
of interfaces correspond closely to the conventional
provided and required interfaces of components,
respectively. The provided interfaces define the services the
“XML-component” can give to its users, and the required
interfaces define the callback functions to be called by the
“XML-component” when carrying out its services.
Naturally, an XML-document (or its schema) can provide
and require several interfaces.

Consider again the two types of variability problems
discussed in Section 2 (figure 1). The variation point of the
first type can be realized using provided interfaces of the
XML-document. That is, the XML-documents are viewed
as components providing certain services related to their
information contents. In this case all the different XML-
documents implement the same interface, and only the
latter is known to the client component. For example, the
service could be “process all the purchase orders by
producing statistics on the demand of each product”. The
XML-documents for purchase orders may follow different
schemata, and there may be completely different kinds of
XML-documents (say, billing documents) that can provide
the same service.

The variation point of the second type can be realized using
required interfaces of the XML-documents. The XML-
documents are in this case interpreted as components
calling the services of other components through a well-
defined interface. For example, such a service could be
“process a single purchase order”. Typically (although not
necessarily) the component which provides these services
is the same component that calls the services in the
provided interface of the XML-document. Thus the client
of an XML-document can perform an action on the XML-
data, and specialize it by giving its own implementation for
the callback function called during the processing of the
XML-document.

To summarize, in the case of unmanaged variability, the
variation points are scattered throughout the schema
specification and the client component processing the
XML-document (figure 2a). In the case of extension-based
(or inheritance-based) variability management, both the
schema and the client are extended with product-specific
parts (figure 2b). In the case of interface-based variability
management, the fixed part of the architecture consists of
the interfaces, while the schemata and the XML clients
requiring and providing these interfaces are (or can be)
product-specific (figure 2¢). In the sequel we will study the
interface-based approach in more detail.

----> depends
reads
XML-schema
[0 [J<— productspecific
|:| parts
N
i .. Client
O
O O
XML-doc

Fig. 2a. Unmanaged variability in XML
----> depends
reads

XML-schema

product-specific
/ extension

N
\

~. Client

'

4

XML-doc

Fig. 2b. Extension-based variability in XML

generates
----> depends (calls)
—3) reads
—— implements
XML-schema
/,———-"‘> ¥~ product-specific
// schemata and
; . components
; provided P
% Clientl
Proxy | |
I [
XML-doc W
required

Fig. 2¢. Interface-based variability in XML

To be able to attach traditional interfaces to an XML-
document, a proxy object is needed that actually
implements the provided interface and calls the methods in

37

the required interface (figure 2c). The proxy component is
an executable representative of the XML-document in the
environment of the consumer; the proxy is actually the
“XML-component”. The proxy is generated automatically
on the basis of the schema of the XML-document. The
consumer calls the "services" of the XML-document by
calling the methods of the provided interface of the proxy.
On the other hand, the proxy registers the client
component, and calls back the client’s services through the
required interface.

This solution implies that the architect should figure out the
roles an XML-document can play in the system, and
present these roles as provided interfaces of the XML-
documents. In a platform architecture, these interfaces
become a variation point, under which different XML-
schemata can be introduced, implementing the same
interfaces. If a new logical task emerges for the XML-
documents, a new interface must be introduced, and the
schema must be augmented with an implementation for that
interface. However, if the structural parts of the schema
remain the same, the old XML-documents can still rely on
the new schema.

We have assumed that it is possible for the XML-document
(or its schema) to define how the services of the provided
interface are to be implemented making use of the services
of the required interface and the information present in the
XML-document instance. In principle this problem is
analogous to the problem of attaching computation to a
hierarchic structure. A solution to this problem has been
presented a long time ago: attribute grammars [Knu68].
Attribute grammars associate semantic attributes to the
nodes of a syntax tree of a context-free grammar, and rules
defining the relationships of the attribute values in the
branches. Various methods have been developed to
compute the values on the basis of the rules, and to
generate efficient evaluators from the attribute grammar.
Attribute grammars have been the most successful
technique for structure-oriented processing, applied mostly
in the realm of compiler generation. Since XML elements
can have attributes as well, the idea of applying attribute
grammars looks very attractive.

However, in their general form attribute grammars are too
clumsy and difficult to use for an average schema writer.
We will apply a simplified version of attribute grammars,
which is more close to so-called L-attributed grammars
[LRS74]. The idea of L-attributed grammars is to restrict
the dependencies of attributes in such a way that the
evaluation of attributes can be carried out during a single
left-to-right, top-down pass over the hierarchical structure.
A Dbenefit is that the schema writer can think of an
attribution rule as a simple assignment statement executed
at a time determined by its position in the structure. This
makes the writing of the statements intuitively easier and
close to normal programming. Any complex type definition

in the schema can be augmented with such statements. The
statements are executed in the left-to-right, top-down order
with respect to the DOM-tree (that is, the internal object
representation of an XML-document produced by an XML
parser).

We have now the constituent parts of the solution on a very
abstract level: provided and required interfaces, and a
mechanism to express how the provided interfaces are
implemented using the required interfaces and the data
values in the XML-file. We will next refine these concepts.

4 REFINING THE SOLUTION

Provided and required interfaces are specified within the
schema. From the viewpoint of the schema writer, a
provided interface is a set of global output variables,
whose values are computed during the processing of an
XML-file. For each output variable, there can be any
number of input variables, whose values are set by the
consumers of the XML-file and used in the computation of
the output variable. An XML schema can have several
provided interfaces.

Similarly, a required interface is a set of global input
variables whose values are functions. These values are set
by the user of the XML-file. For each input variable, there
can be any number of output variables, whose values are
computed during the processing of the XML-file. These
output variables are used as parameters of the required
functions. An XML schema can have several required
interfaces. The provided and required interfaces are
depicted in Figure 3.

Consumer
of the
XML-file

| _
@b provided interface
input output

—— o oy

XML-file | tree 1
representation I 1

| 1

1 A 1

1

req &red {nterface

g(u, v, w)—>»

Proxy

Fig. 3. Provided and required interfaces of an XML-
document. Input and output variables are shown with small
boxes inside the interfaces.

The rationale behind this kind of interface concept is that
the variable-based computation model becomes much

38

simpler than the specification of a function in the context of
XML. Since the rules contributing to the computation of a
function can be scattered throughout the XML schema, it
becomes unnatural to view this kind of computation strictly
as a function. Nevertheless, in an abstract sense the output
variables of a provided interface correspond to a function
providing a value for the users of the XML-file, and the
input variables correspond to the parameters of that
function. In the case of a required interface the need for a
variable-based interpretation is less obvious, but the
additional flexibility it brings in the computation of the
parameter values for required functions can sometimes be
welcome. Symmetry reasons favor this choice, too.

The correspondence between an output variable in a
provided interface and a function becomes very concrete in
the implementation: a provided interface is eventually
mapped to a Java interface which has a function for each
output variable. The input variables are in turn mapped to
the parameters of that function. This is the reason we group
the input variables under a particular output variable. The
same applies to required interfaces, the roles of output and
input variables being exchanged.

Let us illustrate the implementation of the proxy object

with an example. In the case of the purchase order example,

the proxy could look as follows:

public class PurchaseOrderProxy implements
PurchaseOrderServices {

PurchaseOrderSupport support;
XMLrepresentation doc;

public PurchaseOrderProxy () {...}
public void register (PurchaseOrderSupport
client) {

support = client;
}
public void readXMLfile(file f) { ... }
public void processOrders () {

support.handleOrder (doc.getOutput (“price”),
cel)d

}

public Integer totalValueForArea (Positive
areaCode) {
doc.setInput (“areaCode”, areaCode);

return doc.getOutput (“totalValueForArea”) ;
}
}

In this case the schema has defined output variables
processOrders and totalvValueForArea. For the latter,
there is an input variable areacode, which becomes a
parameter for the function. Initially, the client component
(support) is registered for the proxy, and the XML-
document is parsed into an internal representation (doc)
using the appropriate functions of the proxy. In the body of
the function totalvalueForArea, input variables are given
initial values for the processing of the XML-document.
Then the internal representation is traversed, and the

computation rules are executed. These rules compute the
value of the output variable totalvalueForArea, calling
the operations of support when determined by the rules. In
the example, the provided operation processorders calls
one of the operations of the required interface, handle-
order, using the output variables of the required interface
as parameters. Finally, function
returns as its value the final value of the output variable of
the provided interface.

totalValueForArea

Let us next study how the computation rules are given in a
schema in more detail. We will not discuss their concrete
XML form here, but instead discuss the main principles
they follow. A possible concrete form of the computation
rules is presented in [Kos03]. This part requires some
knowledge of XML terminology.

A computation rule is always given in a context. A context
is a complex type (that is, a structural type) definition in an
XML-schema; a computation rule is given as a subelement
of the complex type that serves as its context. The left
context of a computation rule consists of the attributes of
the subelements preceding the computation rule in the
complex type definition; the right context consists of the
attributes of the subelements following the computation
rule. In addition, the attributes of the complex type itself
belong both to the left and to the right context.

A computation rule takes the form of an assignment, given
as the value of a particular attribute of a rule element. The
left hand side of a rule is an attribute belonging to the right
context of the rule, or an output variable. The right hand
side is an expression consisting of attributes belonging to
the left context of the rule, or input variables. As customary
in attribute grammars, we allow simple arithmetic
operations on the right hand side. If an input variable
denotes a function, the conventional parameterized notation
can be used as well; in that case the actual parameters are
assigned to the corresponding output variables before
executing the function. A computation rule can also be
conditional, executed only if a given boolean expression is
true. The left hand side of a computation rule can be
omitted.

Note that here we deviate from the classical L-attributed
grammar by treating attributes simply as variables, instead
of dividing them into inherited and synthesized single-
valued data containers. However, we do retain the left-to-
right direction of data flow characteristic to L-attributed
grammars. In principle, we could give up this restriction
and allow arbitrary data flow between the attributes in the
context of a rule: we could simply state that the rules are
executed in the left-to-right, top-down order, and leave it to
the schema writer to ascertain that the sequence of
assignments makes sense. However, the left-to-right data-
flow makes the computation safer in the sense that the
attributes of an element are not used before the subtree
rooted by that element is processed. Thus, the schema

39

writer can imagine that some of the attributes in the root
represent the “result” of processing the subtree. Note that it
is still possible that some attribute does not always get a
value, or that some attribute is assigned many times. Tool
support should be provided to statically check the rules and
warn about these cases.

5 RELATED SOLUTIONS

An even more refined extension model for XML element
types is introduced in XInterfaces [N6102]. This model is
based on the idea that each client has its own view on the
data in an XML-document, defined by itself. A type
extension mechanism guarantees the conformance of the
extended types with existing views. The main difference
between XlInterfaces and our proposal is that we define the
view of a client as a normal programming interface, while
in XlInterfaces the views are still XML element types. Our
mechanism introduces more complete isolation of the client
from the XML-schema, but also deviates more from the
XML world.

Not surprisingly, the integration of attribute grammars and
XML has been already studied in few papers ([PC-R99],
[Fer01]). However, the aim of these papers is different:
they regard attribute grammars as a general mechanism to
add semantics to XML. This allows, for example, the
presentation of stronger semantical validation conditions in
the schema, which is one of their primary motivations.

6 DISCUSSION

We have presented a solution outline for making XML-
documents first class architectural elements that comply to
normal interfaces. We strongly believe that this is a
problem that has to be solved one way or another. On one
hand, the use of XML is steadily increasing. At the same
time, various kinds of software platforms or product-line
architectures are becoming more and more common in
many domains, emphasizing the issue of variability
management. These two trends make it necessary to
develop techniques for variability management in XML as
well. In this respect the current level of technology is far
from satisfactory.

Our proposal follows the line of thought in which provided
and required interfaces are seen as contracts between
software components. We have adopted an approach in
which it is the duty of the XML-schema to define how
provided services are obtained using the required ones.
This approach leads to the introducing of some level of
processing capability within the XML-schema. We feel that
the most natural existing model for this is the concept of an
attribute grammar. However, we have reduced the needed
processing facilities to the minumum, trying to avoid
excessive complexity.

There are still many open questions, and the applicability of
the approach has to be tested in real case studies. We have
also not yet defined a full schema language based on this
idea; thus we cannot say to what extent some features of,
say, the W3C Schema language [W3C02] contradict with
our model. These are our next steps in this research.

Tool support is one of the open questions. Although the
principles of the proxy generation tool seem fairly
straightforward, it is possible to apply various optimization
techniques to improve the performance of the provided
operations. It would also be desirable to build special
editing support for the schema specification; for example,
an editor could present for each output variable of the
provided interface a slice of the schema that contains only
those parts that are relevant for that variable.

Finally, it should be noted that our solution is actually not
specific to XML. We have shown that in principle any
grammar-based language specification can be augmented
with interfaces in such a way that instances of the language
can be treated as components conforming to those
interfaces, using a proxy. However, the technique is
beneficial if the language is subject to change and the rest
of the system should not be affected by the changes.

ACKNOWLEDGEMENTS
This work has been financially supported by the Academy
of Finland and NWO (the Netherlands).

REFERENCES

[FerO1] Ferenc H.: XML Semantics Extension, in Proc. of
the Seventh Symposium on Programming Languages and
Software Tools (SPLST 2001), Szeged, Hungary, 2001.

[Knu68] Knuth D.E.: Semantics of context-free languages.
Mathematical Systems Theory 2 (1968), 127-145.

[Kos03] Koskimies K.: A Technique for Variability
Management in XML. To be presented in the Second
ASERC Workshop on Software Architecture, Banff,
Canada, February 2003.

[LRS74] Lewis P.M., Rosenkrantz D.J., Stearns R.E.:
Attributed Translations. Journal of Computer and System
Sciences 9 (1974), 279-307.

[N6102] Nolle O.: XlInterfaces — A new schema language
for XML. Diploma thesis, University of Freiburg,
Germany, June 2002.

[Oas02] http://xml.coverpages.org/, Oasis 2002.

[PC-R99] Psaila G., and Crespi-Reghizzi S.: Adding
semantics to XML. In Proc. Second Workshop on Attribute
Grammars and Their Applications (WAGA99), Amsterdam,
The Netherlands, March 1999, pp. 113-132. http://www-

40

rocq.inria.fr/oscar/www/fnc2/WAGA99/proceedings/psaila
/psaila.pdf.

[Szy98] Szyperski C.: Component Software - Beyond
Object-Oriented Programming. Addison-Wesley 1998.

[W3CO02] http://www.w3.org/XML/, W3C 2002.

41

version 1.3 -- February 3, 2003
Journal of Network and Computer Applications 24(?7?), January (?) 2001

Extensibility via a Meta-level

Architecture

Serge Demeyer
Lab on Reengineering (LORE)
University of Antwerp, Department of Mathematics and Computer Science

Universiteitsplein 1, B-2610 Wilrijk (Belgium). Tel: ++32 (0) 3 820 24 14. Fax: ++32 (0) 3 820 24 21.
E-mail: serge.demeyer@uia.ua.ac.be. WWW: http://win-www.uia.ac.be/u/sdemey/

Abstract. Meta-level architectures are recognized as a means to achieve run-time ex-
tensibility, and have been applied as such in existing hypermedia systems. Yet, designing
a good meta-level architecture is notoriously hard and remains an art rather than a sci-
ence. This paper shows how to derive a meta-level architecture for hypermedia naviga-
tion, thereby providing a way to control how third-party components interact with the
linking engine. This extra level of control allows for a better and safer integration be-
tween an extensible system and the third-party components extending it.

1. Introduction

Nowadays, a considerable amount of effort is spent on the design of extensible systems. This
phenomenon can be observed in fields such as operating systems, databases, inter-operability
standards, programming languages and —last but not least— hypermedia. The web has most
certainly been an aggravating factor in the search for hypermedia extension mechanisms, espe-
cially enforcing the need for run-time extensibility [1].

Run-time extensibility implies that a deployed system may extend its capabilities by allow-
ing users to plug in extra third-party components. During certain operations, the deployed sys-
tem hands over control to a third-party component, trusting that the component will return
control when required. This relation of trust is the Achilles heel for all run-time extensible sys-
tems, because there is always the risk that the system loses control over the operation and con-
sequently arrives in an inconsistent internal state.

As an example of what might happen when a hypermedia system loses control over the nav-
igation operation, consider the typical case of a web-browser extended with a third-party appli-
cation for viewing PDF files. A PDF document might itself contain hyperlinks, some of them
pointing to external and some of them to internal locations within the document. Unfortunately,
only the activations of external links pass through the link engine of the web browser and con-
sequently activations of internal links will leave the log of navigation actions in an inconsistent
state. As a result, pressing the ‘back’ button on the web browser will not always return the read-
er to the expected location which is confusing and adds extra cognitive overhead.

One way to avoid the Achilles heel of run-time extensible systems is to secure this relation-
ship of trust by means of a meta-level architecture.Via a meta-level architecture, a system is

42

Serge Demeyer 2.

able to watch over its inner actions regardless of the components involved, thus making it pos-
sible to adapt the internal representations accordingly. To achieve this self-awareness, a system
with a meta-level architecture (see the architectural pattern “Reflection” in [2]) provides two
separate interfaces: the base-level interface —which provides the usual way of accessing the
systems functionality — and the meta-level interface — which provides an interface for inspect-
ing and changing aspects of that system behaviour. In the example of the extensible web-brows-
er, the base-level interface allows third-party applications to invoke operations on the link
engine, while the meta-level interface allows the web-browser to examine all of them and thus
ensure the navigation log remains consistent.

Today, meta-level architectures have become part of the standard repertoire of programming
techniques. For example, Java, CORBA and ActiveX all provide meta-level interfaces for
checking object types and interfaces and sometimes even for dynamically invoking object op-
erations. Thus, it should not come as a surprise that hypermedia systems as well have been in-
corporating some form of a meta-level architecture. Hyperform for instance, is a hyperbase
where the set of services provided can be extended using a meta-level interface [3]. As a second
example, the DHM system incorporates a so-called “embedded interpreter” to allow end-users
to extend the functionality of the hypermedia engine [4]. And recently in the context of the web,
the XML standard exploits meta-languages as a way to extend the set of document types under-
stood by web browsers.

Yet, even though meta-level architectures have proven their value in practice, designing a
“good” meta-level interface is notoriously difficult. First, it is difficult to predict the function-
ality that must be provided in the meta-level interface. Second, it is difficult to establish a clean
separation between the base-level interface and the meta-level interface.

This paper derives a generic meta-level architecture for hypermedia link engines based on
two design guidelines, namely “turn contracts into objects” and “turn the configuration into a
factory object” (section 2.). Next, we show how the meta-level architecture makes it possible to
dynamically extend the way a hypermedia system logs navigation actions, arguing that the de-
sign guidelines indeed provide a “good” meta-level interface (section 3.). Finally, we discuss
how we validated our claims and explain the pros and cons of meta-level architectures as an ex-
tension technique (section 4.).

2. Deriving the Meta-Level Architecture

This section provides a practical illustration of the derivation process for the meta-level archi-
tecture by first specifying an object protocol for a generic navigation operation and then ex-
tending that protocol with the necessary contracts in the form of pre- and postconditions. Next,
we apply the two design guidelines to derive the actual meta-level architecture.

2.1. Generic Navigation Operation

To validate the practical applicability of the derivation process, we show how to derive a meta-
level architecture for a hypermedia navigation operation. We base ourselves on the well-known
Dexter specification [5], although we certainly do not restrict ourselves to Dexter compliant
systems. In fact we argue that this navigation operation is representative for many of the hyper-
media systems in use today, thus that the navigation operation is indeed generic.

43

3. Extensibility via a Meta-level Architecture

source source
Marker Anchor
| |
selectOn
I
selectOn .
pL_determineResolver
L Lreate
| resolver
resolve

create target
—>
‘ Marker
[for all targets] create p-| targetinsta

ntiation

highlightOn

I

I

i I I
| | |
Figure 1 The object protocol for the generic navigation operation

As shown in Figure 1, the generic navigation operation starts by invoking the selectOn
operation on a marker (the object named sourceMarker representing the visible part of the
link), which forwards this operation to its associated anchor (the object sourceAnchor rep-
resenting the persistent part of the link). This anchor infers the targets of the navigation by in-
voking resolve, and then invokes highlightOn on all resulting pairs of markers and
instantiations (objects targetMarker and targetInst).

Applying this to a web browser, the sourceMarker represents the visible part of a link an-
chor (typically a bit of blue underlined text) while the sourceAnchor corresponds to the
URL embedded in that marker. The resolve function then interprets the URL and creates ob-
Jjects representing the target of the navigation, thus target Inst (representing the target doc-
ument) and targetMarker (representing the target location within that document). Finally,
the highlightOn operation displays the target document in the browser and scrolls to the ap-
propriate location.

The same design might also be used for traversing “generic links” as defined within Micro-
Cosm [6] and its derivatives (see among others [7] for a discussion on the use of generic links
in multi-media information). The sourceAnchoxr object then corresponds with the “tagged
link description”, holding various fields describing the contents and location of the selected
piece of information in the source document. The resolve function passes this information
through a number of “filters”, where each filter matches the sourceAnchor against its own
linkbase and adds or removes navigation targets to or from the result.

The generic navigation operation may also serve as a basis for the structural computing par-
adigm as advocated by the HBn/SBn series of hypermedia systems [8]. In such a case, both the
sourceAnchor and the resolve function correspond with structural computations
(“Sprocs” in HBn/SBn terminology) while the sourceMarker holds the input data for these
computations. We have used such structural computations to build source code browsers in pro-
gramming environments [9], [10].

44

Serge Demeyer 4.

source source
Marker Anchor
|
selectOn
pre I
I
selectOn |
pre

determineResolver

e —
L Lreate

] resolver
resolve ,
Creats target

Marker targetinsta
create

[for all targets] I > ntiation
ighli I
highlightOn | o

post

s

| |
Figure 2 The extended protocol for the Navigation Operation, including pre- and postconditions

: |
| |
| |
| |
pOSt | |
| |
| |
| |
| |

To summarize, the object protocol is able to model quite a range of navigation styles: from
embedded links (web-browsers), over links that are stored in a separate link base (“‘generic
links” in MicroCosm) up until structural computations (“Sprocs” in HBn/SBn). Therefore, we
conclude that the object protocol depicted in Figure 1 indeed represents a generic navigation
operation.

2.2. The Navigation Contract

The navigation operation depicted in Figure 1 specifies how the different objects in the system
are supposed to interact. However, in extensible hypermedia systems, some of these objects
may be provided by third parties. Thus, to ensure that the system functions properly, it is wise
to protect against faulty components. Therefore, we extend the specification by including extra
reliability checks.

An appropriate way of incorporating reliability checks is by means of the “Design by Con-
tract” principle [11]. In short, this principle states that every operation on an object should as-
sert its precondition (a statement of how the object expects the world to be before it executes the
operation) and postcondition (a statement of how an object should leave the world after it has
executed an operation). Pre- and postconditions are usually provided by means of predicates
that check whether the corresponding statement is true for a given object, hence we include
them as such in the specification of the navigation operation.

45

5. Extensibility via a Meta-level Architecture

The extended specification of the navigation operation is depicted in Figure 2, where the pre-
and postconditions appear against a grey background. As implied by the “Design by Contract”
principle, its up to the protocol to specify what exactly constitutes the reliability checks, al-
though participating objects may strengthen the contracts. In the general case, the precondi-
tions for the selectOn operation verifies whether the marker and anchor objects may indeed
launch a link traversal, while the postcondition verifies that we arrive in a valid location in a hy-
perdocument. The precondition for the highlightOn operation verifies whether the target
marker represents a valid location within an existing document, while the postcondition veri-
fies whether the target location is actually visible. A good example of what strengthening the
contract implies can be found in the example of a web browser. There the precondition for the
selectOn operation on an anchor verifies whether the source anchor contains a syntactically
valid URL. Also, the postcondition for highlightOn on a marker verifies a typical feature
of web-style navigation, namely that the source document is properly closed.

2.3. The Meta-Level Architecture

Now that we obtained an object protocol for hypermedia navigation including pre- and poscon-
ditions, we can derive the actual meta-level architecture. This is done by applying two generic
design guidelines which appeared in [12], later recapitulated in [13]. The design guidelines
start from a system designed according to the “Design by Contract” principle and derive a meta-
level architecture by refactoring the pre- and postconditions and the object constructors into
special purpose meta-objects. The resulting meta-objects plus the implied interaction protocol
with the base-level objects constitute the meta-level architecture. As argued in section 3., the in-
teraction protocol between the meta-objects and the base-level objects indeed allows to system
to analyse its inner actions and adapt its internal representation accordingly.

The design guidelines state that a system designer should “turn contracts into objects” and
“turn the configuration into a factory object”. Applying these guidelines on the navigation pro-
tocol results in the meta-level architecture depicted in Figure 3, where the newly created meta-
objects are set off against a grey background. The first guideline recommends to move all pre-
and postconditions into a separate meta-object, named “aNavigContract” in the figure.
The second guideline introduces one global meta-object (called “globalFactory”) which
is responsible for creating new objects. Thus, during a navigation operation it is the responsi-
bility of (i) the contract object to verify the pre- and postconditions while (ii) the factory object
must supply the appropriate contract, resolver and navigation targets.

To return to the example of a web browser, when the sourceMarker starts the navigation
operation, it first requests the globalFactory to return the contract object that will super-
vise the navigation operation (aNavigContract). Next, that contract object verifies the pre-
condition (i.e, whether the marker corresponds to an anchor) and then control is transferred to
the sourceMarker object. Here as well the contract object verifies the precondition (i.e.,
whether the anchor contains a syntactically valid URL) after which the resolver function is
invoked. This resolver function interprets the URL, but the creation of the objects representing
the navigation targets is delegated to the globalFactory. After the resolve function returned,
the navigation targets are highlighted, but the pre- and postconditions are again verified by the
contract object. Finally, the contract object verifies the post condition for the selectOn oper-

46

Serge Demeyer

source source global
Marker Anchor Factory
| OI | |
select I retrieveContract(“Navigation”) I
| ’j
| create aNavig
I Contract | |
| preSelectOnMarker l |
selecton | I
preSelectOnAnchor [I
determineResolver(sourceAnchor) [
I
create L]
l [for all targetSpec] |
createTarget(targetSpec)) |
create’
target [i
Marker targetinsta [¥crgate |
[for all targets] [ntiation | |
. . | |
highlightOn | preHighlightOn I
| postHighlightOn = |
| >
postSeIectOnAnchIar | | I |
| | | g~ |
| postSelectOnMarker | | I
L I I I >I£EI I
| | |

| | |

Figure 3 The navigation protocol with meta-level architecture (set off against a grey background.)

One meta-object represents the navigation contract (aNavigContract), another meta-object rep-
resents the system configuration (globalFactory).

ation on both the sourceAnchor and the sourceMarker which terminates the navigation
operation.

3. Extensibility via the Meta-level Architecture

Given the meta-level architecture depicted in Figure 3, we now explain how to exploit its pres-
ence to wrap additional behaviour around crucial operations, this way allowing a system to an-
alyse its own behaviour and adapt it when necessary. This way, we argue that the design
guidelines indeed provide a “good” meta-level interface, i.e. one that is open for future needs
and establishes a clean separation of concerns.

3.1. Maintaining a Navigation Log

One of the recurring features in hypermedia systems is a “back” button, which in essence boils
down to fetching the previously visited location from the log of navigation actions and navigat-
ing to that location. To work properly, this scheme requires that the all navigation operations are

47

7. Extensibility via a Meta-level Architecture

| PDFgIobaIFactory|
retrieveContract I
(“Navigation”)

y

Create
| < < $
| | aWrapper | | aNavigContract | | aWebBrowser|
| | |
preSeIecI|OnMarker | startLogEntry. |
preSelectOnAnchor : o=
| g g |
. I I I
reHighlightOn
postHighlightOn o 'i'| |
; o s |
postSeI?ctOnAnchor - | | |
tSeléctOnMark - dLogEnt l
postSelectOnMarker | | endLogEntry
i) T

Figure 4 Maintaining the navigation log consistent by wrapping the meta-object.
The globalFactory object is patched in such a way that it creates an extra wrapper object (aWrap-
per) which creates the log entries (startLogEntry and endLogEntry, set of against a grey
background) and then forwards the pre- and postconditions to the original navigation contract.

logged consistently. With a monolithic hypermedia system this is feasible, since all the objects
that participate in the navigation operation are known in advance. However, in extensible hy-
permedia systems —where document viewers may be provided by third parties and loaded at
run-time — we do not have control over all objects, hence cannot guarantee the log’s consisten-

cy.

It is during such “necessity of control” situations that the meta-level architecture comes to
the rescue. Indeed, all markers and anchors —even when provided by third parties and loaded
at run-time — must notify the navigation meta-object (aNavigContract) by means of the pre-
and postconditions. If objects do not notify the meta-object, they deliberately choose to neglect
the contract and such malicious intentions cannot be avoided. Of course, for many if not all of
the third-party applications this involves extra patchwork, but this can be accomplished by
means of scripting languages or wrappers [14], [6]. Consequently, the navigation meta-object
monitors all navigation transition states independently of the base-level objects involved.

As a concrete example of how to ensure consistency via the meta-level architecture, let us re-
turn to the example of a web-browser extended with a PDF viewer introduced in section 1.. In
this example, the link engine of the PDF viewer is separated from the one in the web-browser
which sometimes results in inconsistencies. Avoiding these inconsistencies requires a PDF-
viewer which adheres to the meta-level architecture in Figure 3 and a web-browser which has
an API that allows to make entries in the navigation log. Like depicted in Figure 4, the person
configuring the system must patch the retrieveContract operation for the global -
Factory object inside the PDF-viewer. The patch returns a wrapper object which knows how
to invoke the API of the actual web browser being used (we used startLogEntry and end-

48

Serge Demeyer 8.

LogEntry but this will of course depend on the web browser). After invoking the API, the
wrapper object will forward control to the original navigation contract. This way, the PDF
viewer acts as the base system which is extended in order to integrate properly with the link en-
gine of the web-browser.

3.2. Quality of the Meta-level Architecture

Ensuring consistency is but one instance of a “necessity of control” situation. Especially in a
distributed hypermedia system with multiple users having concurrent access to hypermedia
documents there are more situations that require extra levels of control. For instance, we have
applied the same guidelines on other object protocols in a hypermedia system to achieve con-
currency and access control (see [15] for further details).

Consequently, we claim that with respect to the criteria in the Introduction, the guidelines ac-
tually derive a “good” meta-level architecture. First of all, we point out that it is the explicit rep-
resentation of the contracts which provides the necessary hooks for extensions. Since a contract
forces the designer of an object protocol to make the important state transitions explicit, it pro-
vides an ideal place to monitor these state transitions. Therefore, the “Design by Contract” ba-
sis implies that the meta-level controls the important operations, thus most likely those places
where extensions are necessary. Secondly, since the contract objects only allows to verify pre-
and postconditions, one can use these hooks only for wrapping additional behaviour and never
for direct intervention into the base-level operations. Thus the design guidelines always result
in a clean separation between the base-level and the meta-level.

4. Discussion

4.1. Experimental Validation

The meta-level architecture described in this paper has been experimentally validated in the
Zypher hypermedia system as part of a PhD effort combining state-of-the art object-oriented
software engineering techniques with open hypermedia technology [15]. The resulting artefact
used the world-wide web to seamlessly navigate between source-code and its design documen-
tation [10].

Part of the PhD work has been summarised as a set of design guidelines that derive a tailora-
ble framework from an open design space [12]. Two of these design guidelines have later been
rephrased and refined in the context of distributed systems [13]. The same two design guide-
lines are put to use in this paper to derive the meta-level architecture for hypermedia navigation.

4.2. Potential Drawbacks

While a meta-level architecture permits to control system extensions, it should be clear that this
comes at a cost.

» Extra complexity. As can be observed in the difference between Figure 1 and Figure 3,
a meta-level architecture implies a few additional objects and a considerably larger ob-
ject protocol. Also, once we actually start to exploit the meta-level architecture, the

49

9. Extensibility via a Meta-level Architecture

number of wrapper objects quickly explodes. This is without a doubt the most important
drawback of a meta-level architecture.

* Late binding technology. The meta-level architecture in itself does not provide run-time
extensibility, it only provides an extra level of control on how third-parties may extend
the base system. To actually achieve run-time extensibility one must use other forms of
late binding technology, either a language with built-in features (Smalltalk and Java) or
otherwise some form of embedded scripting language (like in [3], [4]).

* Performance penalty. The meta-level involves a lot of extra message-passing between
the base-level and the meta-level. This will most likely impose some performance pen-
alties.

4.3. Potential Benefits

Even though a meta-level architecture is quite costly, it has some unique advantages that makes
it worthwhile for many hypermedia systems.

* Very flexible. The main advantage of a meta-level architecture is that it permits a lot of
powerful extensions to the base system without actually changing it. For hypermedia
systems applied in many different contexts (like most of the hyperbases [16]) this is a
very desirable feature as it permits to deploy a stable core which is extended as needed
in the particular context.

e Complementary to other extension techniques. A meta-level architecture should not be
used on itself, but rather be combined with other extension techniques. Ideally, the meta-
level interface is accessible via an API and third-part applications are adapted via script-
ing and wrapping (see [14], [6]) to properly invoke that API.

* Poor men’s reflection. Languages such as CLOS or Smalltalk provide built-in reflection
mechanisms, which makes it easy to monitor and control any slice of an object protocol
([17], [18]). Our design guidelines result in a kind of “poor men’s reflection”, where the
meta-objects provide the means for a limited form of method-instrumentation applicable
in mainstream object-oriented languages such as C++ and Java.

5. Conclusion

In this paper, we have derived a meta-level architecture for a hypermedia link engine. Next, we
have shown how such a meta-level architecture makes is possible to control the way third-party
applications interact with the link engine, as such making it possible to ensure a consistent in-
ternal state. Finally, we have argued that while a meta-level architecture provides the necessary
hooks for ensuring consistency, it also adds considerable complexity thus should only be ap-
plied when the situation calls for it. However, with the growing demand for hypermedia func-
tionality, it is possible that these meta-level facilities may one day be provided by the
underlying operating system, precisely because these also require an extra level of control.

Acknowledgements. Iwanttothank my colleagues Sander Tichelaar and Franz Acher-
mann who have proofread earlier versions of this document: their suggestions improved the pa-
per considerably. The same applies for the anonymous reviewers which helped to clarify the
contents of this paper. Last but not least, I want to thank all participants in the series of “Open

50

Serge Demeyer 10.

Hypermedia Systems” workshops (http://www.ohswg.org/) for the many fruitful discussions
we had over the years.

6.
[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

Robert Laddaga & James Veitch 1997. Dynamic Object Technology. Communications
of the ACM, 40(5), 36-38.

Frank Buschmann & Regine Meunier & Hans Rohnert & Peter Sommerlad & Michael
Stad 1996. Pattern-Oriented Software Architecture — A System of Patterns. John Wiley
& Sons.

Uffe Kock Wiil & John J. Leggett 1992. Hyperform: Using Extensibility to Develop Dy-
namic, Open and Distributed Hypertext Systems. In Proceedings of the ACM Conference
on Hypertext (ECHT’92), Milano - Italy, November 1992. ACM Press, 251-261.

Kai Grgnbzk & Jawahar Malhotra 1994. Building Tailorable Hypermedia Systems: the
embedded-interpreter approach. In Proceedings of Object-Oriented Programming, Sys-
tems, Languages, and Applications, Portland-Oregon, October 1994, 85 - 101.

Frank Halasz & Mayer Schwartz 1994. The Dexter Hypertext Reference Model. Com-
munications of the ACM, 37(2), 30 - 39.

[Davi94a] Hugh C. Davis & Simon Knight & Wendy Hall 1994. Light Hypermedia Link
Services: A Study of Third Party Application Integration. In Proceedings of the Europe-
an Conference on Hypertext (ECHT’94), Edinburgh - UK, September 1994, ACM Press,
41-50.

Paul H. Lewis & Hugh C. Davis & Steve R. Griffiths & Wendy Hall & Rob J. Wilkins
1996. Media-based Navigation with Generic Links. In Proceedings of the ACM Confer-
ence on Hypertext (HT’96), Washington - USA, March 1996, ACM Press, 215-223.

Peter J. Nurnberg & John J. Leggett & Erich R. Schneider 1997. As we should have
tought. In Proceedings of the ACM Conference on Hypertext (HT’97), Southampton -
UK, April 1997, ACM Press, 96-101.

Serge Demeyer 1999. Structural Computing: The Case for Reengineering Tools. In Pro-
ceedings of the 1st Workshop on Structural Computing - Hypertext'99, Darmstadt - Ger-
many, February 1999. At: http://win-www .uia.ac.be/u/sdemey/Pubs/.

[10] Serge Demeyer & Koen De Hondt & Patrick Steyaert 2000. Consistent Framework Doc-

umentation with Computed Links and Framework Contracts. ACM Computing Surveys,
32(1).

[11] Bertrand Meyer 1997. Object-Oriented Software Construction. Prentice Hall, 1997.
[12] Serge Demeyer & Theo Dirk Meijler & Oscar Nierstrasz & Patrick Steyaert 1997. De-

sign Guidelines for Tailorable Frameworks. Communications of the ACM, 40(10), 60-
64.

[13] [TichOOa]Sander Tichelaar & Juan-Carlos Cruz & Serge Demeyer 2000. Design Guide-

lines for Coordination Components. In Proceedings of the ACM Symposium on Applied
Computing 2000 - Track on Coordination, Como - Italy, March 2000. ACM Press, Vol
1,270 - 277.

51

11. Extensibility via a Meta-level Architecture

[14] E. James Whitehead, Jr. 1997. An Architectural Model for Application Integration in
Open Hypermedia Environments. In Proceedings of the ACM Conference on Hypertext
(HT’97), Southampton - UK, April 1997. ACM Press, 1-12.

[15] Serge Demeyer 1996. ZYPHER Tailorability as a link from Object-Oriented Software
Engineering to Open Hypermedia. Ph.D. Dissertation, Vrije Universiteit Brussel, Bel-
gium, Departement of Computer Science. At: http://win-www .uia.ac.be/u/sdemey/Pubs/

[16] Uffe Kock Wiil & Peter J. Niirnberg & John J. Leggett 1999. Hypermedia Research Di-
rections: An Infrastructure Perspective. ACM Computing Surveys, 31(4es).

[17] Gregor Kiczales & Jim Des Rivieres & Daniel Bobrow 1991. The Art of the Metaobject
Protocol, MIT Press.

[18] St phane Ducasse 1999. Evaluating Message Passing Control Techniques in Smalltalk.
Journal of Object-Oriented Programming, 12(6), 39-50.

52

Modelling Architectural Variability for Software Product Lines

Thomas Weiler
Research Group Software Construction, RWTH AadGennany
thomas.weiler@cs.rwth-aachen.de

Abstract

In this paper requirements for a concept to model

software product line architectures are presented.
Furthermore a process for SPL architecture modgllis

described which incorporates the concept of the ehod
driven architecture (MDA) into SPL architecture

modelling. Besides a metamodel for SPL architecture

modelling elements is shown, which — combined thi¢h
process for SPL architecture modelling - fulfilseth
requirements deployed in the first part.

Modelling variability and traceability of requiremts
within a software architecture thereby possessesthin
focus. Therefore a detailed breakdown of diffeddntls
of variability found in product line based software
architectures is given. The presentation conclugiéls an
small excerpt from a case-study within the conté@n e-
shop, which should clarify the application of tHereents
of the metamodel presented before.

1. Introduction

2. Present approaches

Most approaches in the scope of SPLs are focusing o
the requirements engineering. They primarily coasttie
delimitation of the application domain during th®gess
of scopingas well as the acquisition and modelling of
requirements for SPLs.

Thereby it is identified to be crucial, to expligit
model the variability of requirements for products a
SPL. Furthermore a dedicated mechanism is needed,
which allows the product developer to resolve the
modelled variability for a concrete product in aywa
desired by the developer of the PLP.

Within all these approaches it is often neglecteat t
product line-based software development can orlg te
full success if it is recognized as an integratedcept,
which involves all phases of the software engimegri
process. In the following this article concentraims
architecture modelling for SPLs.

3. SPL architecture modelling

Software Product Lines (SPLs) are an advancement in Architecture modelling for SPLs partially demands

software reuse. In the scope of SPLs reuse howefens
to all documents that evolve during the developnednt
(similar) products. Examples for these documents ar
requirements, architecture models or databasertesig
SPL development is divided into two main parts,
which execute interactively. Within thedomain
engineeringthe common and variable parts of products,
which belong to ampplicationdomain,are analysed and
described. The resulting documents of this prodessa
the basis of the product line, the so-calRmduct Line
Platform (PLP) During the application engineering
concrete products are then derived from this PLP.
Thereby the termapplication and product will be used
synonymous below.

By maximising the reuse of documents in the product

line-based software development, time-to-marketvel
as development costs can be significantly reduddd [
Furthermore a correct applied product
approach encourages the quality of the end produgcts
careful development and intensive tests of the comm
parts of the SPL.

similar requirements as architecture modelling for
conventionalsystems. But many of these requirements
need a more intensive attention in the scope ofsSPL
because the PLP architecture often forms the Hasia
huge set of derived product architectures. This
simultaneously is the risk and the chance of SPLs.

In the following requirements for a SPL architeetur
modelling concept are presented which are detednine
during the case study presented in section 8 aed ar
additionally the result of a comparison of existing
approaches in the context of SPLs, see also seétion
Thereafter a SPL architecture modelling process and
metamodel for SPL architecture modelling elemerits w
be presented which fulfil the specified requirersent

Entities and relations: First of all — as with every
other architecture modelling language — there nbast
possibility to model the central building blocks af

line-based system — the entities — and their connectionsrélaions.

Thereby the entities describe central units ofsystem to
be modelled and the relations describe structural a

53

behavioural connections of this units like e.gréiehical approach. So one should not mix up the two meardfgs
or uses relations. the termplatform While in the context of SPLs this term

Separation of concern: Architecture modelling for describes all documents on which the product lige i
SPLs must provide the possibility to concentrate onbased, in the context of the MDA it refers to tbehnical
specific aspects of a system [10]. This conceptknas platform used. So if not explicity mentioned context
separation of concerns divided into two dimensions: should clarify which meaning was meant by. The
Along thehorizontal dimensiorit is possible to designate relationship between SPLs and the MDA will be
the focus on a part of interestlipping). The vertical discussed in more detail in sections 4 and 5.
dimensionallows to magnify a given fixed cutout step by Variability: Modelling different variability within a
step in order to get a more and more exact imageeof SPL is vitally important for the requirements eregring
cutout in question. as well as for designing the architecture. Combivwéti

A combination of both dimensions is the so-called thetraceability arises the possibility to resolve variability
zooming in which an aspect is magnified step by step at the level of requirements during product confidion
whereby the observed cutout is simultaneously dcale and to implement it through the design level dowrhe
down and vice versa. This may be seen analogows to implementation level, see also section 4. Therefare
photographic lens with zoom-function where a longer concept for SPL architecture modelling needs tovipe
focal length (higher magnification) results in a adier the possibility to distinguish between common and
angle. variable parts of the products derived from a PLP.

Traceability: Traceability of requirements down to the Decision support: In order to resolve variability
architecture and finally to the source code (antkpb& a offered in the PLP architecture in a way intendgdHe
vital task to ensure the comprehensibility and platform developer a mechanism is needed, whicpshel
maintainability of a software system. In the scop&PLs the product developer to make the needed decisions.
the claim for traceability is so much important &ese Therefore each variability modelled in the PLP
resolving the variability of the requirements hased architecture must be furnished with an annotation —
impact on the design and therefore the source obtlee normally formulated in natural language — whichvpdes
SPL. Only if the traceability of requirements dotenthe the product developer with the needed information t
design and furthermore the source code is guardntee resolve given variability.

can fully benefit from the possibilities of reuseda Dependencies: By modelling the variability within a

therefore of cost-saving. SPL it must be taken into account, that there migght
Evolution: Similar to conventional software products dependencies between components of the system. This

a SPL isn't resistant against changes during fiesdycle. can mean that for example the existence of one

By and by changing requirements lead to changedcomponent requires the existence of another conmione
architectures and products. Therefore a mechangm i Therefore a concept for SPL architecture modelfiagds
needed to track these changes over time. In thiexoof to support an appropriate type of relationship.

SPLs this not only means versioning but also tod#ec Having described the requirements for SPL
when and how to migrate already derived productsnwh architecture modelling in the next section a preces|
changing the PLP. be presented, which illustrates the necessary stegpshe

Technical platform independence: To maximise the dependencies by modelling SPL architectures.
benefit of reusing components, the design of aesystind
components respectively should be independent ef th 4, SPL architecture modelling process
implementation technique used as long as possibtega
the levels of abstraction. Thereby the texamponenis This section presents a process for SPL architectur
not meant to denote a component known from e.g.modelling. As already mentioned in section 1 SPL
CORBA or EJB but a higher building block used in architecture modelling is organized in the two area
architecture mOde”ing. This will be discussed imrm domain engineeringand app|ica’[i0n engineering In

detail in section 6. Figure 1 the part of architecture modelling getsreno
The request for technical platform independence jmproved.
Complies with theModel Driven Architecture (MDA) Within the domain engineering initia”y the

approach conceived by the OMG [4]. In the scope of requirements for the entire PLP are collected tueyet
architecture modelling for SPLs, this technicaltiplan with the identified variability and afterwards coitegl
independence refers to the development of the PLPinto a requirements modefor the PLP, which among
architecture as well as the architectures of thenef other things contains e.g. feature graph[2]. This
derived products. requirements model forms the basis for the topHiyer

It should be mentioned that the teptatformis used of the PLP architecture. Starting from this stitisract
in the scope of SPL engineering as well as iNNHBA architecture layer the PLP architecture gets moré a

54

more improved in further architecture layers. This
procedure is according to tihodel Driven Architecture
(MDA) approach introduced by the OMG [4], see also
section 5.

Product Line-Platform
Requirements-Mode|

PLPA-Layer 1
PLPA-Layer 2

PLPA-Layer n

Product Line Platform-
Architecture (PLPA)

Product
Requirements-Model
PA-Layer i,
>{ PA-Layer i,
PA-Layer i,

Product-Architecture (PA)

o
=
o}
[}
S
o)
c
w
1=
©
£
S
(a]

Application Engineering

Figure 1. SPL architecture modelling process

In the last step within the domain engineering ttie
way specified generic architecture gets realizefaass
possible. Thereby — according to the differentiatio

architecture becomes more and more improved analogu
to the layers of the PLP architecture.

Thereby the variability included in the PLP
architecture is resolved conform to the previously
identified product requirements. In the last stée t
executable system is implemented based on thisuptod
architecture.

5. MDA and SPL architectures

To fulfil the requirement of technical platform
independence - see section 3 - tModel Driven
Architecture (MDA)approach of the OMG [4] can be
incorporated into a model for SPL architecture ntlotg
Figure 2 shows an approach to integrate the MDA in
concept for modelling SPLs.

Thereby thecore modelknown from the MDA is
specialized to @omain specific core modekhich offers
modelling elements adapted on a given domain. These
modelling elements are used to define patform
independent PLP modelonforming to the MDA, based
on the analysed requirements for the PLP. The golatf

common and variable components — both finished andindependent PLP model consists of sevetastraction

incomplete components are placed in the PLP, ss® al
section 6.

At the beginning of theapplication engineeringdirstly
the requirements for a concrete product are detexandn

layers which give from top to bottom a more and more
complete view of the modelled system. It is then -
according to the MDA - mapped to @atform specific

PLP model which also consists of several abstraction

base of the requirements for the PLP. Afterwards —layers.

similar to the domain engineering — a first coarse
architecture layer for the product is developedictvtis
based on the layer of the same abstraction leval Hse
PLP architecture. In the following this top-level

During the application engineering initially the
product requirements are determined based on the
requirements of the PLP and then implemented by a
platform independent product modelursuant to the

Modelling Element

)

Core Model

1

Domain Specific Core Model

PLP-Requirement

Product Requirement

1.
<g implements

Platform Independent PLP Model

1.*
<g implements

Product Model

Platform

! maps to

T
|
|
| maps to
|
i

Platform Specific PLP Model

Platform Specific Product Model

Figure 2. MDA and SPLs

55

MDA. This consists — analogue to the platform The last type of feature components is represeoyed
independent PLP model — of several abstractionrsaye specific feature component$hey are special building
and is mapped to alatform specific product model blocks needed to construct a specific application

which in turn consists of several abstraction layer architecture derived from a PLP architecture. As ti
must be taken into account, that in the coursehef t
6. Feature components evolution of a SPL an initially product-specificatere

component at a later date can be incorporated timto
PLP and thereby become a variable or even a common

The central building blocks for modelling the PLida
g ¢ feature component of the PLP, see section 3.

application architectures in the approach presehtze
arefeature component#\ feature component can be seen
as a self-contained unit, which represents a specif /- Metamodel
characteristic of the system to be modelled. Theyaam

adaptation of thefeature concept introduced by the After this preparatory work in this section a metatel
Feature Oriented Domain Analysis (FOD&) the level ~ for SPL architecture modelling elements will be egiv
of architecture modelling for SPLs [1]. which — in conjunction with the SPL architecture
modelling process presented in sections 4 and Wfitsf
Fosture Gomponent the requirements described at the beginning. Iticge8

an example will illustrate the elements presentedhie
metamodel shown in Figure 4.

The central modelling element is théeature
componenimentioned in section 6. Thereby each feature
Gamimon Festure Gomponert [P — pe—— component memorises the requirements covered biynit.
doing so traceability of requirements down to the
architecture level is supported as asked for itiaed.

Figure 3. Feature Components Feature components can participateetations with
the aid ofrelation endsas known from the UML [3].

It must be mentioned that the feature components at! Néreby a relation can bedapendency- see also section
the level of architecture modelling aren’t necegar S — Or ahierarchyrelation. , ,
identical to the features according to FODA, whinte Among adependencyelation two different kinds of
identified at the level of the requirements analygj. For ~ dependencies between feature components can be
example it might be possible that a set of featuresdistinguished:
identified in the requirements analysis togethelidba

feature component at the level of architecture riode y PrOh'b'ted

It might also be possible, that a feature is im@eted by * Required

a set of feature components likewasgpectdn the Aspect

Oriented Development [5]. Furthermore feature A dependency of typeprohibited is an undirected

components need — contrary to their name — noteto b relationship between two feature components. In a
realised at the imp]ementaﬂon level as ComponentsprOhlbltedRelatlonShlp the existence of one feature
provided by for example CORBA or EJB. As shown in component forbids the existence of the other featur

Figure 3 feature components can be divided inteehr componentin a derived product architecture.
different types. A dependency of typerequired is a directed

Common feature componentre used in a PLP relationship between two feature components. uisisd if
architecture and describe feature components, wtach ~ the existence of one feature component of the PLP
occur in every application based on this architectu architecture depends on the existence of anotfeurke
Common feature components occur in derived appticat component of the PLP architecture within a derived
architectures without modification. product architecture.

Variable feature componentre feature components, A hierarchyrelation depicts a conceptual structure
which can occur in every derived application amttisre ~ between a super- and a — possibly set of — subrkeat
only by resolving the offered variability of type component(s). It should be seen more &as part of
incomplete specificationiThis type will be described in relation than a generalisation similar to the catioas
more detail in section 7.1. used in deature graphin FODA [2].

56

Modeling Element

Decision Support Variability

Feature Component | _Retation End P—-—
N elation -
~coveredRequirements : Vector |qg— | Incomplete Specification

Specific Feature Gomponent ZT ZT

Hierarchy Dependency

Choice

% % Definition Refinement Redefinition Extension

1 Prohibited Required

Platform Feature Gomponent

Option Alternative or

Common Feature Component Variable Feature Component

1.0

Figure 4. Metamodel for SPL architecture modelling elements

The other major part of the metamodel pertaindhéo t feature component in question is given. On therdtiaad
modelling ofvariability. Thereby two types of variability variability of typedefinition or refinementmust always be

can be distinguisheihcomplete specificatioandchoice resolved.
7.1. Incomplete specification 7.2. Choice
Variability in the form of anincomplete specification The second type of variability between members of a

is characterised by a missing or incomplete spetifin SPL concerns thehoice from a set of offered feature
of a component. At this four different types can be components from the PLP. It can be distinguishethan
distinguished: following three types:
A definition only determines the skeleton of a feature
component likewise an interface. The detailed « Option
specification is done during tleg@plication engineering o Alternative
A refinementdefines the behaviour and data of a « O
feature component in an abstract way likewise gtate-
or hook-feature Component. The exact deSign will be In case of anoption the product deve|oper has to
defined product-specific. decide, if he takes over an optional feature corepbn
At the redefinition a SpeCiﬁcation for the feature from the PLP to the product architecture. In catearo
component exists already but it can be renewedusted ajternativeexactly one feature component must be chosen
SpeCifiC. This can serve for the definition of %m from a set of offered feature Components_
specification of a feature component, which can be An or-choice describes a set of feature components
product-specific redesigned. from which one ore more feature components must be
Similar to theredefinitionthe extensionalso defines a chosen. Table 1 shows the different types by iustg
(standard) specification of a feature componenwéi@r the used cardinalities of the choice and selecsiets. It
this specification can be product-specific extendsd should be mentioned that these three types cost z

functions or data. _ ~ combined to obtain a broader variety of possibls &
Beyond these four types of incomplete specification chgose from.

redefinitionandextensiorareoptional variability because
in these cases a sufficient complete specificatibthe

57

Table 1. Choice

Cardinality of Cardinality of
choice selected set
Option 0.1 1
Alternative| 1 *
Or 1.* *

When resolving variability during theapplication

The order system consists of an optional feature
paymentdenoted by the circle above the feature element.
The feature graph defines different types of paymen
methods among which the product developer can chose
one or more. Within thisr-choice — see section 7.2 — the
featureother payment methad a placeholder for further
payment methods which can be defined product specif

On the right hand of the feature graph a featutker
confirmation which denotes the kind of order

engineeringjncomplete specifications must be completed confirmation for the seller, is described, wheree th
that means defined, refined, redefined or extendedProduct developer must decide, which one of the
Furthermore the product developer has to come to z@lternatives offered he chooses, see also sectidn 7

decision about the feature components to choose $eis
of offered feature components in variability of eyp
choice.

Regarding all types of variability decision supporis
provided which supports the product developer keésgl
given variability, see section 3.

8. Example

In the following a small excerpt from a first castedy
is presented to illustrate the application of thetamodel
elements. This case study models a SPL in the xiate
an Internet e-shop.

In Figure 5 a feature graph modelling tloeder
subsystem of an e-shop product line is shown. Tyeae
extended notation compared to FODA is used [2].

Amongst the three offered alternatives the featiase
needs to be redefined in a derived application,seegon
7.1.

The two remaining optional features are the polsibi
to distinguish adelivery addres€rom a billing address
and to make use ofgift service Thereby thegift service
depends on the featurgelivery addressbecause one
rarely wants to send one’s gift together with awnoine.
This is shown by the use of @equires relationship
between this two features.

In the feature graph shown every variability is
numbered, whereby the numbering scheme shoulddake re
from top to bottom. For example the variability type
definition at the featurether payment methdths number
1.1b.1 because it is under the or-choice number 1.1
which in turn is under the optional featyr@ymentwhich
has number 1.

[OtherPaymentMethod}[C.0.D. J

1.1b.1

[

Merchandise Information System }

No, No,
****** »
b b)
Or Alternative Requires
@)
.
Feature
N a No I
Optional Feature Definition Refinement

Figure 5. Feature graph e-shop

58

By using this numbering scheme the product develope
can move along aecision treebuild up from this
hierarchical variability numbers. Together witllecision
support for every variability modelled, that way the
product developer can easily resolve the varighbilit
offered by the PLP.

After this description of an feature graph for theler
part of the e-shop the associated PLP architeetilrde
presented in part. It is constructed as a threexlay
architecture.

The PLP architecture is made up ofpeesentation
layer, which visualises the outcomes of the subjacent
business logic layerand serves in addition as the
communication interface from the end user to tlshap
system, normally by means of a web browser.

The business logic layercontains the functional
components of the e-shop, e.g. order handling stocuer
management. In the following this layer will be diéised
in more detail.

The lower most layer is thdatabase layer which
provides the business logic layer with the funciidg
needed to manage the dates with the help of a astab
system.

It should be mentioned that the layers describee he
aren't identical to the PLP architecture layers tioered
in sections 4 and 5. Here the three layers desaibe
logical segmentation of the system to be modeletief-

but is a feature component needed for technical
realisation. It should be mentioned that it is jjuss that
certain variability arises not until architectuevél. Thus

it is imaginable, that a feature component candadised

in many different ways — for example a DBMS can be
realised relational or object oriented.

The two other feature components in Figure 6 will n
deepened and are only shown for reasons of
completeness. In the following the feature compbnen
order_systenwill be observed in more detail.

Figure 7 shows a detailed view of the feature
component order_systemmentioned before. Here the
abstraction level allows using a well-known modadhe]li
language — here the UML — in order to describe the
specific characteristics of this feature compongst.can
be seen in Figure 7 the different types of varigpil
modelled in conjunction with the featurpsymentand
order confirmationin the feature graph of Figure 5 can be
regained in the feature componendler_system

The optional featurgpaymentis mapped to the now
optional clas?aymentMethodlepicted by the circle with
annotationOpt and number 1. Similar the alternative
number 4 and the or-choice number 1.1 are repredemt
this feature component. Three additional classes ar
shown, which describe an order based on a (virtual)
shopping cart. These two classes come from another
feature not modelled in the feature graph showRigure

architecture) whereas in the second case the layer$.

describe the hierarchy of abstraction of the medeRLP
architecture.

The variability described in the feature graph iguFe
5 is brought down to the PLP architecture of thehep.
Figure 6 presents a part of the business logia Jaykich
amongst other things consists of the feature comptsn
order_system, data_access_support,
customer_management, application_control, and
catalog_management

It is visible that the feature componemtier_systenis
influenced by two types of variability presented tive
feature graph in Figure 5. Furthermore the feature
component catalog_managementhas a variability
annotated, which was modelled in another here mowa
part of the feature graph.

The feature componerdata_access_supporlin the
above figure shall depict a feature component, wihias
no direct conjunction with features from the featgraph

presentation_layer

application_control
A,

4 A
order_system . customer_management
1.1b.1
A
w6
6.2

data_access_support [¢—

v

database_layer

s

4a.l catalog_m

business_logic_layer

Figure 6. Business logic layer

59

iOrderConfirmation PaymentMethod .

FaxOrderConfirmation EMailOrderConfirmation CreditCard TBD CashOnbDelivery Invoice

4a.l 1.1b.1
MISOrderConfirmation
(0]

r

b
1.1
\Alt/ Order ShoppingCart 0. Item
4

order_system <<uses>>

<

v
catalog_management

Figure 7. Order system

It should be pointed out that the types of varigbil them had certain influence on the approach predante
shown in the feature graph not only have impacthan this article. As also stated by Muthig et.al. i §&isting
business logic layeand therefore the feature component approaches often seem to be more pragmatic satution
order systembut also on the other layepesentation resulting from practical modelling experiences in a
layer anddatabase layerand their corresponding feature particular domain or environment whose results rase
components. For example the or-choice number 1.luniversally transferable.
between the different types of payment methods mgst In [6] Flege describes an approach for using theLUM
be modelled (and implemented) at fivesentation layer [3] for system family architecture description. Téley he
so that e.g. the end user can choose his prefpaydent focuses solely on construction-time variability,caese
method. As can be seen in this example, the mapgfing only this type of variability results in differeproducts
features from the feature graph doesn’t need toclmat and is therefore essential for developing SPLssdtee
one-to-one with the feature components modellethet of variability at later stages like e.g. at bindimgruntime
architecture level, as already mentioned in sedion doesn’t require special attention in the contextSefLs

The next step is to bring the modelled variabitiown because they only affect one single product, see [&]
to the source code. This can be achieved by anngtdte and [9].

source code with appropriate tags to depict theemint The drawback of Flege's approach is the lack of

types of variability. Because this actual is wonk i elements in the UML for explicit modelling of

progress it will not deepened here. architectural variability. Flege uses UML'’s stengids to
depict variable architectural elements. Therebyohty

9. Related wor k models optional elements by neglecting e.g. alteres

among modelling elements. In Flege's approach

As stated in section 2 most of the existing apmeac alternatives should be modelled at the level of the
concerning SPLs are focusing on the requirementsdecision model. At the design level this leads ptiomal

engineering. Nevertheless some approaches existhwhi €lements (the single alternatives) which are noemor

try to concentrate more on the downstream phasmf diStingUiShable from Other, real Optional elements.
development process like the design, whereby sofme oTherefore the approach presented in this artici@tty

60

distinguishes the different types of variabilityepented in
section 7 at the design level to allow traceabfiiom the
requirements down to the design and the source code
Furthermore Flege focuses exclusively on variabilit
with a complete set of specified variants by didtay
variability of type incomplete specification thaight be
used by product developers in an unanticipated wWay.
per Flege the reason for this is that unspecifizdability
has no impact during the instantiation of a refeeen
architecture. In the approach presented in thisepap
variability of type incomplete specification is dxjily
included. At first different specifications of elemts

For the time being two products were derived frbia t
PLP to show the load capacity of the given concept.
Thereby it turned out that — although the conceps w
useful — a meaningful and broader application adg be
achieved if the concepts are supported by toolse@tise
the PLP and product developers can hardly manage th
given complexity.

This leads to another aspect, which requires mand w
to be done: The transitions from requirements ergging
to architecture design and from architecture degigtne
level of implementation must be supported in a ephc
for modelling SPL architectures. Otherwise the latk

among products of a SPL — resulting in incomplete systematics makes the stability and durability oBRL

specification in the PLP architecture -

are a solely depending on the intelligence and creativityhe

distinguishable characteristic of these productd an developers involved.

therefore represent one type of variability witlsirSPL.
Furthermore only by explicitly modelling variabjfitof
type incomplete specification — including the
corresponding decision support — one can help ibéygct
developers to use the offered variability only thay
intended by the PLP developers.

In [7] Batory et.al. refer to the need for highewél

11. References

[1] Donohoe P. (editor),Software Product Lines:
Experience and Research Directipns Kluwer
International Series, 2000.

modelling elements when modelling SPL architectures [2] Kang, et. a|.,|:eature Oriented Domain Ana]ysis

Therefore they use features at the design lev&tansof
e.g. modules. These features are then step-wisgedef
during the design resulting in a more and more ipeec
architecture description. In their approach Batetyal.
concentrate more on the transition from the detigte
implementation by introducing templates for JAVAheT
feature componenisresented in section 6 also try to offer
higher-level architecture modelling elements bu¢ ar
contrary to Batory et. al. — clearly differentiatedm the

(FODA) Feasibility StudyTechnical Report SEI-CMU,
Pittsburgh, 2000.

[3] OMG, Unified Modeling Language Specification,
Version. 1.4 Technical Report, OMG, 2001.

[4] Soley R., OMG,Model Driven Architecture White
Paper, OMG, 2000.

features of FODA [2] used during the requirements 5] AOSD Steering Committeéyspect-Oriented Software

analysis.

10. Conclusion and future wor k

In this paper requirements for a concept to modril S
architectures were presented.

Furthermore a SPU7] Batory, Johnson,

Developmenthttp://aosd.net

[6] Flege O., System Family Architecture Description
Using the UML. IESE-Report No. 092.00/E, 2000

MacDonald, and von Heeder,

architecture modelling process was described whichAchieving Extensibility Through Product-Lines and

incorporates the concept of theodel driven architecture
into SPL architecture modelling. Besides a metarhfade
SPL architecture modelling elements was shown, lwhic
together with the described SPL architecture maougll
process - fulfils the requirements deployed in finst
part.

A first practical application in the context of ase-

study from which parts were shown in the example

illustrated in section 8 has shown the load capasfithe

Domain-Specific Languages: A Case StudgCM
Transactions on Software Engineering and Methodolog
(TOSEM), Vol. 11, Nr. 2, pp. 191-214, 2002

[8] Muthig and Atkinson,Model-Driven Product Line
Architectures SPLC 2002, LNCS 2379, pp. 110-129,
2002

[9] Thiel S. and Hein A.,Systematic Integration of

presented concepts for a medium sized application.Variability into Product Line Architecture Desig®PLC

Within this case-study a domain for e-shops wasyaad

2002, LNCS 2379, pp. 130-153, 2002

and based on a requirements model including a reatu

graph for this domain a PLP architecture using the[10] van Zyl, Product Line Architecture and the
modelling elements offered by the presented metainod Separation of ConcernSPLC 2002, LNCS 2379, pp. 90-
was developed. 109, 2002

61

Modeling Evolution and Variability of Software Product Lines
Using Interface Suites

S.A. Roubtsov E.E. Roubtsova
VTT Electronics, Kaitovayla 1, P.O.Box 1100, Eindhoven University of Technology, Den Dolech 2,
FIN-90571 Oulu, Finland, P.0.Box 513, 5600 MB The Netherlands,
ext-Serguei.Roubtsov@uvitt.fi E.Roubtsova@tue.nl
Abstract So, we need a methodology that guarantees that modifica-

tions of an SPL do not change the old features. The mod-

Evolution of a software product line means extending the eling approaches which support software product lines have
product line by new products. A new product keeps rele- a lack of mechanisms for modeling the SPL behaviour evo-
vant features of old products and introduces new featureslution. Moreover, the relations between behavioural speci-
defined by domain requirements. In this paper, we proposefications are not defined in the UML.
an interface-role UML based approach to construct soft- In this paper we offer an evolutionary way to construct
ware product line variations. A product line and its vari- an SPL model. We adapt the role approach [9, 10, 11] ex-
ations are specified in a UML design profile, which has tending it by the inheritance relations on behavioural views
a process semantics and a defined inheritance relation onand complete specifications.
specifications. Using the definition of inheritance we con- We use a special kind of the role approach, interface-role
struct a product line model, specify new product variations modeling [12, 13, 14]. The interface-modeling approach
and check that the new variants do not affect behaviour of introduces aimterface suitewhich is represented by a finite

the old products. set of roles communicating via interfaces provided by these
roles.
First, we consider interface suites as SPL requirements
1. Introduction models. An interface suite is specified in a UML profile

which contains an interface-role diagram and sequence di-

The concept of a Software Product Line (SPL) is one agrams. This form of specification in terms of roles and
of the complex concepts of software reuse that covers busi-interfaces allows ut collect requirements from customers
ness, organization, process and technology [1]. A softwareand represents desired features of products
product line is a set of products sharing a common archi- Second, roles and interfaces in the interface-role ap-
tecture and a set of reusable components. Software produgproach can be seen as abstractions of diffex@rhpo-
lines employ a top-down approach to software system de-nents[13] as well as the interface suite itself represents a
velopment restricting a set of products in the SPL and iden- software component syster8o, an SPL model in form of
tifying common and different requirements to all products. an interface suite is related to the standard component ar-
Requirements are usually collected by different diagrams of chitecture model [15].
the UML (Unified Modeling Language [2, 3, 4]) and by a Third, the UML profile of the interface-role approach has
feature graphs [5, 6, 7, 8]. These groups of requirementsa process semantics and the inheritance-specialization rela-
define an SPL model in form of UML diagrams, a shared tions defined on specifications. We ube inheritance of
SPL architecture and an implementation of reusable com-interface suite$14] as an instrument of the evolution of an
ponents. Finally, actual products are derived from this com- SPL model.So, the SPL model represented by an interface
mon basis [6]. suite is not static. The inheritance mechanism guarantees

However, domain requirements tend to change tved that a new product variant inherits some products of SPL
model of a concrete SPL can not be static, developed in ad-and does not destruct the previous products of the SPL. New
vance.Adding new classes and behavioural diagrams to anfeatures and behaviour, caused by changing domain require-
SPL model can destroy the behaviour of the old products. ments, are modelled by the inheritance-specialization mech-

anism in such a manner that does not destruct the previous
*The work of S.A. Roubtsov is supported by The European Economic SPL features and behaviour

Interest Grouping ERCIM (European Research Consortium for Informatics
and Mathematics). His work is a part of the VTT Electronics Agile project: The remainder of the paper Is the followmg. In Section

http://agile.vtt.fi. 2 we give an SPL example. In Section 3 we show how to

62

specify the changes of an SPL in our UML profile using data series both from a user and form a database. The fea-
inheritance-specialization relations. In Section 4, we relateture graph ofSPL Graph Designeis extended by feature
the definition of interface-suite inheritance with different RECEIVE DATA FROM DATABASE (Figure 1 b).
ways of SPL evolution. We also demonstrate how to use The third product draws real-time graph periodically up-
our SPL model for constructing an SPL feature graph and adating data series from a database. A user starts and stops
product component model. Section 5 gives a conclusion. the drawing. The feature graph 8PL Graph Designeis
enriched by featur®RAwW REAL-TIME GRAPH (Figure 1
2. Software product line Graph Designer c).
We can continue constructing products, however, we
have developed a case sufficient for illustrating our ideas.

3. A UML profile with inheritance relations for
Prepare Graph modeling of Software Product Lines
‘Accept User Recieve data We specify SPL products and complete SPLSrasr-
Reques from User face suites(/5). An interface suite is a set of roles com-
a) municating via interfaces [13]. Roles and interfaces are ab-
stractions both from desired product features and from the
implementation. On the one hand, roles and interfaces al-
low representing features of a product. For example, fea-
ture "role Graph Maker receivedata from roleUser” has
verb receivesthat represents an interface provided by role
. Userand required by rol&raph Maker(Figure 2). On the
Accept User Receive data . .
Request other hand, roles and interfaces can be mapped on the im-
'—‘—\ plementation components: several roles with interfaces can
, . be implemented as one component or one role with provided
Receive data Receive data . .
from User from Database interfaces can be implemented by several components.
& 3.1. A UML profile with process semantics

We use a UML profile which consists of an interface-role
diagram and a set of sequence diagrams [14]. To present

the product variability in this profile we use the inheritance

relations. We have defined those relations both on interface-

Accept user Receive data Draw Draw real-time role diagrams and on sequence diagrams [14].
Request Snapshot Graph
3.1.1. Interface-role diagram. An interface-role diagram
Receive data Recelve data is a UML class diagram where roles are represented by
from User from Database . .
classes with stereotype/Roles-. Interfaces of those dia-
c) grams specify sets of operations, provided by roles.

An interface-role diagram (Figure 2) is a graph

Figure 1. Feature graphs of SPL Graph Designer IR=(R.I,PI,RI,RE)

- . with two kinds of nodes and three kinds of relations:
To show variations of an SPL, we use a simple example.

Let us consider software product li&®L Graph Designer ¢ Risafinite set of roles . Each rolec R depicted by a

The first product of this software product line accepts box has a set of playef3L,. (instances of roles). If the
data series for constructing a graph from a user. The user number of player$Pl,| is more than one, the number
chooses the graph properties such as type, title, legend, s drawn near the role.

colour set and so on. The feature graph [5, 7] of this product

is shown in Figure 1 a. All features of this feature graph are e I is a finite set of interfaces depicted by circles. Each

mandatory. interfacei € I has a set of resuliBes; of the interface.
The second product d8PL Graph Designecan take Results are shown as sets of values near the interface.

63

e PI = {(r,9)] » € R,i € I} defines interfaces pro- 3.1.3. Process semantics for the UML profile.The set
vided by roles. Each role provides a finite set of in- of diagrams in our UML profile has a process semantics of
terfaces|PIN R x I'| > 0,1’ C I. The relation is type
depicted by a solid line between a role and an inter- P = (p, A, T, p*,pr)[16] :
face.

p is the initial state of the process. In this paper, the
o RI = {(r',(r,4))| r',r € R,i € I,(r,i) € PI} states are abstract. States are named by letters with
defines interfaces required by roles. Each role requires numbersyp, p1,pa, ..., p~.

a finite set of provided interfaces

|RI(r,PI')| > 0, PI' C PI. A required interface is

drawn by a dashed arrow connecting a role and a pro- o T is a set of transitions. A transitione 7' defines a
vided interface. The arrow is directed to the interface. pair of stategp’,p”), such thaty” is reachable from

p' as a result of the action, denotedy’ == p”. If
we define an abstract set of all possible st&eshen

e A is a finite set of actions.

e RR={(r,7")| r,»' € R} isthe relation of inheritance

on the set of roles. The relation is shown by a solid line TCPxAxP.
with the triangle end”’ —>r directed from role-child -
7' to role-parent (Figure 3). e px is the finite set of states reachable from the initial
statep, px C P. The reachability relation on the set
3.1.2. A sequence diagramA sequence diagram is a tuple of states==C P x P is the smallest relation reflexive

and transitive for any,p’,p” € P,a € A, p =

s=(Rx PL, T, A;),where p, p=pAp =) - p=p

e R x PLis a set of players of roles. A player of a role e pr is the final state of a procesgy € p*. If p” #

is represented by a box with a line drawn down from pr then exists a nonempty subset of stgiés C P
the box (Figure 2) [2]; reachable fromp”.

o Ty ={(v,w,l)|v,w e Rx Pl, l € L=1Ix Res}is Set of actionsA is specified by the se®1 of required in-
a labelled relation. terfaces at the interface-role diagram. An actioa r'.r2.4

Notice that correct set is specified by interface-role diagram

Ts CRXx Plx Rx Pl x I x Res=RI IR =(R.I,PIRI,RE),
ifiel, r'r?eR, (r?i)e Pland(r!,(r%i)) € RI.
If we take into account that the use of each interface can
return different resultses from the setRes and that a role
has a finite set of instances named playBts pl € PI,
then the set of possible actions is defined completely.
o Ay ={(rn: (v,wl)) Set of actionsA of the process is exactly defined by the
® AT set A, of actions at the sequence diagrams. The construc-

| (v,w,l) €Ts, n=1,2,...,N, r ={w,s;, fi}} tion of the process from the diagrams of the profile has been
shown in [14]. In this paper, we assume that for each UML
specification in our profile we have the corresponding pro-
cess.

corresponds to the set of required interfaces from the
interface-role diagram. The relatidh is represented
by a labelled arrow between lines drawn down from
boxesv andw (Figure 2,3).

is a function which gives natural numbers to required

interfaces at a sequence diagrar, specifies the set

of actions at the sequence diagram. A natural number
at the arrow allows to distinguish several occurrences

of an actions — (v, w, 1) (1: a), (2 : a) etc. 3.2. Inheritance Relation in the UML profile

Repetition symbot is used to indicate the begin= Inheritance relation defined on the set of UML specifica-
st; and the end- = f; of a repeated subsequencén tions is a key element for modeling Software Product Lines.
principal, the sequence can have several repeated subspecifications in our UML profile are behaviour oriented.
sequences= 1..m, however, itis a very rare situation The inheritance of behavioral diagrams is not defined in the
in the practice of specification. By convention, we omit ML, therefore we use our own definitions of inheritance

the empty value: = w for all labelled arrows that do poth on the interface-role diagram and the sequence dia-
not start or end any repeated subsequence. gram levels.

64

3.2.1. Inheritance at the interface-role diagram levelTo

define inheritance between interface-role diagrams, we use

inheritance on roles, which is defined in the UML and rep-
resented by arrow with the triangle end. If ralginherits
role ro, then we note this as follows —>r,.

Let interface-role diagrams be given:
IR, ,...,IR,, andIR,
IR, = (Rp,, Ip,, PI,,, RI,,, RR,,),
i=1..n, IR, = (Ry,I,, PI,, RI,, RR,).

Interface-role diagrani R, inherits interface-role diagrams
IR,,, if and only if there is an interface-role diagram

IRnew = (Rnewvlnew; PInewaRInewy RRnew)a (Figure- 3)

such that

1. Roles. R, R, U ..
Ry, ..., Ry, , Rney are disjoint ,

U Ry, U Ryew,

I, = I, U ..

Iy, s Ineyw are disjoint,

2. Interfaces.
I, ..

U Iy, U Tnew,

3. Inheritance relation on roles.
RRq = RRp, U...URRp, URRnew URRy, U...URRy

whereVi = 1..n:

n?

RRdi = {(Tpi;’rnew” Tp; S Rp,” Thew € Rneun &
Tnew _|>Tpi}a RRd1 # w
So,the relationRR,, defines subset of roles
R4, € Ryew, Which have parents in set,,. For ex-
ample, roleNew Graph DesignefFigure 3) has three
parent roles. However, there is a new r@eph Data
Sourcewhich has no parents.

4. Provided interfaces.
Pl, =PI, U..UPI, UPIL,.,U PI;U..UPI,_,
Ply, = {(ra;,7) | 1€ I,
3r € Ry, such thaty, —>r, and (r,i) € PI,) }.

Provided interfaces from roles-parents are duplicated
in roles-inheritors.For example, rold&New Graph De-

rd, € Ra,,

signer (Figure 3) provides the same interfaces as its

parentsiDraw, |GetGraph, IDataSeries .

5. Required interfaces.
RI, = RIp, U...URI, URI,cy URI4 U...URIy,
RI,=RI, U..URI, ;
RI;=RI4 U..URI, ,
Rlg, = {(za;, (r4,,1)) | 7a; %, € Ray, i € I,
dr,x € R,,, such that-y, —>r, 24, >z

n)

and(r,i) € PI,, and(z,(r,i)) € RL,,}.

A required interface is inherited by rolex, from role
x if there is a new role-;, which inherits role-provider
r of this interface.For example, rol&New Graph De-
signerrequires interfacéDraw because this role in-
herits both the parent-provid&GraphDrawerand the
parent-requireGraph Designer.

The main feature of our definition is that the roles of the
interface-role diagrami R, cannot require interfaces of par-
ent roles from the interface-role diagramg,, and roles
from IR, cannot require interfaces of roles frah®,. To
be used the parent interfaces should be duplicated in roles-
inheritors.

The set of required interface, specifies the set of
possible actions in the product behavior. An interface-role
diagram defines. duplicating functionsRI,, — RIg,,

i = 1l..n, one duplicating function for a parent. We
use those functions to derive parent processes from pro-
cesses [14] of new specified products and check inheritance
on the sequence diagram level.

3.2.2. Inheritance at the sequence diagram levelnheri-
tance at the sequence diagram level is defined as inheritance
of processes constructed from the set of UML sequence dia-
grams. Procesgconstructed from an inheritor specification
inherits procesg; built from the parent specification if and
only if processp; is derived from the processin the pro-
cess algebr# A,. In work [14] we have shown that the ac-
tions of process algebidA, are defined from the interface-
role diagram of the inheritor. We also have investigated the
process derivation in detail. In this paper, we assume that
each new product variant, which is specified in an SPL, in-
herits processes of its parent products. This inheritance is
checked as inheritance of processes constructed from UML
specifications of products.

3.3. Example of a product line specification in
the UML profile with inheritance rela-
tions

First product of SPL Graph Designer The interface-
role diagram of the first product is presented in Figure 2.
Role Graph Makerprovides interfacéGetGraph which is
required by roleUser. (We have called this roldJser to
avoid a mix up of notions. More likely it is a graphic user
interface). These two roles and the interface specify feature
AccEPTUSER REQUEST from the feature graph (Figure
1). In the same way we may say that roléserandGraph
Maker present featur®@ECEIVE DATA FROM USERVia in-
terfacelDataSeries At last, featureDRAW GRAPH is real-
ized by the pair of role&raph Makerand Graph Drawer
interacting via interfacéDraw.

65

O plies data series to roldew Graph Designevia new inter-

Sequence diagrams e
new graphdesigner : New

Graph Designer

graphdatabase:
Graph Database

<
~ .
IDataSeries ~— f
<<Role>> <<Role>> <<Role>> acelDatabase Series
User stucture Graph Maker | §O7 Graph Drawer
~ IDraw: structure
IGetGraph Interface-role diagram <<Role>> Tl <<Role>> <<Role>>
{true, false} User IData Series: T Graph Maker Graph Drawer
(from Graph1) structure (from Graph1) [™77 >0 (from Graph1)
_ (from Graph1) o
‘ ~ raw: structure
user : User Graph : user : User araphdesigner RN
| Maker Graph Drawer Graph Maker = (from Graph1)
I I I 1! 1GetGraph |
1) IGetGraph i i | P IR of 1Get Graph
! 2| iDataseries [{true, false}
2| IDataSeries | | | I I1SGraphl (from Graph1)
I — I [
| | | 3| IDataSeries:structure |
3 | IDataSeries:structure | |
| | <<Role>> <<Role>>
| %) IDraw } 4| |GetGraphifalse | | Graph Database |——()<----+ New Graph Designer
| [> |
| 5| IDrawstructure | | I IDatabase Series IR new
| < | | {structure, void}
6| IGetGraph:true | | ! |
< | I I IR of ISGraph2
| I I
|
!
|

1
| |
| |
I I -
! ! newgraphdesigner : New

Graph Designer Graph Database

1! iGetGraph ! I I

: } 1| IGetGraph }

|) ! |

Figure 2. Interface suite for the first product of SPL Z| IDabase series | 2| IDatabase Series _|
. 3:: IDatabase Series: structure }

Graph Designer - - - - - - o &! IDatabase seriesvoid |

4,5:: IDraw; IDraw:structure } | |

I } 4:‘ IGetGraph:false |

' ‘ — |

6: | IGetGraph: true } |

! 1

|
The behavioural pattern @raph Designeis presented i
by the set of sequence diagrams (Figure 2). To simplify the ‘
picture we assume that each role has only one player, so, it

is possible to talk about an interaction between roles. Figure 3. Interface suite for the second product of

The behaviour patten for the first product®PL Graph SPL named Graph Designer which receives data from
Designeris the following: roleUserasks roleGraph Maker 5 qatabase

via interfacelGetGraphto draw a graph of a predefined

type; roleGraph Makerdemands data series from rdJser If a child 7.5 inherits a set of parent roles with the speci-
via interfacelDataSeries User sends data series @raph fied behaviour, this behavious inheritedby the childZS
Maker by means of actioriDataSeries:structure Next as a subprocess. For example, if rolew Graph De-
steps correspond to the pair of actions, wharaph Maker sjgnerinherits all roles of the first produdts, it inherits
andGraph Drawerperform before the visualization of the the pehaviour pattern of the first product. So, the second
graph.Graph MakercommandsSraph Drawerto draw the productis able to draw graphs using data received from a
graph using interfackdraw. Graph Drawerprepares struc- yser.RoleNew Graph Designenherits provided interfaces
tures to be drawn and returns them as a result via the samgGetGraphandIDraw and can require these interfaces (Fig-
interface. The last action is a respoh&etGraph:truefrom ure 3) .
Graph Makerto User on the user’s request from the first The set of sequence diagrams of the second product (Fig-
step. This successful visualization of a graph is presentedyre 3) differs from the set of sequence diagrams of the first
by the first sequence diagram (Figure 2). The second sepe (Figure 2). However, if we construct procesfom
quence diagram in Figure 2 corresponds to the case, whefne first product and procegsrom the second one and re-
the user’s data are not complete or correct to be drawn. Inpame actions op using inheritance of roles, for example,
this caseGraph Maker returns resultGetGraph:falseto @ = GraphMaker.User.I DataSeries iS renamed to
User. a’ = NewGraphDesigner.GraphDatabase.l DataSeries, then
Second product of theSPL Graph DesigneiGraph De- the renamed procegss derived fromy. This indicates that
signer which receives data from a databasedeveloped the behaviour has been inherited.
using inheritance at the interface-role diagram and the se- Third product of the SPL namedReal-Time Graph De-
quence diagram levels (Figure 3). At the interface-role di- signeris presented by Figure 4. We have created two new
agram we can see theg GraphZ2inheritsIS Graphl Role rolesTimerandNew Real-Time Graph DesigndRoleNew
New Graph Designeinherits all three roles of the parent Real-Time Graph Designénherits all roles of the previous
first product. So, according to the definition of inheritance, I.S. These two new roles realize real-time drawing via five
it also inherits all parent interfaces. To extend parent func- new interfaces. Roldlew Real-Time Graph Designases
tionality we have added rol&raph Databasgwhich sup- its own interfacdGetRTGrapho initialize real-time graph

66

OG“‘_

D IDataSeries T
e structure IGetGraph

(from Graph1) |- - . _ (from Graph1) {true, false}

<<Role>>

Graph Maker Graph Drawer
(from Graph1) [~~~ >() (from Graph1)

<<Role>>

__ (from GraphL

IDraw: structure

IR of ISGraphl

(from Graph1)

<<Role>>
Graph Database
(from Graph2)

<<Role>>
New Graph Designer
(from Graph2)

IDatabase Series

{structure, void)
(from Graph2)

IR of ISGraph2

S~
L <<Role>> -
New Real-Time Graph Designer |- _ _

-——"‘\éeﬁgm

<<Role>>
Timer

IStopRTGraph: N @/ﬁ
void * IstopTimer: ~,*
void
IStartRTGraph OL
void
IR of ISGraph3 1onTime: void
[: New Real-Time timer : Timer New timer : Timer
Graph Desianer Real-Time Graph Designer
T
121 IGetRTGraph;IGetRTGraph :true | ' H
i H i
12 !IStopRTGraph, IStopRTGraph:void
31 ISetTimer '
1 [a— :
' h
4 1 ISetTimer: void 3! ItopTimer
|

'
sts:) lOnTime

'
6! IOnTime: void

T
7! IGetGraph

i

T
89: | IDatabase Series;

1 IDatabase Series: structure
T

"

10,11} IDraw; IDraw: structure

1

f 121 IGetGraph:true

1

Figure 4. Interface suite for
signer

i
4:1_IStopTimer:void
h

Real-Time Graph De-

drawing.

First, New Real-Time Graph DesignstartsTimer via
interfacelSetTimer(Figure 4). Timerrepeatedly generates
calls of interfacdOnTime New Real-Time Graph Designer
performs all inherited actions required to get a snapshot
graph. To stop the drawing of snapshot graphs hdsv
Real-Time Graph Designaralls interfacd StopTimerpro-
vided by roleTimer. (For the sake of simplicity assume that
all graph snapshots are successful in this case.)

Using the sequence diagram of the third product we have
constructed the process termcorresponding to the se-
quence and we have proved that processherits process
q of the second product.

Specifying a product of a product line in the defined UML
profile we check inheritance of the specified behaviour. Our
definition of inheritance allows to check that features of the
old products are kept in the new products.

An SPL-model. Combining the interface-role diagram
of the third product with the sequence diagrams of all prod-
ucts we construct the model of the compl8tL Graph De-
signerin terms of roles, interfaces and sequence diagram
sets.

4. Interface-role SPL design and variability
modeling

In the previous section we have shown how to specify a
software product line by an interface suif&{ in the UML
profile. This approach allows us to derive new product vari-
ants, i.e. it supports the SPL variability modeling.

The definitions of[.S inheritance at the interface-role
diagram level (section 3.2.1) and at the sequence diagram
level (section 3.2.2) show the ways to derive a new product
variant from the old SPL products.

e We cancompletely inherit the behavioural pattern of
an old product. A new product inherits full function-
ality of the previous one by means of inheritance of all
roles of the old product interface suite. A new product
canextendhe functionality adding new roles interact-
ing via new interfaces. The process of the old product
is derived from the process of the new product. We
have used this mechanism to construct the second and
the third variants o6PL Graph DesigneffFigure 3, 4).

e We canpatrtially inherit the behavioural pattern of an
old product . There are several ways of correct partial
inheritance.

1. We inherit all roles and interfaces of the old prod-
uct, but we use only a subset of sequence dia-
grams of the old product

2. We inherit all roles of the old product, but we do
not use all the interfaces provided by those roles.

67

For example, we want to realize produdata
Registenf theSPL Graph DesigneData Regis-

ter can not receive data series from a user, it takes
data series only from a database. In such a case,
New Real-Time Graph Designgtherits through

its parentNew Graph Designefrom role User
only its facility to require interfacéGetGraph
InterfacelDataSerieds not inherited (Figure 5).

3. We inherit only a subset of roles of an old prod-

e 0nNeSPL-IS;

e avariant-1S collectiorwhich contains all implemented

variant-1Ss The variants of &ariant-1S collectiorcan
be used in the SPL-IS design and in the implementa-
tion of reusable components.

4.1. Interface suites and feature graphs

An SPL-ISrepresents features of an SPL. So, the feature

uct. If, for example, we have constructed product graph presented in Figure 1 can be set out in detail in Fig-
Embedded Data Registas an embedded soft- yre 6.

ware in a hardware product for automatic control
of a parameter, then we do not inherit rdJser.
New role Bip should be designed, which starts
graph drawings and, maybe, produces a 'bip’-
signal when the graph moves out of the given
boundaries.

e We cancompletely and partially inherit behavioural
patterns of several old products from one SPL and sev-
eral products from different SPL# such a case, some
roles of a newl S inherit roles from one old product,
some roles - from another, some roles - from both prod-
ucts. OurEmbedded Data Registeor example, def-
initely needs a piece of software to provide a database
with real-time data from a sensor. This software piece
belongs to another SPL. Multiple inheritance of inter-
face suites allows to combine different software prod-
uct lines to a new software product line.

<<Role>> <<Role>> <<Role>>
User Graph Maker Graph Drawer
(from Graph1) |~~~ "~"7"777"7"7, >07 (from Graph1) [~~~ > () (from Graph1)

IDraw: structure

true, fal
{true, false} (from Graph1)

(from Grapht)
<<Role>> <<Role>>
Graph Database New Graph Designer
(from Graph?) (from Graph?)
IDatabase Series
{structure, void}
(from Graph2)
o)
-=="" IsetTimer: voi
D <<Role>> <<Role>>
New Real-Time Graph Designer | - - —— -~ .>O— Timer
IStopTimer:

IStopRTGraph: .
void RN void - _.”
L

IStartRTGraph:
10nTime: void

Figure 5. Interface-role diagram for variant Data
Register

Using our approach, it is possible to collect useful func-
tionality specified during the SPL evolution in the form of
a single interface suite. Let us nameéRL interface suite,
SPL-IS for short Thus, for each software product line we
have

68

o If a feature specified as an interface suite is inherited

by all variant-1Ssof an SPL, then the featurernisanda-
tory. Mandatory features are drawn by boxes.

If there are implementedariant-ISswhich do not in-
herit a feature, then the featureaptional Optional
features are drawn by boxes with little white circles.
For example RECEIVE DATA FROM DATABASE is an
optional feature.

A depend relation on features is drawn by a dashed
line with an arrow. An example of dependency be-
tween features is shown in Figure 4. We can see that
role New Real-Time Graph Designatherits not only
role New Graph Designerbut also roleGraph Data
Source So, featureDRAW REAL-TIME GRAPH de-
pends on featurBECEIVE DATA FROM DATABASE. In

all variants, where we need to draw real-time graphs,
both features have to be presented. This constraint is
directly derived from theSPL-ISmodel - we cannot
obtain any variant with real-time drawing without in-
heritance of rolé&raphData Sourcegbecause its inter-
facelDatabase Serieacts in the sequence diagrams of
the inheritor (Figure 4).

An exclude relation on features is drawn by a dot-
ted line with arrows in both directions. To illustrate

a possible exclude relation between features, consider
two featureDRAW REAL-TIME GRAPHaNdRECEIVE
DATA FROM USER Those features exclude each other.
Receiving data fronJseris not feasible for real-time
graphs. So, we ought to exclude interfdbDataSeries

of role User for all variants of real-time drawing IS
Graph3in Figure 4).

An OR-relation on features is depicted by a black ar-
row directed from a set of features to the parent fea-
ture. An OR-specialization of features means, that
there are some products, which have all possible vari-
ant features. We can derivevariant-1Srepresenting
these features. For example, we can construct a variant
which allows drawing shapshots as well as real-time
graphs, or a variant in which data are provided by a

user or may be received from a database. So, both pairs
of features may be declared as OR-specializations of
their variation points.

e An XOR-relation on features is presented by a white

arrow directed from a set of features to the parent fea- === == Y
T . Application Engineering 1
ture. An XOR-specialization means, that two or more T — =
P . . . Ilﬂl:> Appligation Applicatibn Application DI:>
variant features must not exist in one product vari- o | | Requirements =% Desigy [implementation | Produs
. . . ! vr
ant, i.e. in a singlevariant-IS For example, our de- requirements ! 1 —

'y i

1
—
Requidements
| 1
— L3 \
T [T
T~ ‘variam_-ls‘ ;
Dor?am collection | Domaih Component

. |
Ilﬂl:> Andysis -t Desgri Development

1
Graph Designer Market, , !
domain i . .
expertise 2OmaIn Enaneenan T I\\’—‘ISModeI

cision to reduce interfacbataSeriesfor all variants

of real-time drawing converts OR-specializatiB- corE
CEIVE DATA FROM USERandRECEIVE DATA FROM ASSETS
DATABASE into XOR-specialization.

Component

A rchitect!]re <>
Repository

1
Prepare Graph legacyapp. @ m == m— == ! Zone
| Accept User | | Receive data | Draw | Draw real-time
Foes e L N il Figure 7. SPL development model and IS model

O
Receive data
from User Io!
Receive data
from Database

Figure 6. Feature tree of the product line Graph

Designer

The final feature tree for our example shown in Fig-
ure 6 has four optional features, one dependency be-

tween features, one exclude relation, one variation point [rep iricoas O . [VcHat A
with OR-specialization and one variation point with XOR- P e
1ali 1 <<ﬁg!§>\ IDs?rtﬁcStﬁrees-"IGetﬁrapr: ™ Gr;;EDV\‘/T;;er Gr;;Egsgvjer
specialization. e L o |
A TR0 I abneihs
4.2. Interface suites and the software develop- ©BDE Access & Controls| “———]
<<Role>> KXl <<Role>>
ment process Sraptata Sou | Deignar
IDatabase Ser\e‘s
{structure, void}

Let us consider how aBPL interface-role modelorre- . P o [epehi Timer
sponds to the the software product line development pro- | gy [et Vo] <ok}
cess. ISIop\f(\')':'dGraph: X '-.‘.'I;??nmer L

Figure 7 shows a standard development process of an e Ofs
SPL [8]. Our approach corresponds to this standard process, e onTime: void

but we turn the process to be top down. This way we empha-
size the significance of the SPL evolution. We have drawn
also a zone in the standard development process where we
use our interface-role models. In Figure 7 we can see placed-igure 8. Mapping of the Graph Designer IS-SPL on
of IS-model instancesvériant-1S, SPL-IS, variant -IS col- component architecture
lectiong in the development process.

A variant-1Sis used as a starting point for detailed de-
sign of a product variant. A software designer is free to
combine several roles in one component and put the same
role in several components. An implementator can use dif-

69

ferent implementation techniques if only they are wrapped product variants, choose components that should be reused,

into interface specifications. realize component relations. Inheritance of interface-role
The domain engineering process feedback provides usmodels guarantees that SPL transformations do not affect

with variant-1S collectionsthat we use during the domain the old SPL products.

analysis phase to catch commonality and variability be-

tweenvariant-1Ssin the form of aSPL-ISmodel. In the References

analysis phase some roles and interfaces ofvaaant-1Ss

may be accepted as feasible for the entire SPL and saved in[1] Bosch, J.Design&Reuse of Software Architectures - Adopt-

the SPL-ISmodel being a part of core assets. ing and Evolving a Product Line Approachddison-Wesley,
The SPL-ISmodel evolves in the domain analysis phase 2000.

and is used in the design phase. We supposéSmeod- [2] OMG, Unified Modeling Language Specifica-

eling to be a bridge between these two phases. We believe ~ ton v.1.3, ad/99-06-10 http://www.rational.com/

that the robust design can provide such a mapping of an uml/resources/documentation/index,jdpne 1999.

SPL-ISmodel to an SPL component system tbamponent [3] OMG, Unified Modeling Language Specification v,1.4

boundaries should come across required relations between http://www.omg. org/mda/specs.htm, 2001.

roles and interfacesSo, we can avoid "crosscutting roles”. [4] Fowler M., K. Scott, UML Distilled. Applying the standard
The similar situation with crosscutting features is not rare object Modeling LanguageAddison-Wesley, 1997.

in feature modeling [7]. Our confidence is based on the fact [5] M. L. Griss, J. Favaro, M. d’Alessandro, “Integrating feature
that interacting roles are abstractions of software compo- modeling with the RSEB,” irFifth International Confer-
nents and, therefore, can be mapped directly onto compo- ence on Software Reuse (Cat. N0.98TB100208 Alami-
nent architecture. tos, CA, USA, 1998, pp. 76-85, IEEE Comput. Soc.

To illustrate such a successful mapping of$ML-ISto [6] Czarnecki K. and U.W. EiseneckeiGenerative Program-
components, we have mapped our "toy” product IBfeL ming. Methods, Tools and ApplicatignsAddison-Wesley,
Graph Designeto components from the repository of Bor- 2000.
land Delphi 4 [17]. [7] J. Bosch, M. Svahnberg and J. van Gurp, “On the notion of

In Figure 8 variability in software product lines,” iSoftware Architec-

e Delphi GUI Controls, Delphi BDE Controls and Ac- ture. Working IEEEllFlP-Conferenceoc.)l, p‘_)' 45_54' _
cess, Delphi Timerare Borland Delphi repository [8] J. MacGregor, “Requirements Engineering in Industrial

sets of implementation component8DE - Borland Eroc_"“‘:t '-_i”e?'" iFr:Intgrn?tli_qnal V\F'?é'g[fco’%o” Reg“irements
Dat Enain f Imori ro.): ngineering 1or Product Lines, ssen, Germany,
atabase Engine of Imprise Corp.); 2002, pp. 5-11.
e VitChartis a third party ActiveX component of Visual [9] D’Souza D.F., A.C.Wills,Objects, Components and Frame-
Components Corp. works with UML. The CATALYSIS ApproachAddison-
. . . Wesley , 1999.
Figure 8 shows how boundaries between Delphi compo- o _ _ o
nents come thougl®sPL-ISrequired relations. In coding [10] Iélgseenskaquorkmg with objectsManning Publications,

phase we needed only some tiny pieces of "glue” code to _ _ _
materialize this relations. We used the condition on constant[11] Riehle D., Framework Design: A Role Modeling Approach.
variability realization technique [18] to implement several Ph.D. Thesis, No. 13509Zrich, Switzerland, ETH Zrich,

product line members. 2000.
[12] H.B.M. Jonkers , “Interface-Centric Architecture Descrip-
5. Conclusions tions,” In proceedings of WICSA, The Working IEEE/IFIP

Conference on Software Architectynep. 113-124, 2001.

Software product line engineering is a complex problem [13] E.E Roubtsova , L.C.M. van Gool, R. Kuiper, H.B.M.
uniting customers and domain analysts, software designers Jonkers, “A Specification Model For Interface Suites,”

and programmers. UML'01, LNCS 2185pp. 457-471, 2001.

In this paper, we have defined inheritance of interface- 14] £, Roubtsova, R. Kuiper, “Process semantics for
role models to present evolution and variability of an SPL. UML component specifications to assess inheritance,”
This approach may be useful for all professionals working Elsevier Journal, Editors Paolo Bottoni, Mark Mi-
on product lines. Customers and domain analysts can spec- nas, Electronic Notes in Theoretical Computer Science,
ify requirements in terms of roles and interfaces. Software http://www.elsevier.nl/locate/entcs/volume72.htmbl. 72,

designers and programmers can model new products via in- no. 4, 2002.

heritance of the old SPL products. On the basis of an SPL[15] Szyperski C..Component Software Beyond Object-Oriented
model, software designers and programmers can plan new Programming Addison-Wesley, New-York, 1998.

70

[16] T.Basten, W.M.P. van der Aalst, “Inheritance of behaviour,”
The Journal of Logic and Algebraic Programmingpl. 46,
pp. 47—145, 2001.

[17] Imprise Corp. Delphi Studiohttp://www.borland.com/ del-
phi.

[18] M. Svahnberg, J. van Gurp, J. Bosch, “A Taxonomy of
Variability Realization Techniques,Technical paper ISSN:
1103-1581, Blekinge Institute of Technology, Swed02.

71

Variability management with feature models

Danilo Beuche Holger Papajewski
University Magdeburg pure-systems GmbH
Universitatsplatz 2 Agnetenstr. 14
D-39106 Magdeburg D-39106 Magdeburg

danilo@ivs.cs.uni-magdeburg.de holger.papajewski@pure-systems.com

Wolfgang Schroder-Preikschat
University Erlangen
Martenstr. 1
D-91058 Erlangen
wolfgang.schroeder-preikschat@informatik.uni-erkamge

Abstract techniques which cover these aspects. Examples are)static
meta-programming [6], GenVoca [3] and many others.

Variability management in software systems requires ad- Common to all methods is that they use models to rep-
equate tool support to cope with the ever increasing com- resent the differences and commonalities between the var-
plexity of software systems. The paper presents a tool chairious resulting products or implementation fragments. The
which can be used for variability management within almost first model is a result of the domain analysis process and
all software development processes. The presented tamls usthe latter the result of the domain design and implementa-
extended feature models as the main model to describe varition process. However, in most cases tool support for the
ability and commonality, and provide user changeable cus- transition from the high-level models of the domain analy-
tomization of the software artifacts to be managed. sis process to the product line implementation is missing.
Some of the methods (e.g. FAST) propose the use of gener-
ators which accept a problem domain specific language as
input and generate the implementations according to the in-
put specification. However, even with generator-genesator
like in GenVoca this process is not easy and often too heavy-

While the development of single-system software is not weight for many software development projects.
a completely understood process yet, the need to develop |n this paper we present a set of models and related tools
sets of related software systems in parallel already existsthat can be used in conjunction with almost any product
and increases. The growing interest in concepts like soft-|ine process that uses feature models representation for
ware product lines and software families by industry and commonalities and variabilities. The goal was to develop
research groups substantiate this need. The first ideas ang complete tool supported chain of variability management
solution proposals of software families go back a long time techniques which cover all phases from domain analysis to
in terms of computer science history. Widely known are the deployment of the developed software in applications
the works of Parnas [17], Habermann [10] and Neighbors (products).
[16] from the 70s and early 80s. However, most of the work Thjs paper is structured as follows: Section 2 discusses
was done in the 90s, especially in the second half. Muchsome problems of variability management and tool support.
of this work was related to Ol’ganizational aSpeCtS, i.e. how Section 3 introduces the basic Concept Of the approach_ A
to make developers in an organization efficiently develop more detailed explanation of some aspects of this approach
software so that it can be used in several different productsis given in the fourth section. Section 5 demonstrates the
instead of just in a single one. Methods like ODM [19], extensibility of the approach using a case study. A brief in-

FAST [22] or PULSE mainly focus on this topic. The more troduction of CONSUL based tools is presented in the sixth
technical aspects of the implementation of such systems are

mostly left open in these approaches. Yet there are several 0r any model which can be transformed into a feature model

1 Introduction

72

section. Section 7 discusses some related work. The lasfransformation process level: almost every software is
section contains some concluding remarks and gives an out- transformed from higher level language(s) into an exe-
look on future work. cuting system through several steps of transformations.
For instance a C program is compiled by a compiler
into an intermediate representation (.o files) which in

2 Rationale for an open Va“ablhty manage- turn is linked against a set of libraries by the linker,

ment tool chain and is finally loaded into the memory of a particular
computer system by the operating system’s program
The definition of software variability as given in the loader. Most of the involved transformation tools can
workshop’s CfP is: be parameterized so that the resulting system changes.
l.e. the compiler has several levels of optimization,
"Software variability is the ability of a soft- which may influences the memory footprint and/or ex-
ware system or artifact to be changed, customized ecution speed of the compiled system. The transforma-
or configured for use in a particular context.” tion process is usually controlled by a tool like make

[20] or ant [2] that interprets a transformation process
This definition is very open and broad. The openness description.
is a key point. Variability management is a cross-cutting
problem, which affects almost all more complex software In most software systems, several levels of variability ex-
projects to various degrees. pressions are used together or independently. The small ex-
Variability in software systems can be found in the func- @mple shown in Figure 1 demonstrates such a mix of levels.
tional and non-functional attributes of the systems. Func- It shows a small C source file and a makefile which is used
tional variability means that the system can provide dif- to produce two different executables from the same source
ferent functionalities in different contexts. E.g. a vate code. The point of variability is the second argument of
HTML viewer component supports the configuration of the thepri ntf function. The preprocessor macro defines this
sets of HTML dialects it is able to render. Non-functional Value if the value oHW TEXT is not already set by other
variability includes system properties such as memory con-means. The makefile includes two different transformation
sumption, execution speed or QoS of system functionalities rules for the same source, the second uses a compile option
These different aspects of variability can be realized in 10 Set the value oW TEXT.
many different ways. The following list is an attempt to

categorize where and how variability is expressed: #include <stdio. h>
#i f ndef HW TEXT
Programming language level: the variability is expressed #define HWTEXT "Hello, world!”
using the programming language which is used to im- #endi f
plement the system, for instance Java, C++ or C. This int main(int argc, char* argv[])
involves language features like conditional execution, {
function parameters and constants. Some of the vari- printf("%\n", HWTEXT);
ability is resolved at compile tinfethe remaining vari- }

ability is resolved at runtime.

all: hw_en hw_ de

. ; ; hw_en: hw. c
Meta language level: a meta language is used to describe $(CO) -0 $@8<

variable aspects of the software artifacts. Examples are hw de: hw ¢

aspect oriented languages like AspectJ or AspectC++, "$(C0) -0 $@\

meta programming systems like COMPOST [1], or "-DHWTEXT=\"Hall o, Velt!\"" $<
BETA [15]. Even the C/C++ preprocessor language
is an albeit simple example but nevertheless probably
most widely known meta language for variability rep-
resentation. The binding time of variability depends
on the language concepts. In most cases the actual re-
sult of the binding is expressed in a basic (non-meta)
programming language, which is then compiled or ex-
ecuted.

Figure 1. A very simple example of variability
management with C and make

In most cases, such a mixing of levels is needed to ac-
complish the goals of the software development in terms
of efficiency, organization, reuse etc. However, tool sup-

2If the compiler is able to optimize the resulting code basegartial port for ConFm”ing these highly ComP|eX mi>_<es is very lim-
evaluation, i.e. replacement of constant expressionsthtins results etc. ited. Especially an automated coupling of high level models

73

of variability and commonalities (VC) with the “low-level”
implementations of the variability is rarely to be found.

Several important issues have to be considered when de-
veloping a tool chain to support the complete process of
variability management:

User Input

{

FeatureModel

- Feature Graph
- Constraints

Feature Selection I

Feature Set

{t

Component Selection I

e Easy, yet universal model(s) for expressing variability
and commonalities should be supported.

Component Set

Component Family Model

j

- Feature to Component Map
- Component to Parts Map
- Constraints

e Variability at all levels must be manageable. | ConpornentPanSelection |

Component Part Set

|

¢ Introduction of new variability expression techniques
should be possible and easy.

‘ Component Restructuring I

Compontent Parts Final Component Source

The CONSUL (CONfiguration SUpport Library) tool
chain presented in the next section tries to meet all these
requirements.

]

- C++ Classes
- Aspect Code
- Build Instructions
- Constraints

‘ Compilation I

Binary Components

I

3 CONSUL overview

The CONSUL tool chain has been designed for devel-))
opment and deployment of software program families. The Figure 2. Overview of CONSUL process
core of CONSUL are the different models which are used to
represent the problem domain of the family, the solution do-
main(s) and finally to specify the requirements for a specific
representative (member) of the family. The key difference between CONSUL and other simi-
The central role is played bfgature modelsvhich are lar approaches is, that CONSUL models in most cases only
used to represent the problem domain in terms of common-describewhat has to be done, but ndtow it should be
alities and variabilities. CONSUL uses an enhanced versiondone. CONSUL provides only basic mechanisms which
of feature models compared to the original feature modelscan be extend according to the needs of the CONSUL user.
as proposed in the FODA method [12]. A detailed descrip- This flexibility is achieved by combining two powerful lan-
tion of those enhancements is given in Section 3.1. guages inside CONSUL and allowing the user to extend this
The solution domain(s) (i.e. the implementations) are system.
described using th€ ONSUL Component Family Model i))
(CCFM). It allows to describe the mapping of user require- 1he first language is Prolog, a widely known language
ments onto variable component implementations, i.e. the ©r [0gic programming. Prolog is used for constraint check-
customization of a set of components for a particular con- IN; I-€. for expressing relations between different fezsu
text. As the name suggests, this model has been newly geThe same I.oglc engine is used for component selection and
veloped for CONSUL. The CCFM is presented in detail in Customization.

Section 3.2. . The second language is a XML-based language called
'_I'he featur_e setare useq at deployment time and de-_ XMLTrans which allows to describe the way customization
scribe a particular context in terms of features and assoc"(transformation) actions are to be executed. The most sim-

ated feature values. ple transformation is the verbatim inclusion of a file inte th

. I;lglgaszdlll_uigates the ba&g procfess OL CUStom'z_at'l‘IJnfinal customized source set. Even for this simple transfor-
wit - Most steps can be performed automatically \,5ii0n gifferent solutions are possible. On systems where

once the various models have been created. The developerfﬁe system links are possible, the inclusion action can be de

0{ va|:|able componfents_l havedtcl) pm\gdﬁ the fleature m_Od'scribed differently in a different way than on systems with-
els, the component family models, and the Implementations , ; e ije system capabilities. XMLTrans allows the tool

itself. A usef provides the required features, the tO.OIS ana- ;sers to describe similar and more complex transformations
lyze the various models and generate the customized coms, 4 special XML language. Due to its modular structure, it
ponent(s). can be extended with user supplied transformation modules.
3Here a user can be either human or also a tool which is ableriede 1 NiS can be used to provide seamless access to special gen-
the set of required features automatically from some input erators or other tools seamlessly from within the tool chain

74

3.1 CONSUL feature models

Feature modeling is a relatively simple approach for
modeling the capabilities of a software system introduced
by Kang et al. [12]. A feature model represents the com-
monalities and variabilities of the domain. A feature in
FODA? is defined as aend-user visible characteristic of
a system

CONSUL uses feature models because on one hand the
are easy to understand, but on the other hand are able to e
press relatively complex relations in a very compact man-
ner. To enable modeling of more complex scenarios, CON-
SUL uses a slightly enhanced version of feature models

Feature Type Graphical Rep-
resentation
mandatory

Mandatory feature B has to be in-
cluded if its parent feature A is se-
lected “

y_optional

Optional feature B may be included
if its parent feature A is selected.

compared to the original concept. The enhanced versions
allows to attach typed values to features to represent non
boolean feature informations and additional relationsule
called restrictions.

Features are organized in formfefiture modelsA fea-
ture model of a domain consists of the following items:

Feature description: each feature description in turn con-
sists of a feature definition and a rationale.

The definition explains which characteristic of the do-
main is described by the feature, so that an end-use
is able to understand what this feature is about. This
definition may be given as informal text only or in a
defined structure with predefined fields and values for
some information like the binding of the feature, i.e.
the time a feature is introduced in the system (configu-
ration time, compile time, etc.).

The rationale gives an explanation when to choose a
feature, or when not to choose it.

Feature value: each feature can have an attached
typel/value pair. This allows to describe non-boolean
features more easiB/.

Feature relations: the feature relations define valid selec-
tions of features in a domain. The main representation
of these relations is thieature diagram Such a dia-
gram is a directed acyclic graph where the nodes are

alternative

Alternative features are organized
in alternative groups Exactly one
feature of such the group B,C,D ha
to be selected if the group’s paren
feature A is selected.

or
Or features are organized ior
groups At least one feature of such
the group B,C,D has to be selecte
if the group’s parent feature A is se-
lected.

ENIENEN

Table 1. Explanation of feature diagram ele-
ments

From the characteristics of the problem, a domain ana-
lyst derives the features relevant for the problem domain.

For example for a domain which requires a variable
realization of cosine calculation functions for embedded
real-time applications, the model could contain a feature
that allows to specify the precision required for the re-
sults Pr eci si on)’, a feature that represents whether dis-

features and the connections between features indicatérete angle values are useda(ueDi stri bution), a

whether they are optional, alternative or mandatory.

feature to express that fixed calculation time is required

Table 1 gives an explanation of these terms and shows(Fi xedTi me) and so on. The complete feature model is

its representation in feature diagrafhadditional re-
lations can be attached to a feature. CONSUL provides
a flexible mechanism callestrictionsto enable the
description of arbitrary feature relations.

4Feature-oriented Domain Analysis

5Typed features with values are not part of the original featodel
proposal. However, this extension is required to describeyndomains
and has been proven to be very useful.

6The graphical notation differs from the original FODA styteallow
easier drawing/generation of feature diagrams.

shown in Figure 3. A more detailed discussion of this ex-
ample can be found in [5].

The feature model of a problem domain (in our case the
cosine world) can be used by an application engineer, and
she or he should be able to select the feature the application
requires and if necessary to specify feature values.

“The names in parentheses are the feature names used inuhieges
feature model, see figure 3.

75

Cosine of related components. The inter-component relation of
these components is not fixed. l.e. both hierarchical com-
ponent structures like the OpenComponent model [8] or
ordinary independent components can be part of a family
model. The CONSUL family description language (CFDL)
is the textual representation of the model.

The following paragraphs briefly introduce the three el-
ements of the CONSUL family model.

FixedTime Range Precision

‘ ValueDistribution

‘ Equidistant ‘ NonEquidistant

. . . Components: acomponentis a hamed entity. Each com-
Figure 3. Feature model of cosine domain ponent is hierarchically structured arts which in turn
consist ofsources

3.2 CONSUL component family model Parts: parts are named and typed entities. Each part be-

longs to exactly one component and contains any number of
sources

A part can be an element of a programming language like
a class or an object, but also any other key element of the in-

The component family model of CONSUL is not yet an-
other component model in the spirit of CORBA or COM
component models. CONSUL uses a very open definition

of components. A component encapsulates a configurable, o, onq external structure of an component, i.e. an interfac
set of functionalities. As a consequence, CONSUL Canr‘Otdescription

check interfaces of connected components itself, but allow
to introduce user-definable checks appropriate for the in-
tended framewaork/architecture. Figure 4 illustrates the h
erarchical structure of the component based family model
supported by CONSUL.

CONSUL provides a number of predefined
part types, likecl ass, obj ect ,fl ag, cl assal i as or
vari abl e. The introduction of new part types according
to the needs of the tool users is also possible.

Section 4 gives a small demonstration of this. Table 2
gives a short description of the currently available pgrety
in the current CFDL version.

Sources: a part as a logical element needs some physi-
cal representation(s) which are described by sbarces

A source element is an unnamed but typed entity. The
type is used by the transformation backends to determine
the way to generate the source code for the specified el-
ement. Different predefined types of source elements are
supported, like thé i | e which simply copies a file from
one place into the specified destination of the component’s

Figure 4. Structure of the CONSUL family source code. Some source elements are more sophisticated,

models like cl assal i as orfl agfi | e, and require generation

of new source code by the backends. Table 3 lists the cur-
rently available source element representations.

This approach is reflected in the CONSUL family de- The actual interpretation of these source elements is
scription language (CFDL) which mainly describes the in- handed over to the CONSUL component generator back-
ternal component structure of a family and its configuration ends. To enable the introduction of custom source elements
dependencies. The language is complementary to languagesnd generator rules, CONSUL allows to plug in different
like OMG’s CORBA IDL or Microsoft's COM IDL which generators. At the moment, two different generators ex-
focus on the external view of a component. The externalist. One is implemented in Prolog and operates directly on
interface of a component is merely another (possibly) con-the Prolog CONSUL knowledge database representation.
figurable part of a component for CONSUL. The second which uses a modular transformation based ap-

An small example of the language is given in Figure 5. proach.

It shows a simple component realizing the cosine example The advantage of the Prolog based approach is its speed
domain with just three different implementation files. De- and the ability to use the power of Prolog everywhere. How-
pending on the selected features one ofdbsi ne_?. cc ever, it requires a decent knowledge of Prolog to change or
is used to implement the cosine function. add source element generators. The other approach [18]

The CONSUL family model represents a family as a set uses XML to describe the transformations and allows users

76

Conponent (" Cosi ne")
{

Description("Efficient cosine inplenmentations")

Parts {
function("Cosine") {
Sources {
file("include", "cosine.h",def)
file("src", "cosine_1.cc",inpl) {
Restrictions { Prolog("not(has_feature(’FixedTine',_NT))")}}
file("src", "cosine_2.cc",inpl) {
Restrictions { Prol og("has_feature(’ FixedTinme’,_NT),
has_feature(’ NonEquidistant’, NT")}}
file("src", "cosine_3.cc",inpl) {

Restrictions { Prolog("has_feature(’ Fi xedTi me’, _NT),
has_feature(’ Equidistant’, _NT")}}
}
}

}
Restrictions { Prolog("has_feature(’ Cosine’,_NT)") }

}

Figure 5. (Simplified) component description for cosine com ponent

to integrate own special-purpose modules into the systemanations, this permits almost any customization concept to
via an easy-to-use module concept. This enables users tde used in conjunction with CONSUL.
introduce their own family specific generators without any

need to change the core CONSUL tools. 4 Closing the gap: family variation vs. family
member flexibility

Using restrictions in CFDL a key difference of the

CFDL from other component description languages is the One of the main problems of family based software de-

support for flexible rules for inclusion of components, part - signs is that there are two levels of flexibility or variation

and sources. Inclusion constraints, called restrictioas, the design. On the one hand there is the “usual” flexibility

be attached to each CFDL element. o a family member or a single application has to provide and
Each element may have any number of restrictions. At on the other hand there is the variation inside the family to

least one of them has to be true to include the element intoprovide different family members. Both levels cannot be

the system. If there is no restriction specified an elementcompletely separated in a design, often the same design can

is always included. The CFDL itself does not specify a represent both, family variation and member flexibility.

language for restriction description, it passes the r&&irn The following example will illustrate this problem and

description to an external module. Currently, there is just give an idea how CONSUL can be used to deal with it.

one language modgl which uses Prolog as description lan- a very important service of any operating system is to

guage and allows direct access to the CONSUL knowledgeprovide access to the hardware connected to the processor.

databasé o Depending on the hardware configuration and/or the needs
The code of restrictions can access the complete CON-of the software the operating system has to provide software

SUL model set (feature model, component model, featurecomponents and interfaces to different sets of devicesn Eve

set) to make a decision. This allows the customization of if there is a hard disk controller device available in a syste

components according to the specified needs of the applicaif the software does not require disk access, a disk driver

tions on a structural base. In combination with the ability 0 does not have to be included in the system.

the backend transformation to produce specialized source The example is based on a fictitious hardware which

elements based on arbitrary parameters and structural info has three different types of analog/digital converters AD

— _ o _ available. The goal is to provide a software design and im-
8Although this direct access is very powerful, it has its dvaeks, since plementation which adapts easily to different hardware con

itis very easy to make mistakes in Prolog statements, withmaking the

figurations without having to implement different versions

syntax. For most statements, an easier, more problemtedidanguage > . - g
would be sufficient. It will be included in a new release of @eDL. of the device drivers. The scalability shall be achieved by

77

Part Type Description Source element| Description

i nterface (X) represents an external compo- file represents a file which is used
nent interface X. unmodified.

cl ass (X) represents a class X with
its interface(s), attributes and flagfile represents a C++ preproces-
source code. sor flag.

obj ect (X) represents an object X. makefil e represents a makefile varj-

cl assal i as (X) | represents a type-based var|a- able.
tion point in a component. A cl assal i as represents a C++ typedef
classalias is an abstract type variable.

name which is bound to &
concrete class during config Table 3. Overview of CFDL source element

uration. representations
flag (X) represents a configuration d
cision. X is bound to a cont
crete value during configurg
tion. Depending on the phys DeviceSupport
ical representation chosen for
the flag, it can be represented l

19
1

as a makefile variable, a varj-
. ADCControl
able inside a class or even|a
preprocessor flag.
vari abl e (X) similar to a flag, but a variable
should not be used for config- ADC_1 |--| ADC_2 }--[ADC_3

uration purposes.
pr oj ect (X) represents anything whic

=y

cannot be _descnbed by the Figure 6. Partial feature model for the ADC
part types given above.
example
Table 2. Overview of CFDL part types
using the services of CONSUL. municating interfaces to users and developers, it requires

additional resources during runtime. To implement the run-
time variability, C++ as well as other object-oriented lan-
guages rely on tables associated with each object derived
from abstract base classes. Each table stores the location
of the method implementations for the common interface of
the abstract base. In C++ these tables are usually catled
tual method tablesUse of such tables consumes memory
for storing the table, and run-time since for each call to an
abstract method the corresponding table is consulted.

Figure 6 shows the relevant part of the feature model.
When ADCSupport is selected, any combination of support
for the three different ADC types can be requested. Thus
there are seven (three single, three double, one triple} com
binations of functional support for ADCs possible. In some
application it is known in advance which ADC(s) are go-
ing to be used, so compile-time binding should be possible.
But there could be applications which will bind an ADC at
load-time, and some will defer the decision until run-time
and may request access to different ADC over the time. The measurements for an abstract/concrete class pair

The drivers shall be realized within a single component.
All ADC must provide the same interface to enable switch-

ing between different ADCs. ADC ADC ADC
This setting seems to be a classical example for the use o ‘
of an abstract base class, defining the common interface and [a0cs | [aocz | [aocs] [aoca] [aocz | [aocz]

three different subclasses which are the concrete realiza-

tions of the interface. However, in many configurations, as

shown in Figure 7, the base class is not necessary since there Figure 7. Class hierarchies for 3 different
is only one class derived from it in use. While the use of members

abstract base classes is appropriate for modeling and com-

78

with just one virtual method (see Tablé)4&learly show i s_singl e(X, _NT) is true when only featurX is se-

that there is an increased memory use for the abstract clastected from its corresponding or-feature group. The last
version. Especially critical is the use of data memory. With statement ensures that if there is more than one feature se-
out virtual methods, no data memory is used. Many embed-lected from the group, the abstract base class is used.

ded microcontrollers have separate code and data memories, To solve the problem of having an abstract base class
and often the data memory is quite small (few bytes to someor not for theADC_{1, 2, 3} class, the clas#\DC_Base
kBytes) so wasting a few dozen bytes of data memory canhas two different declarations, one as abstract classhend t
be a real problem. A skilled embedded programmer would other as just an empty class definition.

avoid using virtual method whenever posstlélo achieve The description of clas8DC_1 is straightforward, it is

the same resource usage as a hand-coded solution, the varircluded in the component whenever support4RC_1 is

able implementation of drive component should avoid using requested. For the other two classes, the descriptions look

virtual methods whenever possible. alike.
It is obvious that the mechanisms for variability used in
Hierarchy | Processor Code | Data this example could be used without CONSUL. Changing a
non-virtual | x86 32 0 class hierarchy could be accomplished using a conditional
virtual x86 206 | 140 #i ncl ude resolved by the C++ preprocessor according to
non-virtual | AVR90Sxxxx | 80 0 a compiler argument which is defined in a makefile. How-
virtual AVRO0Sxxxx | 284 | 42 ever, with the CONSUL and the CFDL there is one sin-

gle place to manage the customization process. The infor-
, mation what and how to configure is not spread out over
Table 4. Memory consumption of abstract and different files in different languages. CONSUL and CFDL
non-abstract classes separate the structure of systems and components from the
source files they are implemented in.

To solve this problem thel assal i as of CONSUL
can be used. Thel assal i as part type allows descrip- Using AOP to do the trick: the extensibility of the CFDL
tion of flexible, statically changeable class relationsg-Fi through its customizable backend makes the introduction of
ure 8 shows a new class hierarchy where the external comnew high-level description elements very easy. Going back
ponent interfacé\DC can be mapped to any of tiC_? to the example given above, there has been some tricking
classes. around with the base classAbPC_{1, 2, 3}. It was neces-
sary to provide a fake (empty) base class when the abstract
base class should not be used.
- B The aspect language AspectC++ [7] allows to write as-
: ’m‘ ' . pects for the C++ language which are able to introduce new
: S base classes to arbitrary classes. The use of that feature
makes the solution for the ADC example much easier, if

’ ADCL ‘ ’ AOC2 ‘ ’ APeS ‘ the CONSUL would allow a statement to set the base class
similar to a class alias.
To make this available in the CFDL, it is necessary
Figure 8. Variable class hierarchy for ADC to define a new part source type namedsecl| ass
component which takes two arguments, the name of the intended

base class and the privilege levpr(vat e, publi c,
pr ot ect ed for C++).
~ The corresponding component description is shown in The addition of a new source element requires only the
Figure 9. The concrete class to which the alias should beaddition of a new transformation rule to the CONSUL gen-
set is determined by the foMal ue statements given in- erator backend library. When the XML based backend is
side the classalias definition. The evaluation of the secondused, this requires writing an XML transformation descrip-
argument of each statement is done top-down. The firsttion. With the Prolog backend, the same can be accom-
argument of the first statement which evaluates to true isplished with appropriate Prolog rules.
used to calculate the class name. In the example, one of Figure 10 shows the modified component description
the predefined clauses of CONSUL is used. The clauseand Figure 11 the generated aspect code.
9Compiler: gcc 2.96 for x86, gee 2.95.2 for avr, size valuebyites Using this eXtenSI.on me(.:hamsms’ CONSUL can be used
10Today, most programmers avoid this problem by not even using 'O control and combine arbitrarly complex tools to produce
object-oriented languages for embedded systems progragnmi the intended customized system. It can be even used to im-

79

Conponent (" ADCControl ")
{
Descri ption("ADC Control | er Access")
Parts {
classalias("ADC") {
Sources {
cl assaliasfile("include", "ADC. h","ADC') }
Val ue("ADC_1", Prol og("is_single(’ ADC_1',_NT)"))
Val ue("ADC_2", Prol og("is_single(’ ADC 2, _NT)"))
Val ue(" ADC_3", Prol og("is_single(’ ADC_3',_NTI)"))
Val ue(" ADC_Base", Prol og("true"))
}
cl ass("ADC _Base") {
Sour ces {
file("include", "ADC Base.h", def,"include/ ADC Base_virtual.h") {
Restrictions {
Prol og("not (sel ection_count(['ADC_1'," ADC 2',” ADC 3'],1,_NT))")

}
file("include", "ADC Base.h", def,"include/ ADC Base_enpty. h") {
Restrictions {
Prol og("sel ection_count(['ADC 1'," ADC 2',"ADC 3'],1,_NI)")
P11}
class("ADC_1") {
Sources {
file("include", "ADC_ 1. h", def)
file("src", "ADC 1.cc",inpl)
{ Restrictions { Prolog("has_feature(’ ADC_1',_NTI)") } }

}}
P}
Restrictions { Prolog("has_feature(’ ADCControl’, NTI)") }
}
Figure 9. CFDL for ADC component
aspect consul _ADC_1_ADC Base { SUL, the configuration was done by modifying/setting sev-
advi ce classes("ADC_1") . eral C++ preprocesseéidef i ne statements (about 64) and
basecl ass("public ADC Base"); . . . L.
}: also some makefile variables. Due to its application area
Pure is trimmed to use hardware resource as efficiently as

Figure 11. Aspect code generated for the possible. For every application it tries to provide exatly
CFDL basecl ass source element features an application needs, not more.

The result of the domain modeling using feature mod-
els was a model of the RE problem domain with some
250 features. The model allows apprax®® different valid
plement simple source code generators directly, as showrféature combinations. The component family model repre-
above. senting the implementation consists of 57 components.

A feature set for a typical configuration has some 20 fea-
tures. The smallest possible set contains just three fesatur
(describing the used compiler, the target cpu model and the
target hardware platform), selecting 20 classes. A typical

To evaluate the CONSUL ideas, it was necessary to Useconfiguration supporting preemptive multitasking withéim
it in a larger project. The Pure operating system family for gjices has 94 classés
deeply embedded systems [4] developed at the University sing CONSUL reduced the risk of misconfiguration,
Magdeburg, was an ideal target. because the feature model and the CFDL allows to express

The Pure operating system family consists of about 321 gependencies and these can be checked automatically. Prior
classes implemented in some 990 files. Pure runs on nine

_diﬁerem processor types_from 8 bit t_o 64 bit processors and 11g4th configurations are for a x86 PC based target platformtaed
is almost entirely written in C++. Prior to the use of CON- GNU Compiler, values for other target platforms may difftiglstly.

5 CONSUL case study: Pure

80

Conponent (" ADCControl ")

{
Descri ption("ADC Control | er Access")
Parts {

cl ass("ADC_Base") {
Sources {
file("include", "ADC Base.h", def,"include/ ADC Base_virtual.h") {
Restrictions {
Prol og("not (sel ection_count(['ADC_1'," ADC 2',” ADC 3'],1,_NT))")
P11}
class("ADC_1") {
Sources {
file("include", "ADC 1. h", def)
file("src", "ADC 1.cc",inpl)
/1 introduce new base class when not single
basecl ass(" ADC _Base", "public")
{ Restrictions { Prolog("not(is_single(’ADC_1',_NT))") } }
P}
P}
Restrictions { Prol og("has_feature(’ ADCControl’,_NT)") }
}

Figure 10. CFDL for ADC component using the baseclass() sour ce element

to the availability of CONSUL tools for Pure configuration Equi di st ant andNonEqui di st ant .
most Pure developers used only two or three well known

configurations, because finding a new working configura- e £t ter
tion was very complicated. Today, the test directory con- FRDE

. . . . =@ cosine osine
tains some 120 different base configurations. A new work- &) &5 Components T=° ot Fracrine
ing configuration is typically created in a few minutes. T Couns o
= & Parts = @ [] ValueDistribution
=@ class Cosine @] Continuous
6 CONSUL based tools - b AT ° e
i not(has_feature{ FixedTime',_MT)) @ _| NonEgquidistant.
file("src”, "cosine_z.cc", impl)
Variability management tools have to be used by two dif- e g
ferent classes of users. The first class is formed by the de- g confron dte
. . ki Feature Lis
velopers who develop variable software artifacts, theiséco i Feature Model

class by the deployers of these variable artifacts. As a com- |
plete tool chain, CONSUL supports both classes.
The modular implementation of CONSUL allows flexi-

ble combination of the required services and user intesface Figure 12. Consul@GUI
to build different tools. The current application familyreo
sists of following three different tools: Once a valid configuration has been found, the genera-

tion process can be started.

Consul@GUI The main application for developers is

COT?MC%;IJ\:S' Clz_onSL:jl@?GllJl IISI an interactive rgodde_llnr? Consul@CLI Based on CONSUL a customization tool
tood cir b U Imob els. (; a ohwsdto T:reate anf E Itjt € Iwith a command line interface has been built as well. This
models but can also be used in the deployment of the devely, | ¢ pe ysed e.g. together with make to provide auto-

°pe‘?‘ software for generating the customized goftwgre. mated customization when (re)building a software system.
Figure 12 shows a screenshot of a configuration ses-

sion. It shows the feature model for the cosine domain

with several features selected. The configuration is notConsul@Web It is also possible to make software cus-
valid, since there is still an open alternative. This isindi tomization available via web browsers. A demonstration
cated by the different background colors of the two featuresbased on a Java applet can be foundhiat p: / / wwww.

81

pur e- systemnms. com consul at/. It allows the con- opment environments like Eclipse or VisualStudio. To en-
figuration, building and downloading of Pure via an Java- hance interoperability with other tools the component fam-

enabled web browser. ily model will be mapped to an XMI representation, al-
lowing direct use inside UML tools like Rational Rose or
7 Related works ARGO/UML.

There are not many tools for language-independent,References
cross-level management of software variability available
The company BigLever with their product GEARS [14] is
one of the few. GEARS operates on the file system level to
manage variability. It allows to specify conditions for the IFIP/ACM Working Conferencevolume 2370 ofLecture
inclusion of a specific file into a resulting system. However, Notes in Computer Sciencgages 141-154, Berlin, Ger-
there is no complete domain model, but severalindependent many, June 2002. Springer.
sets of parameters are used to describe the conditions. Al-[2] Ant Project Homepage. see http://jakarta.apacheaaty/
though this might enhance the reusability, this restrises t [3] D. Batory, J. Thomas, and M. Sirkin. Reengineering a Com-
description of cross-component dependencies. F'e; App"g_&‘tion ?:igﬁl/lasféglgb%'gita Structure Compiler.

Several other approaches use feature models for domaln[4 D“_ é‘;ﬁiﬁe',”f OGuerrouat, H.FPapajewski, W. Schrder-
modeling [9, 13]. However, most of them do not use an ex- Preikschat. O. Soi k and U. Soi k. The Pure Famil

. . . . L . , O. Spinczyk, and U. Spinczyk. The Pure Family
plicit feature modeling tool which effectively limits th&s of Object-Oriented Operating Systems for Deeply Embed-
of the models. In [21] a tool is described which operates on ded Systems. IfEEE Proceedings ISORC'92999.

a feature model and is able to generate java class skeletons[5] D. Beuche, O. Spinczyk, and W. Schroder-PreikschateFi

[1] U. ABmann. Beyond Generic Component Parameters. In
J. Bishop, editor,Proc. of the Component Deployment

from feature models. grain Application Specific Customization for Embedded
The transformation process in CONSUL, which pro- Software. InProceedings of the International IFIP TC10
duces the customized implementation from component de- ~ Workshop on Distributed and Parallel Embedded Systems
scriptions has some similarities to frame-based source gen éD'P_ESP 2&923] Montreal, Canada, Aug. 2002. Kluwer Aca-
H H emic rublishers.
:'Z;Oerg gr:ngsop,:gzgcir; E/ii]tf? "thﬁ\/igle_a[sl%)]f. CTOhI\?SIST_a 'I?:le [6] K. Czarnecki and U. W. EiseneckefGenerative Program-
) T ming — Methods, Tools, and Applicationaddison-Wesley,
open model of the _CONSUL tools aIIO_/vs the integration 2000. ISBN 0-201-30977-7.
of such a generator into the transformation process, and the [7] A. Gal, W. Schroder-Preikschat, and O. Spinczyk. As-
parameterization of the generator is controlled vi theufiesat pectC++: Language Proposal and Prototype Implementa-
model and the component family model constraints. tion. INOOPSLA 2001 Workshop on Advanced Separation of
Concerns in Object-Oriented Systeriiampa, Florida, Oct.
2001.

8 Conclusions [8] A. Gal, W. Schroder-Preikschat, and O. Spinczyk. Open

Components. IrProc. of the First OOPSLA Workshop on
This paper presented an extensible tool chain for vari- Language Mechanisms for Programming Software Compo-
ability management. The main model types are an enhanced nents Tampa, Florida, Oct. 2001.
feature model and a flexible component based family model [9] M. L. Griss, J. Favaro, and M. d’Alessandro. Integratien-
which enable language independent representation of vari- ture Modeling with the RSEB. IRroc. of the 5th Interna-
ability in software systems. tional Conference on Software Reupages 76—85, Victoria,
Compared to other tools for variability management Canada, June 1998.

. . . . [10] A.N.Habermann, L. Flon, and L. Cooprider. Modularipat
CONSUL is more flexible through its extension mecha- and Hierarchy in a Family of Operating Systermmuni-

nism_s. _The use of feature models as th_e model for com- cations of the ACML19(5):266-272, 1976.

munication between the developers of variable software and[11] S. Jarzabek and H. Zhang. XML-based Method and Tool

the deployers has been proven to be an effective solution. for Handling Variant Requirements in Domain Models. In
One of the problems of CONSUL is that Prolog is not Proc. of 5th IEEE International Symposium on Requirements

very well suited as a description language for users. Its syn Engineering REO1pages 116-173, Toronto, Canada, Aug.

tax rules are to weak to detect typical typos in user defined _ 2001. IEEE Priss- « and

rules, and the Prolog language system tends too produc&?! K-Kang, S.Cohen, J. Hess, W. Nowak, and S. Peterson. Fea
. : ture Oriented Domain Analysis (FODA) Feasibility Study.

very unpredictable results in these cases. A new language

f . he basi . is in d | d Technical Report CMU/SEI-90-TR-21, Software Engineer-
or expressing the basic restrictions Is in development an ing Institute, Carnegie Mellon University, Pittsburgh, ,PA

will replace the use of “native” Prolog in many places. USA. Nov. 1990.
Among the future projects based on CONSUL are an [13] K. C. Kang, K. Lee, J. Lee, and S. Kim. Feature Oriented
integration of CONSUL technology into integrated devel- Product Lines Software Engineering Principles.Dioamain

82

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Oriented Systems Development — Practices and Perspec-
tives UK, 2002. Gordon Breach Science Publishers. to ap-

ear.
C. Krueger. Variation Management for Software Proghrct

Lines. InProc. of the 2nd International Software Product
Line Conferencevolume 2379 olLNCS pages 37-48, San

Diego, USA, Aug. 2002. ACM Press. ISBN 3-540-43985-4.
M. Lofgren, J. L. Knudsen, B. Magnusson, and O. L. Mad-

sen.Object-Oriented Environments - The Mjolner Approach

Prentice-Hall, 1994.
J. M. Neighbors. The Draco Approach to ConstructingtSof

ware from Reusable ComponentdEEE Transactions on

Software Engineerindl0(5):564-573, Sept. 1984.
D. L. Parnas. On the Design and Development of Program

Families. IEEE Transactions on Software Engineerii8E-
5(2):1-9, 1976.

S. Roemke. XML-Based Modular Transformation Sys-
tem. Master's thesis, Computer Science Faculty, Universit

Magdeburg, Magdeburg, Germany, 2002. In German.
M. Simos, D. Creps, C. Klinger, L. Levine, and D. Allentan

STARS Organizational Domain Modeling (ODM) Version
2.0. Technical report, Lockheed Martin Tactical Defense

Systems, Manassas, VA, USA, 1996.
R. Stallman and R. McGrathGNU Make Documentation

Version 0.51 for make Version 3.75 Beliéay 1996.
A. van Deursen and P. Klint. Domain-Specific Language De

sigh Requires Feature Descriptiondournal of Computing

and Information Technologyages 1-17, 2002.
D. M. Weiss and C. T. R. LaiSoftware Product-Line Engi-

neering: A Family-Based Software Development Approach
Addison-Wesley, 1999. ISBN 0-201-69438-7.

83

Towards Managing Variability using Software Product Family Architecture Models

and Product Configurators'

Timo Asikainen, Timo Soininen, Tomi Méannisto
Helsinki University of Technology, Software Business and Engineering Institute (SoberIT)
PL 9600, FIN-02015 HUT
{timo.asikainen, timo.soininen, tomi.mannisto}(@hut.fi

Abstract

In this paper, we study the possibility of applying con-
figurator tools developed for configuring mechanical and
electronics products to representing and managing the
variation points in a software product family. We compare
at the conceptual level software architecture description
languages and configuration modelling. Based on the
analysis we are able to define a way of representing much
of the architectural knowledge using the configuration
modelling concepts. Thus, it seems feasible to provide
software configuration support using configurators if the
software is represented through architectural descriptions.
However, there are also some differences that require ex-
tending the current conceptualisations of configuration
knowledge and tools to capture software products ade-
quately.

1. Introduction

Software product families (or lines) have been proposed
as a means for increasing the efficiency of software devel-
opment and controlling complexity and variability of
software products. They have become increasingly impor-
tant in the software industry [1,2]. A sofiware product
family can be roughly defined to consist of a common
architecture, a set of reusable assets used in systematically
producing, i.e. deploying, products belonging to the fam-
ily, and the set of products thus produced.

In this paper we pursue one approach to modelling and
managing the variability of software product families,
based on viewing them as configurable software product
families. A configurable product is such that each product
individual is adapted to the requirements of a particular
customer order on the basis of a predefined configuration
model [3]. Such a model explicitly and declaratively de-
scribes the set of legal product variants by defining the
components out of which it can be constructed and their
dependencies on each other. A specification of a product
individual, i.e., a configuration, is produced based on the
configuration model and particular customer requirements
in a configuration task. Efficient knowledge based systems
for configuration tasks, product configurators, have re-
cently become an important application of artificial intelli-

gence techniques for companies selling products adapted
to customer needs [4,5]. Stated roughly, a configurator
supports the deployment process by preventing combina-
tions of incompatible components, by making sure that all
the necessary components are included, and by deducing
the consequences of already made selections of compo-
nents based on the dependencies in a configuration model.
They are also capable of automatically generating an entire
correct configuration based on requirements posed by a
user. The tools are based on declarative, unambiguous
modelling methods and sound inference algorithms for
these. Thus, only the configuration model needs to be cre-
ated to support a new product family. There are also sev-
eral reports on successful use of product configurators in
practice [6,7,8].

The most systematic software product families closely
resemble configurable products in that they are composed
of standard re-usable assets and have a predefined archi-
tecture [1]. Our approach is based on the assumption that,
although customer-specific programming may be required,
a significant portion of the assets can be developed and
systematically modelled in advance of their deployment.

A major effort has been spent on developing architec-
ture description languages (ADLs) that can be used for
representing these re-usable assets and software architec-
tures. Thus, product families and ADLs seem natural coun-
terparts in the software domain for configurable products
and configuration modelling languages. There are many
ADLs and large differences between them [9,10].

We study the possibility of applying methods and tools
developed for modelling and configuring mechanical and
electronics products to configuring software. A prerequi-
site for coming up with a general solution to this problem
is to define a mapping from the conceptualisation of soft-
ware systems to a conceptualisation of configuration
knowledge. Towards this end, we analyse three prominent
ADLs at the conceptual level and compare them with the
major concepts used for modelling configuration knowl-
edge. Based on the analysis and comparison, we show how
to represent main concepts of ADLs using the configura-
tion modelling concepts. In addition, we identify several

! This is an extended and revised version of a paper presented in the Configuration workshop of the 15 European Conference on Artificial Intelligence

(ECAI 2002).

84

potential needs for extending the configuration modelling
concepts with ADL derived concepts.

For the purposes of this paper we concentrate on three
important ADLs: Acme [11,12,13], Wright [14,15] and
Koala [16,17,18]. Out of these, Acme has been designed to
include features of other ADLs that its designers consid-
ered central. The relevance of Acme is further promoted
by the fact that one of the goals of Acme is to serve as an
interchange language for other ADLs. Wright is a widely
cited ADL that has a rigorous semantics and describes
behavioural aspects of software. Both the use of formal
methods and description of behaviour make Wright impor-
tant among ADLs. Koala is not precisely an ADL, but it is
in commercial use at Philips Consumer Electronics for
documenting products in a product population. Therefore,
being one of the few ADLs in industrial use, Koala is an
important example of the practical aspects of ADLs.

As the reference point in the comparison, we employ a
configuration ontology presented by Soininen et al. [19].
This ontology synthesises prior conceptualisations of con-
figuration knowledge [6,7,8,20]. Moreover, it is very simi-
lar to another recognised configuration ontology presented
by Felfernig et al. [21]. Thus, as it seems to cover most
approaches to configuration modelling, it is a natural ref-
erence point for conceptual level analysis.

The remainder of this paper is organised as follows: An
overview of the central concepts in product configuration
and the modelling concepts in the configuration ontology
is given in Section 2. An overview of software architecture
and ADLs is provided in Section 3. Section 4 introduces
our framework for analysing and comparing ADLs along
with the most important characteristics of three ADLs. In
Section 5, a comparison between the ADLs and the con-
cepts of the configuration ontology is presented. A map-
ping from the most important concepts of ADLs to the
concepts of the configuration ontology is given in Section
6 and potentially needed extensions of the ontology are
discussed in Section 7. We discuss our findings and previ-
ous work in Section 8 and finally give our conclusions and
topics for further research in Section 9.

2. Product configuration

In this section, we first define the fundamental concepts
of product configuration. Thereafter, we introduce a con-
figuration ontology, i.e., a conceptualisation for modeling
configuration knowledge, which conceptualises these con-
cepts.

2.1. Fundamental concepts

We define a product as an abstract specification of an
entity that a company sells. A product instance is a product
that is to be delivered to a customer or a design of a prod-
uct, which is concrete enough to serve as a specification
for producing it. [22]

In the domain of configurable mechanical and electron-
ics products, a configurable product (or a product family)
is defined as a product that comprises a large number of
variants and serves the specific needs of the individual

customer by allowing customer-specific adaptation of the
product.

Configurable products are specified through configura-
tion models, which define the basic product properties and
the possibilities for tailoring them. Product instances, in
turn, are specified through configurations, which result
from completing the configuration task. Information sys-
tems are used to support the configuration task; such in-
formation systems are called configurators. As mentioned
in the introduction, configurators can provide a wide range
of functionality, including, e.g., making deductions based
on choices a user has already made, and preventing in-
compatible combinations of components.

During the configuration task, user requirements are
used to constrain the set of possible configurations repre-
sented by the configuration model until there is only one
correct (with respect to the configuration model) configu-
ration that satisfies the user requirements left.

Putting pieces together, configurable products form an
approach to satisfying variable customer needs. The ap-
proach involves two separate processes: first, a product
(family) is defined through a configuration model; second,
configurations of the product matching specific needs of a
customer are formed. Product configurators can support
both of the processes. What is essential is that the effort
required to create a configuration of the product is moder-
ate compared to designing a product from scratch.

2.2. Configuration Ontology

Next, we will give a short overview of a de facto stan-
dard configuration ontology used for modelling configur-
able products. For full details, the reader should refer to
[19].

The configuration model consists of a set of types.
More specifically, a configuration model consists of: a set
of component types, a set of port types, a set of resource
types, a set of function types - all the above-mentioned
sets of types are organised in is-a hierarchies, and all types
can be given attributes that present relevant information
about the types. Additionally, component and function
types are organised in composition hierarchy. Finally, a
configuration model includes a set of constraints. A con-
figuration is defined as a set of instances of the types.
These instances are called individuals.

Component types represent distinguishable wholes in
products.

Example. Figure 1 (a) depicts a simple configuration
model of a computer, and will be used as a running exam-
ple to illustrate the concepts of the ontology. Figure 1 (b)
contains the legend of the notation used. The notation is no
standard notation, but UML extended with some additional
symbols. Type names are typeset using Arial, and instance
names using Courier. In the figure, there are a number
of component types: Home PC, Office PC, PC etc. Further,
there are a number of is-a relationships between the com-
ponent types: Home PC is-a PC, SW1 is-a Software etc. m

2.2.1. Structure. The structural composition of component
types is modelled by means of part definitions. Each part

85

Home PC

ide1

ide2

Office PC sw hd
0..20 1.2
hsm Software Disc space ided IDE disc
2GB
0.1 2GB | |
SW1 | | SW2 | Hard disk | | cD |
Headset
microphone
600 MB
| Hp1 | | HD2 |

10 GB
|

(a)

Component type Resource type <f———————— Isa

pname

@ ————— Partof Il rrame

(b)

Port

amount
Resource production/

consumption

Figure 1 (a) A simple configuration model (b) Legend of the notation used

definition includes a part name, a set of possible part
types, and a cardinality. The set of possible part types
consists of the component types the individuals of which
can occur as a part of the type containing the part defini-
tion (whole type). Further, cardinality specifies the amount
of individuals that must occur as part of the whole type.

Example. Component types PC and Office PC include
parts: the former has two parts, sw of type Software, and
hd of type IDE disc; the latter has part hsm with cardinal-
ity of 0..1, which implies that the part is optional. In com-
mon terms, this means that an Office PC may, but is not
required, to include a headset microphone, whereas a
Home PC never includes one. m

Alternative parts can be specified by defining multiple
possible part types.

2.2.2. Topology. Connections between component indi-
viduals, i.e., the topology of a configuration, can be mod-
elled by supplying component types with port definitions.
In common terms, ports define the connection points, i.e.,
interfaces, components have. A port definition includes a
port name, a set of possible port types, and a cardinality.
The semantics of a connection are that there is a physi-
cal or logical connection between the two port individuals
and the two component individuals containing them.
Example. In Figure 1 (a), there are three ports: compo-
nent type PC defines ports idel and ide2, and compo-
nent type IDE disc defines port ided. m
2.2.3. Resources. Resources are used in the ontology to
model the production and use of entities, or the flow of
such entities from one component individual to another.
Resource type defines the properties of a resource. A re-
source type defines whether the resource production or use

must be satisfied or balanced. 1f the production or use is to
be balanced, the production must exactly match the use; in
the case they must be satisfied it is enough that production
is greater than or equal to use.

The production and use of resources is specified by
production definitions and use definitions in component
types. These definitions specify the resource types and
quantities produced or used.

Example. There is a single resource type, namely Disc
space in our sample model. This resource type is con-
sumed by individuals of component types SW1 and SW2,
and produced by individuals of HD1 and HD2. =

2.2.4. Functions. All the above-presented properties of
configuration models are related to technical aspects of
products. However, in many cases it is necessary to com-
municate more abstract characterisations of the features or
functionality of configurable products to salespersons and
customers.

The configuration ontology includes functions as a
means for communicating non-technical information. A
function type is an abstract characterisation of the product.
As an example, the configuration model of Figure 1 could
be supplemented with the function type MusicCD with the
semantics of being able to play music from CDs.

To be of any use, the function concept must be some-
how related to the technical concepts. This is achieved
through special constraints (see section 2.2.5 below), im-
plementation constraints. They specify that a certain func-
tion be implemented by one or more technical concepts,
e.g., component or port individuals. Returning to the ex-
ample, MusicCD type could be implemented by individuals

86

of component types CD and Speaker (not in the model)
together.

Similarly as for component types, function types can be
defined a compositional structure through part definitions,
with the natural exception that the possible part types must
be function types.

2.2.5. Constraints. Constraints can be used to capture
aspects of products that cannot be reasonably modelled
using the concepts presented above. A constraint is a for-
mal, mathematical or logical, rule specifying a condition
that must hold in a correct configuration. They can be used
to specify arbitrarily complex interactions of types, indi-
viduals, and their properties. Typical conditions used in
constraints include require and incompatible: the seman-
tics of the afore-mentioned are that a certain component
individual in a configuration implies that another compo-
nent individual must (require) or must not (incompatible)
be in the configuration.

3. Software architectures and architecture
description languages

Software architecture of a system purports to describe
the high-level structure of a software system. The signifi-
cance of considering architecture when designing software
systems is well understood. There is, however, no single,
generally accepted method for describing software archi-
tecture: UML is a good candidate for such a method, but
as noted e.g. in [23], it is by no means an optimal tool for
documenting all aspects of architecture. Simple methods,
such as referring to an existing architectural style or using
box-and-line diagrams with no or vague semantics, have
been recognised to be inadequate for the task [24]. Hence,
there is a need for better methods.

Architecture description languages (ADLs) are a prom-
ising candidate solution for the architecture description
problem. Loosely defined, ADLs are formal notations with
well-defined semantics, whose primary purpose is to rep-
resent the architecture of software systems. A large number
of ADLs have been proposed. ADLs have in common the
concept of component, although different ADLs have dif-
ferent names for the same concept [10]. But in their other
characteristics, ADLs differ from each other radically.
Some of them address a special application domain and
others are dedicated to a specific architectural style [10].
ADLs also employ different formalisms for specifying
semantics, and there is variety in how rigorously the syn-
tax and semantics are defined.

The most fundamental elements of architectural de-
scriptions include components, connectors and their con-
figurations [10,11,24].

Components represent the main computational elements
and data stores of the system. Intuitively, they correspond
to the boxes in the box-and-line diagrams. Clients, servers
and filters are examples of components. In a working sys-
tem, a component might manifest itself as an executable
file or a dynamic link library. [11]

Unlike components, connectors are not loci of applica-
tion specific computation in software systems. Instead,

they represent interactions between components. In a box-
and-line diagram, connectors are depicted as lines between
the boxes. Examples of connectors include method invoca-
tion, pipes and event broadcast. [11]

Components can be connected to each other to form
configurations. They are sometimes referred to as systems
[11] or architectural configurations [10]. In many ADLs,
components can only be connected through connectors;
explicit use of connectors has even been proposed a defin-
ing characteristic of an ADL [10]. Typically, components
are connected to each other through connection points.
Different ADLs call these connection points with different
names, e.g. port, role or interface.

In some ADLs, components can also have an inner
structure. Such components are called compound compo-
nents and they represent a subsystem that has an architec-
ture of its own. With composite components it is important
to be able to specify how the inner parts of the component
are linked to the component itself. Usually, the linkage is
defined by binding connection points of the compound
component with connection points of its parts. Intuitively,
binding means that the connection point of the compound
component is in fact a connection point of some other
component inside the compound component.

A practical concern with ADLs is the tool support
available for them. Tool support is out of the scope of this
paper, since the goal is to analyse the modelling languages.
However, it should be noted that support for generating
executable systems out of architectural descriptions is one
of the goals of research on ADLs [10]. This is a goal
shared by research on configuration modelling.

4. Analysis of three architecture description
languages

In this section, we first define a framework for analys-
ing and comparing the concepts of ADLs with those of
configuration. Thereafter, we use the framework to study
three ADLs: Acme [11,12,13], Wright [14,15] and Koala
[16,17,18]. A more detailed analysis can be found in [25].

4.1. Framework for analysis and comparison

The fundamental phenomena described by the configu-
ration ontology and that presented in [21] are: taxonomies,
structure, topology, resources, functions, and constraints.

In the following three subsections, we will analyse the
above-mentioned ADLs using a comparison framework
composed of three parts. The first part includes the key
concepts of ADLs and the configuration ontology, and the
relations between them. The concepts include components,
connectors, configurations, connection points, attributes,
resources, functions, and constraints. The relations include
topology, taxonomy, and structure. The second part con-
siders the existence of different concepts for types and
instances. The last part of the framework is the variation
mechanisms provided by ADLs and the configuration
ontology.

87

4.2. Acme

The basic concepts of Acme are components, connec-
tors, and systems. System is the Acme term for configura-
tion. On the other hand, there are no constructs for
resources or functions in Acme. Both components and
connectors have connection points that are called ports for
components and roles for connectors. Design elements
include component, connector, port, and role. Components
are connected to connectors by defining an attachment
between the port of a component and the role of a connec-
tor. One connector may connect multiple components.
Components cannot be connected directly to each other
and neither can a connector to another connector. [11]

Components and connectors can have attributes that are
called properties in Acme. Properties are uninterpreted
values, i.e. they do not have any semantics defined.

In Acme, design constraints can be defined using first
order predicate logic. They can be either invariant or heu-
ristic: invariant constraints must hold, whereas heuristic
constraints are merely hints of what should be true for an
Acme system. Constraints can be used to express various
aspects of Acme systems: e.g. the existence and values of
properties and the connections present in a system. [12]

In addition, Acme includes a structure called represen-
tations that can be used for describing an alternative view
of a component or a connector. Rep-maps, or in other
words, representation maps, can be used to specify the
correspondences between different representations of a
design element. There is, however, no semantics defined
for either representations or rep-maps. One possible use of
these constructs is representing the compositional structure
of a component and the correspondences between the ports
and roles of the compound component and those of the
contained components. [11].

Although types are not first class entities in Acme, it
has two type systems: one for design element types and,
and another for systems. Types in the design element type
system are sets of required structure, i.e. design element
declarations, and values. New types can be formed from
existing types through subtyping. System types are called
Sfamilies. A family consists of design element type defini-
tions. Subtypes of families can be formed through single
or multiple inheritance. Also, a system can be declared to
be a member of many family types. [13]

What makes types a secondary concept in Acme is that
design elements and systems need not have a type or be a
member of a family, respectively. A design element being
of a given type merely implies that the design element has
the structure and values specified by that type. Similarly
with families, a system being a member of a family signals
that the type definitions of the family are type definitions
of the system, too. Therefore, type systems of Acme can be
considered a sort of macro expansion mechanism.

The syntax and semantics of Acme are formally de-
fined, the latter in terms of a mapping to first order predi-
cate logic.

There seem to be no constructs in Acme for modelling
variety. What seems to come closest to modelling variabil-
ity is the family construct. It can be used to specify a set of

type definitions shared by a set of systems. Furthermore,
constraints can be used to enforce the instantiation of cer-
tain design elements. Hence, the family definitions com-
plemented with constraints seem to provide a mechanism
for specifying product families with certain properties.

4.3. Wright

As in Acme, there are components, connectors, systems,
ports, roles and attachments in Wright and their semantics
are the same in both languages. There are no attributes,
resources or functions. What distinguishes Wright from
Acme and makes it special among ADLs is its way of
specifying the behaviour of ports, roles, connectors and
components, and the possibilities for analysis based on
these specifications. Wright uses CSP (Communication
Sequential Processes) [26], a formal approach for two
purposes: (1) specifying processes that reside in Wright
elements and (2) defining semantics of non-CSP parts of
the language. CSP is a formal method for specifying and
analysing the behaviour of objects in terms of sequences
of events in which they engage. The pattern of events that
is possible for an object is termed a process. [14,15]

Each port and role is associated with a CSP process. In
addition, each connector and component includes a sepa-
rate glue and computation process, respectively. The glue
of a connector defines the operation of the connector as an
entity. That is, the glue coordinates the operations of the
other processes in the connector. Ports are attached to roles
to form systems. Which ports can be attached to which
roles, is determined by their process descriptions: a port
can be attached to a role if the port will behave well in all
situations enabled by the role, i.e., CSP defines a compati-
bility relation between ports and roles.

The second usage of CSP in Wright, defining semantics
of non-CSP parts of the language, allows using tools oper-
ating on CSP to reason about properties, most notably
about dead-lock freedom, of a Wright connector. This is an
important class of tool support enabled by the rigorously
defined semantics of Wright.

Wright allows describing hierarchical structure of both
components and connectors. This is done by enclosing a
system into the place of a process. In addition to the nor-
mal system specification, bindings between the port and
role names in the enclosing element and those specified in
the enclosed system need to be specified.

Wright distinguishes between component and connector
types and instances. Each connector and component is of
exactly one type. There is, however, no taxonomy of types.

In addition to component and connector types, Wright
includes a construct called style. Styles are collections of
type definitions and constraints. They are expressed in
first order predicate logic and they can be used in a man-
ner similar to that in Acme described above. In addition to
component and connector type definitions, a style can
include interface type definitions. They are process de-
scriptions that can be used in port and role definitions.

Type definitions in styles can be parameterised. That is,
parts of the type definition can be left open and a value can
be filled in when the type is instantiated. New styles can

88

be defined in terms of existing ones through subtyping: the
new style has the same type definitions and constraints as
the old one plus some additional type definition or con-
straints.

Variation mechanisms of Wright are similarly limited as
for Acme, although Acme uses the term family where
Wright uses style. In short, styles supplemented with con-
straints seem to be able to express variability.

4.4. Koala

As the languages described above, the Koala model has
components as a main design element. But in other re-
spects, Koala differs greatly from its peers. In Koala, there
is no notion of connectors, resources, functions or con-
straints. Components are connected, or bound, as it is said
in Koala, to each other through interfaces that are the con-
nection points in Koala. The connection between compo-
nents is not symmetric: a distinction is made between
provided and required interfaces. Loosely defined, a com-
ponent having a provided interface means that the compo-
nent offers some service for other components to use.
Similarly, a required interface signals a service being re-
quired by the component from some other component.
Koala interfaces are similar to those in COM or Java.

Compound components can be used to express compo-
sitional structure in Koala, i.e. other components can be
contained within a component. An interface of a com-
pound component can be bound to an interface defined by
a contained component. A configuration is defined as a
component that is not contained in another component and
defines no interfaces.

In addition to binding interfaces to each other, it is pos-
sible to bind constituent parts of interfaces directly. These
parts are called functions. Hence, interfaces in Koala are
not atomic even when considered as connection points.

There are some limitations on how interfaces can be
connected to each other: These limitations are best illus-
trated with the aid of Figure 2. In the figure, components
are depicted as boxes and interfaces as squares containing
triangles inside them. A required interface is depicted as a
triangle pointing outwards from the component, and a
provided interface with a triangle pointing inwards. The
binding rules are that must be bound by its tip to exactly
one base of an interface, and any number of interfaces can
be bound to the base of an interface. Notice that these rules
cover both bindings between interfaces in contained com-
ponents and interfaces in independent component, i.e.,
components such that neither is contained within another.

Another rule concerning the bindings is that the type of
the tip interface must be a supertype of the type of the base
interface: interface type A is a supertype of B exactly when
B contains all the functions of A.

Koala has a type system: a distinction is made between
both interface and component types and instances. There
is, however, no taxonomy of component or interface types
beyond the supertype relation mentioned above.

Koala includes a construct, module, which is a compo-
nent without an interface of its own. Modules are used
inside compound components for gluing interfaces. Sup-

b

Figure 2 Koala components and interfaces

pose, for example, that each component contained in a
compound component has an initialisation interface to be
called before using the component. Due to binding rules, it
would not be possible to bind all these interfaces to any
single interface of the compound component. Therefore, a
new configuration specific module is added: when the
initialisation function for the compound component is
called, the call is routed to the module, which in turn calls
the initialisation functions of all necessary components in
the order desired.

In addition to the constructs already mentioned, Koala
provides mechanisms for handling both the internal diver-
sity of components and the structural diversity in a con-
figuration. Internal variety is manifested as variation of
component parameters. There may be dependencies be-
tween parameters: a parameter value may imply that an-
other parameter has a certain value. Structural diversity
pertains to alternative provided interfaces for a required
interface: e.g. there may be multiple components that pro-
vide the same interface required by a certain component.
The choice between the interfaces is made by a construct
called switch either statically, that is at compile time, if the
information required for the selection is available, or, oth-
erwise, dynamically at runtime.

5. Comparison of concepts of the adls with
the configuration ontology

In this section, we use our framework defined in the
previous section for comparing the concepts and con-
structs found in the ADLs with those of the configuration
ontology.

5.1. Key concepts and relations between them

Component is the central concept of Acme, Wright and
Koala. It is also present in the configuration ontology with
that same name. The semantics are as well similar: com-
ponents represent the defining parts of a system in con-
figuration modelling, too. In addition, systems as defined
in Acme and Wright and configurations as defined in Ko-
ala have a counterpart in the configuration ontology,
namely configuration.

The notion of connection points is also common to all
the studied modelling methods. In Acme and Wright they
are called ports and roles in components and connectors,
respectively. In Koala connection points are termed inter-
faces and in the ontology ports. The semantics of connec-
tion points are also similar in all the disciplines: they
denote the mechanism for connecting other entities.

Connectors are first-class citizens in Acme and Wright.,
but there are no connectors in the configuration ontology.
In Koala, modules can be considered as a form of connec-
tors. Thus, there is a major difference in how the disci-

89

plines handle architectural connection — an important issue
in both ADLs and in the configuration ontology.

What then is the reason for this disagreement in archi-
tectural connection? We believe that at least a partial rea-
son for the importance of connectors in Acme and Wright
can be found in the underlying assumptions of them and
several of the ADLs not studied in this paper: a major
issue in software architecture has been reusing existing
components. Furthermore, there has been considerable
effort in the software engineering community to reuse
heterogeneous components, which cannot be connected
directly to each other due to different communication
mechanisms and various other reasons. Therefore, connec-
tors have been introduced in ADLs as a vehicle for con-
necting heterogeneous components.

In Koala, the situation is rather different: components
are generally rather homogenous, and it seems that there is
no need to require that connectors be used whenever con-
necting components: modules are used as needed. Hence,
in this respect, Koala is closer to the configuration ontol-
ogy than Wright and Koala.

Resources, a feature present in the configuration ontol-
ogy but not in any of the ADLs, is similar to the notion of
provided and required interfaces present in Koala in the
sense that they are both anti-symmetric. What is more,
resources are produced and consumed by components, just
as interfaces are provided and required. However, re-
sources are produced and consumed in certain quantities,
which gives them more expressive power compared with
the notion of provided and required interfaces.

In addition to simulating provided and required inter-
faces, resources can be used to model other relevant quan-
tities. Such quantities include memory, power, output
capacity and throughput. The software engineering com-
munity has considered similar issues important [27].
Hence, resources could very well be an important feature
of the configuration ontology when used to model soft-
ware architecture.

Modelling functions is another feature of the configura-
tion ontology that all three ADLs presented in this paper
lack. Functions are an important aspect of software engi-
neering usually termed features in the domain [28]. We
believe that also functions could be very useful when
modelling software with the ontology.

All the ADLs have some mechanisms for modelling
structure. However, the configuration ontology provides
much stronger mechanisms: the configuration ontology
provides a wide range of variation mechanisms. Further-
more, in the configuration ontology a component can be a
part of many components simultaneously, which is not
possible in any of the ADLs.

All the disciplines except Koala have explicit mecha-
nisms for expressing constraints. Further, in all disciplines
where constraints exist, they are logical expressions about
the non-behavioural properties of a system modelled in
that discipline. A difference is that in the configuration
ontology, there is no direct support for heuristic constraints
as defined in Acme. Support for modelling preferences and
optimisation criteria have been identified as important and
developed in other research on configuration.

5.2. Distinction between types and instances

All the three ADLs have some distinction between
types and instances. In Acme, the distinction is rather
weak, as the type systems can be seen as a simple macro
expansion mechanism. Nevertheless, there is taxonomy
between the Acme types. The situation is rather similar in
Wright: types bear a little meaning as such. The only func-
tion of types seems to be facilitating in defining and alter-
ing recurring patterns. In Koala, the supertype relation
constraints bindings between interfaces. This relation is
not, however, declared explicitly, but implicitly based on
interface types. The component types seem to have no
function beyond defining the structure of a set of compo-
nents. Hence, component types seem to be as a construct
as weak as types in Acme and Wright.

In the configuration ontology, strong distinction be-
tween types and instances is one of the basic assumptions
and is made for all kinds of entities. Types are organised in
taxonomies.

5.3. Variation mechanisms

A question closely related with the distinction of types
and instances is: What is being modelled, one product or a
product family. The configuration ontology aims at model-
ling product families. Configuration model knowledge
defines the common properties of the family members. A
lot of variation mechanisms are provided.

As stated in the analysis of Acme and Wright, both of
these languages can be seen to provide some support for
modelling variability: there are no explicit variation
mechanisms, but the combination of system types and
constraints seem to be able to express common structure
shared by a set of products.

In Koala, there is some knowledge about the common
properties of all the products: component and interfaces
definitions are stored in a component repository and they
are common to different systems to be constructed [17]. In
fact, type definitions shared by a set of products is exactly
the same phenomenon be have already seen in family con-
struct Acme and in the style construct in Wright. As there
are no constraints to complement the shared type defini-
tion in Koala, the support provided by Koala for variability
is weaker than that Acme and Wright.

In the previous section, it was stated that Koala could
model both internal and structural variety. How does this
statement relate to the above observation that Koala pro-
vides a weaker support for variability than Acme and
Wright? We claim that we are dealing with two distinct
forms of variability. The variability in Acme and Wright
can be used to span a set of products with many similari-
ties, or a product family. On the other hand, the variation
mechanisms in Koala seem to model behavioural variety
of software embedded in a physical product instance: e.g.
a television set can behave differently depending on some
parameters. Of course, it could be argued that the televi-
sion set in our example is, in fact, a product family. How-
ever, we consider the variation mechanisms discussed
above examples of different phenomena.

90

6. Modelling software architecture with the
configuration ontology

In this section, we strive to synthesise the configuration
ontology with the domain of software architecture. We do
this by mapping the concepts in the ADLs to some concept
or concepts in the configuration ontology. Components,
ports, properties, and constraints are represented in the
obvious manner using their direct counterparts, whereas
the representation of connectors and roles is more prob-
lematic. Hence, we will present a mapping of connectors
to components, and provided and required interfaces to
ports with the aid of type specifications.

Due to limited space, we will only present the main
ideas of the mapping. For full details, please refer to [25].

6.1. Modelling connectors as a type of component

In translating the semantics of connectors in Acme and
Wright into concepts in the configuration ontology, it helps
to observe that components and connectors have structures
very similar to each other. Therefore, it is natural to view
connector as a subtype of component with special seman-
tic constraints. Indeed, defining connector to be a subtype
of component will enable us to express part of the seman-
tics associated with connectors. Furthermore, we can de-
fine roles in connectors to be ports in the connector-type
components. To enforce the right use of connectors, we
define suitable constraints that enforce the right use of
connectors: e.g. in Wright, the only class of allowed con-
nections is that between a component and a connector.

Subtyping can also be used for distinguishing provided
and required interfaces from one other. By defining com-
mon supertypes for provided and required interfaces it is
possible through multiple inheritance to have two versions
of each port type, a provided and a required. By using
constraints it is possible to assert that invariants concern-
ing provided and required interface types hold. For in-
stance, the fact that in Koala a required interface must be
connected to exactly one provided interface of the same
interface type can be easily captured using constraints.

6.2. Capturing diversity

Internal diversity of Koala can be captured with attrib-
utes defined by components and constraints. Dependencies
between different parameters can be captured using con-
straints between attribute values of component types.

In the configuration ontology, cardinality of a port de-
fines the amount of ports that can be connected to it. Car-
dinality can be used to capture some aspects of structural
diversity in Koala. By defining cardinality greater than one
for a port representing a required interface, multiple pro-
vided interfaces represented as ports could be connected to
that port. This is only a partial solution as it says nothing
about deciding which ports should actually be connected;
constraints can be used to model this.

7. Extensions needed for modelling software
architecture

Albeit the ontology captures a major part of aspects of
all the studied ADLs, each of them has some features the
modelling of which would require extending the ontology.

Capturing all of the idea behind heuristic constraints
of Acme may require adding some method of representing
optimisation criteria and preferences in the ontology.

There is no mechanism in the configuration ontology
for modelling behaviour similar to the way how CSP is
used in Wright. In fact, the configuration ontology ignores
behavioural aspects entirely. In case considering behaviour
should be required in the configuration ontology, it would
be natural to extend the constraint language to cover be-
havioural aspects, as the constraint language can be seen
as the extension mechanism of the ontology.

Koala includes the method of function binding, in
which the constituent functions of interfaces are connected
directly to each other instead of connecting interfaces [17].
This construct gives an internal structure to Koala inter-
faces. Given that interfaces of Koala are modelled with
ports in the configuration ontology, this contradicts with
the underlying assumption of ports being undividable con-
nection points. As a result, there is a mismatch between
interfaces in Koala and ports in the configuration ontology.

There is a number of possible ways to capture ports
with internal structure. The first one is to make Koala
functions the basic level of connection. Unfortunately, this
approach introduces major problems. Firstly, interfaces
would lose their counterpart in the configuration ontology.
Secondly, following the approach would likely lead to
increased complexity in models of software products: that
an interface can contain several functions implies this.

The second approach would be to introduce composi-
tional structure for ports of the configuration ontology.
Applied to the problem at hand, interface types correspond
to port types that have ports corresponding to functions as
their parts. This approach is appealing: it models the rela-
tion between interfaces and functions in a way correspond-
ing to the intuitive understanding of the issue. This
approach would require major changes to the ontology.

Binding of interfaces of a compound component
with the interfaces of the inner parts is another feature
of Koala lacking a counterpart in the ontology. It seems
that the ontology would need to be extended in order for it
to model this phenomenon.

8. Discussion, comparison to previous work

There is an apparent difference in the natures of the sets
of product variations modelled in different disciplines. In
the configuration domain, this set is typically termed as
configurable product or a product family. One of the defin-
ing characteristics of this concept is a pre-designed general
structure with a lot of variation in the configurations [29].
On the other hand, it was found that Koala supports no
common structure for a set of products. In fact, Koala is
not targeted at modelling a product family or a set of them,
but product populations, defined as a sets of products with

91

many commonalities but also with many differences [16].
Hence, the underlying aims of the ADL modelling and
configuration modelling are not totally similar.

In the previous section, it was stated that no satisfactory
mapping could be found for function binding of Koala.
One possibility to respond to this and similar problems is
to ignore the problematic feature. Even though we do not
light-heartedly ignore aspects of ADL that are of practical
or theoretical importance, we still believe that doing so in
some cases will increase the usefulness of the configura-
tion ontology in modelling software products. Therefore,
the question is: which features of ADLs should be mod-
elled. This question can only be fully answered by empiri-
cally studying software product families.

Research closely related to this paper has been con-
ducted earlier. We do not know of earlier attempts of com-
paring the concepts of software architecture description to
those of configuration modelling. This is the main contri-
bution of our paper: studying the feasibility of configura-
tion techniques to software variability management.

In their work, Mannistd et al. have pointed out the exis-
tence of the research area of configurable software and
identified some key concerns in the area [30]. They have
not, however, studied the concepts of ADLs in detail or
proposed any mapping from these concepts to those of
configuration modelling domain.

On the other hand, [31] presents a formalised software
configuration management (SCM) ontology. The concepts
of the SCM ontology are, however, different from those of
the configuration ontology. They are aimed at representing
the modules, files, or packages, their versions and the de-
pendencies between these. The ontology does not take into
account the connections and interfaces between compo-
nents of a system.

Felfernig et al. have proposed a scheme for constructing
configurators based on UML descriptions of configuration
knowledge [21]. Their approach could be used for creating
configurators for software products as well. Their ap-
proach is, however, different from our approach: theirs is
based on presenting configuration knowledge in UML,
while our approach is based on modelling software with
the concepts of product configuration.

In [32], Kiihn has presented an approach to software
configuration based on structure and behaviour. He uses
statecharts, a method similar to finite state machines, for
specifying the behaviour of a module. This approach is
similar to Wright in that it describes both structure and
behaviour. With its focus on using behavioural constraints
for making decisions during the configuration process, this
approach is different from ours.

Feature models have been suggested as a modelling
method for software product lines (see, e.g., [33]). Appar-
ently, feature models share much with the configuration
modelling concepts presented in this paper: features, and
both components and functions in the configuration ontol-
ogy are organised in composition hierarchies. What seems
to be different in the two approaches is that the configura-
tion ontology distinguishes between technical and non-
technical aspects of a product, whereas in features models,
both aspects are contained in the same hierarchy.

Lars Geyer et al. have identified the need and enumer-
ated a number of requirements for a configuration tech-
nique for software product families [34]. Of the
requirements, the configuration ontology supports hierar-
chical structures for both technical and non-technical enti-
ties, i.e., components and functions, respectively. Further,
the ontology incorporates a constraint mechanism. Finally,
a prototype tool for configuring mechanical products that
supports a subset of the configuration concepts presented
in this paper corresponding to the requirements posed by
Geyer et al., visualises the aggregation hierarchy and is
able to assist in configuring the product, as required by
them [35]. Therefore, although Geyer et al. have deemed
knowledge-based configuration techniques rather useless
in the context of software product families, we feel that
knowledge-based configuration techniques provide con-
siderable potential in domain of software product families.

9. Conclusions and further work

We have presented an analysis and comparison of three
ADLs and a conceptualisation of configuration knowl-
edge. We defined a mapping from the concepts of ADLs to
those of the conceptualisation of configuration knowledge.
Our goal is to use the configuration concepts and their
supporting tools for configuring software product families.

We found counterparts and close correspondences in
the configuration ontology for the main elements of the
ADLs we have studied and were able to propose a map-
ping between them that shows that configuration lan-
guages can be used for representing architectural
knowledge. For instance, both share the notion of compo-
nents. Furthermore, compositional structure, systems
formed of connected components and constraints are phe-
nomena present in both disciplines. Hence, it seems that
the concepts of the configuration ontology can be used for
modelling software products.

Capturing some aspects of ADLs seems to require ex-
tending the configuration ontology. These aspects include
function binding and binding the connection points of
compound components with connection points in its inner
parts. Another important aspect is modelling behaviour. Of
the ADLs, Wright models behaviour. Additionally, the
approach presented by Kiihn also emphasises behaviour
[32]. The question whether behavioural aspects really are
important and should be modelled when configuring soft-
ware product families, should be resolved through empiric
studies with real products. The existence of Koala, a com-
mercial ADL with no behaviour modelling, suggests that
modelling behaviour is not absolutely necessary.

There are still open questions and a need for further
work. An ontology and a configuration language for soft-
ware products should be defined, and a configurator sup-
porting this language constructed. This work is currently
in progress. This will probably require investigating more
thoroughly the current ADLs and the conceptualisations of
disciplines such as SCM, generative and feature based
programming [28,36], and, of course, the developments in
the UML community, as well as case studies of real soft-
ware product families. After completing this, case studies

92

are needed to verify the applicability of the configuration
language to modelling software. Another issue to be con-
cerned is the computational complexity of configuring
software products. Theoretical complexity analysis can
provide insight into this issue, but only experiments with
real products will give relevant information on the practi-
cal feasibility from this point of view. When moving to-
wards empirical studies, it is also necessary to consider
which of the existing configurators and their modelling
languages best support software configuration at a more
detailed level than in this study.

Finally, the economics of our approach should be stud-
ied. Particularly for simpler products, the overhead from
developing a configuration model of a software product
family using a configurator is higher than the advantages
that can be gained. However, we believe that there are
cases where the product family is complex enough, includ-
ing even thousands of variation points, that the support for
deployment process would outweigh the costs.

Acknowledgements

We gratefully acknowledge the financial support from
Academy of Finland (project 51394) and National Tech-
nology Agency of Finland (Tekes).

References

[1] J. Bosch, Design and Use of Sofiware Architectures: Adapting and
Evolving a Product-Line Approach, Addison-Wesley, 2000.

[2] P. C. Clements and L. Northrop, Sofiware Product Lines - Practices
and Patterns, Addison-Wesley, 2001.

[3] T. Soininen, An approach to knowledge representation and reasoning
for product configuration tasks. PhD thesis, Helsinki University of
Technology, 2000.

[4] B. Faltings and E. C. Freuder, eds., Special Issue on Configuration.
IEEE Intelligent Systems 13(4), 1998.

[5] T. Darr, M. Klein, and D. L. McGuinness, eds., Special Issue on
Configuration Design. Al EDAM 12(4), 1998.

[6] D. Mailharro, ‘A Classification and Constraint-Based Framework for
Configuration’, Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 12(4), 383-397, 1998.

[7] G. Fleischanderl, G. Friedrich, A. Haselbock, H. Schreiner, and M.
Stumptner, ‘Configuring Large Systems Using Generative Con-
straint Satisfaction’, IEEE Intelligent Systems, 13(4), 59-68, 1998.

[8] B. Yu and J. Skovgaard, ‘A Configuration Tool to Increase Product
Competitiveness’, I[EEE Intelligent Systems, 13(4), 34-41, 1998.

[9] S. Vestal, A Cursory Overview and Comparison of Four Architecture
Description Languages. Technical report, Honeywell Systems &
Research Center, 1993

[10] N. Medvidovic and R. M. Taylor, ‘A Classification and Comparison
Framework for Software Architecture Description Languages’,
IEEE Transactions on Software Engineering, 26(1), 70-93, 2000.

[11] D. Garlan, R. T. Monroe, and D. Wile, ‘Acme: An Architecture
Description Interchange Language’, in: Proceedings of CAS-
CON’97,1997.

[12] D. Garlan, R. T. Monroe, and D. Wile, ‘Acme: Architectural De-
scription of Component-Based Systems’, in: Foundations of Com-
ponent-Based Systems, G. T. Leavens and M. Sitaraman, eds.
Cambridge University Press, 47-68, 2000.

[13] R. T. Monroe, D. Garlan, and D. Wile. Acme Reference Manual.
Available at http://www-2.cs.cmu.edu/afs/cs/project/able/www/
AcmeWeb/ACME%20StrawManual.html, 2002. Cited January
10", 2003.

[14] R. Allen and D. Garlan, ‘A Formal Basis for Architectural Connec-
tion’, ACM Transactions on Software Engineering and Methodol-
ogy, 6(3), 213-249, 1997).

[15] R. Allen, A Formal Approach to Sofiware Architecture. PhD thesis,
Carnegie Mellon University, 1997.

[16] R. van Ommering, ‘Configuration Management in Component
Based Product Populations’, in: Proceedings of Tenth Intl Workshop
on Software Configuration Management (SCM-10), 2001.

[17] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee,
‘The Koala Component Model for Consumer Electronics Software’,
IEEE Computer, 33(3), 78-85, 2000.

[18] R. van Ommering, ‘Building Product Populations with Software
Components’, in: Proceedings of the 24th International Conference
on Software Engineering (ICSE 2002), 255-265, 2002.

[19] T. Soininen, J. Tithonen, T. Méannistd, and R. Sulonen, ‘Towards a
General Ontology of Configuration’, 41 EDAM, 12(4), 357-372,
1998.

[20] L. Ardissono, A. Felfernig, G. Friedrich, et al, ‘Customer-Adaptive
and distributed online product configuration in the CAWICOMS
project’, in: Proceedings of 1IJCAI-01 Workshop on Configuration,
2001.

[21] A. Felfernig, G. Friedrich, and D. Jannach, ‘UML as Domain Spe-
cific Language for the Construction of Knowledge-Based Configu-
ration Systems’, International Journal of Software Engineering and
Knowledge Engineering, 10(4), 449-469, 2000.

[22] J. Tiihonen and T. Soininen, Product configurators - information
system support for configurable products. Technical report TKO-
B137, Helsinki University of Technology, 1997

[23] P.Clements, F.Bachmann, L.Bass, et al, = Documenting Software
Architecture, Addison Wesley, 2002.

[24] D. Garlan, ‘Software Architecture’, in: Encyclopedia of Sofiware
Engineering, J. J. Marciniak, ed. John Wiley & Sons, 2001.

[25] T. Asikainen, Representing Software Product Line Architectures
Using a Configuration Ontology. Master’s thesis, Helsinki Univer-
sity of Technology, 2002.

[26] C. A. R. Hoare, Communicating Sequential Processes, Prentice-
Hall, 1985.

[27] D. Garlan and D. E. Perry, ‘Introduction to the Special Issue on
Software Architecture’, IEEE Transactions on Software Engineer-
ing, 21(4), 1995.

[28] K. Czarnecki and U. W. Eisenecker, Generative Programming,
Addison-Wesley, 2000.

[29] J. Tiihonen, T. Lehtonen, T. Soininen, et al, ‘Modeling Configur-
able Product Families’, in: Proceedings of the 12th International
Conference on Engineering Design (ICED’99), U. Lindemann, H.
Birkhofer, H. Meer-kamm and S. Vajna, eds. 1139-1142, 1998.

[30] T. Ménnistd, T. Soininen, and R. Sulonen, ‘Product Configuration
View to Software Product Families’, in: Proceedings of the Tenth
International Workshop on Software Configuration Management
(SCM-10),2001.

[31] T. Syrjdnen, ‘Including Diagnostic Information in Configuration
Models’, in: Proceedings of the First International Conference on
Computational Logic, 2000.

[32] K. Kiihn, ‘Modeling Structure and Behavior for Knowledge-Based
Software Configuration’, in: Proceedings of the ECAI 2000 Work-
shop on New Results in Planning, Scheduling, and Design, J.Sauer
and J. Kohler, eds., 2000.

[33] K. Kang, J. Lee, and P. Donohoe, ‘Feature-oriented Product Line
Engineering’, IEEE Software, 19(4), 58-65, 2003.

[34] L. Geyer and M. Becker, ‘On the Influence of Variabilities on the
Application-Engineering Process of a Product Family’, in: Proceed-
ings of the Second International Conference on Software Product
Lines, SPLC2.,2002.

[35] J.Tiihonen, T.Soininen, I.Niemeld, and R.Sulonen, “Empirical
Testing of a Weight Constraint Rule Based Configurator”, in: Con-
figuration workshop of the 15th European Conference on Artificial
Intelligence (ECAI 2002), 2002.

[36] C. Prehofer, ‘Feature-Oriented Programming: A Fresh Look at
Objects’, in: Proceedings of ECOOP’97, 1997.

93

Product Line Derivation with UML"

Tewfik Ziadi, Jean-Marc Jézéquel, and Frédéric Fondement
IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
{Tewfik.Ziadi, Jean-Marc.Jezequel, frederic.fondement}@irisa.fr

Abstract

Handling the various derivations of a product can be a
daunting (and costly) task. To tackle this problem, we
propose a method based on the use of a creational design
pattern to uncouple the variations from the selection
process. This makes it possible to automatically derive a
given product from the set of all possible ones, and to
specialize its model accordingly. The contribution of this
paper is to provide a set of patterns for modeling
variability issues of a Product Line Architecture to define
architectural constraints for Product Line expressed in
UML as meta-level OCL constraints and to propose an
approach to automate the derivation process.

1. Introduction

Software Product Line (SPL) captures "commonality" and
“variability” between a set of software products in the
same domain. Commonality designates elements that are
common to all products while variability designates
elements that may vary from a product to another one.
Software Product Line engineering aims at improving
productivity and decrease realization times by gathering
the analysis, design and implementation activities of a
family of systems. It is based on the reuse of assets
instead of working from scratch. A Software Product Line
Architecture also called a reference architecture is a
generic architecture from which the model of each
product can be derived. The role of software product line
architecture is to describe commonalities and variabilities
of the products contained in the Product Line (PL) and, as
such, to provide a common overall structure.

To model SPL with the UML (Unified Modeling
Language) [19], we need mechanisms to specify
variabilities and commonalities, and techniques to derive
products. We also need to manage a set of constraints that
specify variation point dependencies in the PL.

This work focuses on the PL derivation activity and
proposes an approach based on a creational design pattern

to derive product models from a PL architecture modeled
by the UML. The derivation process should preserve PL
coherence, so we have defined and specified a set of PL
constraints as OCL (Object Constraint Language) meta-
model constraints. To illustrate our approach, we use a
Mercure PL.

The paper is organized as follows: Section 2 briefly
presents the Software Product Line Engineering approach
and the Mercure PL. In section 3, we propose some
mechanisms to specify variability in the UML class
diagrams. Section 4 presents PL constraints and their
specification with the OCL, and the section 5 illustrates
the derivation process. Finally section 6 concludes this
work.

2. Background in Product Line Engineering

2.1. The Software Product Line approach

The general process of Product Line Engineering, as

found in the literature [4,5,18], is illustrated in the figure

1. We distinguish two main activities:

Domain Engineering. The domain engineering activity is

twofold:

- Collecting, organizing, and storing past experiences
in building systems in the form of reusable assets (i.e.
reusable work products) in a particular domain,

- providing an adequate means for reusing these assets
when building new systems [4].

The term Developing for reuse is often used to
characterize the Domain Engineering. It can be divided in
three main processes: Domain Analysis, Domain Design,
and Domain Implementation. The domain analysis
consists in capturing information and organizing it as a
model. Some methods, such as FODA (Feature-Oriented
Domain Analysis) [13] propose a set of notations for the
domain modeling using the notion of "features" to refer to
products properties. The domain design consists in
establishing the product line architecture. The domain
implementation consists in implementing the architecture
defined during the domain design as software
components.

Application Engineering. The application engineering

activity consists in building systems based on the results

' This work has been partially supported by the CAFE European project. Eureka X! 2023 Programme, ITEA project ip 0004

94

Doman
Knowledgs

Customers
Needs

of Domain Engineering. During application requirements
of a new system, we select the requirements from the
existing domain model, which matches the customer’s
needs. We assemble applications from the existing
reusable components. The term Developing by reuse is
used to characterize the application engineering activity.

Domain Engineering - neveim i sue
g | Domait Donain Dopain
Sralysis “—’ Dt |l Bplmersim

dhact: e architectirs

v Application Eng]*eermg - Develop g

Bppliation

Broduct Line 1 quiremerts

il

¥

Core assets

Fequirements

Application Application

™ —#Product

k4

Requirements Tpkmertation

Decign »

Figure 1. The general process for Product Lines
Engineering

2.2. The Software Variability Management

The main challenge in the context of software product
lines is to model and implement the variability. Even if
the product line approach is a new paradigm, managing
variability in software systems is not a new problem, and
it can be solved by some existing approaches. [14,16]
study how existing techniques can be used for the
variability management. We briefly list some of these
techniques:

Compilation techniques: it is used to derive products at
the compilation time by the inclusion or the exclusion of
code segments during program compilation. For example,
the conditional compilation can be used to manage
variability at the compilation time.

Programming languages properties: Object Oriented
Languages offer some techniques such as inheritance,
overloading, and dynamic binding that can be used to
implement variability. Variation points are defined as
abstract properties in the Product Line and each product
defines these points in a specific way. Variability can also
be implemented using class templates if the variants differ
by a set of parameters.

Design patterns: Design Patterns [8] can be used to model
variability in software product line architectures. Patterns
provide reusable solutions to certain types of problems
and support the reuse of underlying implementations. In

[12], the Abstract Factory pattern is proposed for reifying
variants (we will present in more detail this solution in
section 5). [2] proposes a set of patterns to model
variability in product line architectures based on the
notion of “Discriminants”.

Programming approaches: some recent approaches of
Software Engineering can be used for the variability
management. Aspect-Oriented paradigm [6] is an
engineering principle that aims at reducing systems
complexity: it decomposes problems into a set of
functional components and a set of aspects that crosscut
functional components. Then it composes these
components and aspects to obtain a system
implementation. Some work [9,14,17] say that this
approach can be used to implement variability. Aspects
can be viewed as variation points, and product line
members are specified by the aspects they contain.
Generative Programming [4] is a software engineering
paradigm based on the notion of “generator” for system
families. Viability in Product Line can be managed by
implementing components and generators as generic
artifacts. A specific instantiation can be used to generate
the implementation of a product.

The techniques presented above are generally related to
programming languages. We also find some work
[3,5,15] about the modeling of variability in the UML.
These work mainly are based on the UML extensions
mechanisms such as stereotypes and tagged values. We
will present in the next section mechanisms that we have
used to specify variability in UML class diagrams.

2.3. The Variability in the Mercure PL

As a case study for evaluating our approach, we consider
the Mercure PL, which is a family of SMDS (Switched
Multi-Megabits Data Service) servers whose design and
implementation have been described in [10,11]. It can
abstractly be described as a communication software
delivering, forwarding, and relaying “messages” from and
to a set of network interfaces connected into an
heterogeneous distributed system.

Mercure PL must handle variants for five variation
points: any number of specialized processors (Engines),
network interface boards (NetDriver), levels of
functionality (Manager), user interface (GUI) and support
for languages (Language). To identify variabilities in the
Mercure PL, we specify its domain model using FODA
notations, slightly modified and extended by [4]. We use
a set of feature kinds to specify variability and
commonality:

Mandatory features: to specify features that are common
to all products, we use mandatory features whose
ancestors are also mandatory. Mandatory features are
shown in the FODA diagram by nodes with black circles.

95

Optional features: it represents features that can be
omitted in some products; it is shown by nodes with an
empty circle.

Or-features: a feature may have one or more sets of direct
or-features. If the parent of a set of or-features is included
in the description of a specific product, then any
nonempty subset from the set of or-features is included.
The nodes of a set of or-features are pointed to by edges
connected by a filled arc.

Language

S,

‘LanguageCaﬂ ‘

./‘\ Or-features features

optional feature

Language Cat 2

Composition rules
Engine | requires NetDriver]
GUI | mssal-eschision Language Cat2 o

Composed- of relationship

Figure 2. The FODA diagram for the Mercure PL

Figure 2. shows a feature diagram of the Mercure PL. The
Mercure consists of Engine, Net Driver, Manager, GUI,
and Language; all these features are mandatory. The
Mercure product may support one or more of Engine
1,..Engine N, we use FODA or-features to represent it. In
the same way, we define all NetDrivers and Managers
dimensions. However all Mercure products should
support one GUI, which is GUI 1, so it is defined
mandatory. Other GUIs are defined as FODA or-features.
We distinguish two categories of languages: Language
Catl and Language Cat2, all products should support the
first one and the second one is optional.

The FODA notations allow us to specify dependencies
relationships, called ‘“composition rules”, between
domain features. FODA supports two types of
composition rules: the requires rule that expresses the
presence implication of two features, and the mutually-

exclusive rule that captures the mutual exclusion
constraint on feature combinations. Two rules are
identified in the context of the Mercure PL: a requires
rule is added between the Engine 1 and the Net Driver 1
while a mutual-exclusion rule is added to specify that
GUI 1 do not supports Language Cat 2 (see figure 2.)

3. Variability in UML class diagrams

The Unified Modeling Language (UML) [19] is a
standard language for the object-oriented analysis and
design. It defines a set of notations to describe different
aspects of systems. In this section, we present three
mechanisms that can be used to specify the variability in
the UML class diagram: Abstraction, Parameterization,
and Optionality.

Abstraction: Using an object-oriented analysis and design
approach, it is natural to model the commonalities
between the variants of a variation point in an abstract
class (or interface), and expressing the differences in
concrete subclasses (each variant implements the
interface in its own way).

Parameterization: the UML classes can be defined as
generic assets with a set of parameters; each product
binds these parameters in a specific way. UML class
templates can be used as parameterization classes.
Optionality: the Product Line model includes all elements
associated to all products, so in specific products some of
these elements called “optional” can be omitted. To show
optionality, we use an ad-hoc stereotype «optional» that
can be applied to classes, packages, and interfaces.

The UML class diagram in the figure 3 represents the
Mercure PL model. It basically says that a Mercure
system is an instance of the MERCURE class,
aggregating an ENGINE (that encapsulate the work that
Mercure has to do on a particular processor of the target
distributed system), a collection of NETDRIVERS, a
collection of MANAGERS (that represent the range of
functionalities available), and the GUI that encapsulates
the user preference variability factor. A GUI has itself a
collection of supported languages, which are classified
into two categories.

A UML class model of a specific derived product of
Mercure can include an optional number of Engines,
Network Drivers, Managers, GUIs, and Languages; so
these features are defined as abstract classes (Abstraction
variability mechanism) and we specify variants as
concrete subclasses with the optional stereotype. All
Mercure products should at least support one mandatory
language (LANGUAGEI1-1), and one GUI (GUIl), so
these subclasses are defined without the optional
stereotype.

96

<<optional>>

Engine 1

Engine
Mercure
E

Net Driver

“.{ Presence
_--constraint}

T

Message
T

Observgl -

<<optional>>
Manager 1
Manager

<<optional>>

ur \\\\,' Exclusion

/,conslramt}

1.*

L.* | Use
G
1

<<optional>>

/
GUIN

/
/
/
/
/
e /,’ Language 1-1
avaflabl ¢
LanguageCat 1 |/ <<optional>>
/
i Language 1-2
/
/
/
/

language

Language 2-1

<<optional>>
Language Cat 2

ptional>>
Language 2-2

Figure 3. The Mercure Product Line UML class
diagram

Defining variation points as abstract classes and each
possible variant as subclass with the optional stereotype is
what we call the “abstraction variability pattern”.

4. Managing the PL constraints

[1] considers that constraints are parts of PL architectures.
Constraints define coherence rules and relationships
between elements in the architecture. As shown
previously, FODA composition rules allow us to specify
relationships between domain features. Using UML, some
work such as [15] use UML stereotypes to show
dependencies between classes.

The Object Constraints Language (OCL) [23] allows us
to attach constraints to UML models. These constraints
can be defined at meta-model level as well as model level.
In the context of Product Lines, we have identified two
types of constraints: generic constraints applying to any
PL, and specific constraints associated to a specific
Product Line and we propose to define them as OCL
meta-model constraints.

4.1 The Generic Constraints

The introduction of variation points, especially the
optionality (specified by the «optional» stereotype), in the
PL model allows us to improve genericity but it can
generate some incoherence. For example, if a non-
optional element depends on an optional one, we risk
deriving an incomplete product model. So the first type of
product line constraints defines structural properties of
any product line model to preserve its coherence. UML
can be extended by defining a set of stereotypes and a set
of meta-level constraints that are often related to these
stereotypes. So the idea for defining generic constraints is
to associate a set of constraints to the relevant stereotypes,
this solution was already used in [7] to define design
pattern occurrences in the UML. These constraints are
represented as OCL meta-model level constraints and
they will be evaluated on any product line model, see
figure 4.

The generic constraints may be seen as well-formedness
rules for the UML modeled product lines.

UML meta-model level (M2) UML model level (M1)

PL1 Model
PL2 Model

PLn Model

Extended
M2for PL B "SR S —

f

Instance|of

Defiped on Evaluated‘gn

Generic constraints

Figure 4. Generic constraints as OCL meta-level
constraints

Examples of the generic constraints

Generic constraints aim to preserve the PL model
coherence. In the case of the static model represented by
the UML class diagram, we have defined the dependency
and the inheritance constraints:

The dependency constraint. A dependency in the UML
specify a require relationship between two or more
elements. It is represented in the UML meta-model [19 p
2.15] by the meta-class Dependency (see appendix), it
represents the relationship between a set of suppliers and
clients. An example of the UML Dependency is the
"Usage", which appears when a package uses another
one. If a non-optional element is depending on an
optional one, there’s incoherence in the model. To specify
this rule, we add the following constraint as an invariant
to the Dependency meta-class in the UML meta-model
[19 p 2.15], where isStereotyped(S) is an auxiliary

97

primitive indicating if an element is stereotyped by a
string S (see appendix):

cont ext Foundati on:: Core: : Dependency
-- For each Dependency: if the supplier is
optional the client should be optional too
inv:
sel f.supplier— exists(S: Model El enent |
S.isStereotyped (‘optional’)) inplies
self.client —» forAll(C Mdel El enent |
C.isStereotyped(‘optional’))

The inheritance constraint. Optional classes in Product
Line model can be omitted in some products then, if a
non-optional class inherits from an optional one, perhaps
there is incoherence in the product model. However, in
some cases, in particular when the product line model
includes the multiple inheritance, it can be correct. But it
is more advisable to generate a warning if the static model
includes a non-optional class which inherits from an
optional one. The inheritance is represented in the UML
by the meta-class Generalization [19 p 2.14] (see
appendix). The inheritance constraint is added as an
invariant to the Generalization meta-class:

cont ext Foundation:: Core:: Generalization
-- For each generalization: if the parent is
optional the child should be optional too
inv:
sel f.parent.isStereotyped (‘optional’) inplies
self.child.isStereotyped(‘optional’)

Applying this to the Mercure PL model, LANGUAGE2-1
and LANGUAGE2-2 classes appear to be defined as
optional because their parent (LANGUAGE CAT2) is
optional and there is not a multiple inheritance.

4.2 The Specific Constraints

A fundamental characteristic of product lines is that not
all elements are compatible. That is, the selection of one
element may disable (or enable) the selection of others.
The set of constraints that define variation points
dependencies in the specific product line are called
“Specific Constraints“. As generic constraints, we
propose to specify specific constraints as OCL meta-level
constraints. The aim of these constraints is to add
dependency relationships between model elements, they
are associated to a specific product line and will be
evaluated on all products, derived from this PL, see figure
5.

The specific constraints are parts of the PL model
definition.

Examples of specific constraints

A PL class diagram is defined to be as generic as possible
and it should include elements related to all products. We
have defined the presence and the mutual exclusion
constraint as examples of specific constraints and we

propose to define them as Model meta-class invariants [19
p 2.189]. A Model is a namespace that contains a set of
ModelElement whose names designate a unique element
within the namespace.

UML meta model level (M2)

UML model level (M1)

nstance of] PL model
Extended <
M2 for PL
A 2

Product N model

\

Defingd on I’/ Product 1 maodel] }
1
. duct 2 del S
Associated to | Prodpet 2 made
1
1
1
1

Evaluated on
Specific constraints

Figure 5. Specific constraints for PL model as
OCL meta-level constraints

The presence constraint. This constraint is close to the
requires rule in FODA, it expresses in a specific PL
model that the presence of an optional class requires the
presence of another optional class. To specify a require
relationship between ENGINEl and NETDRIVER2
classes in the class diagram of the Mercure PL, we add
the following OCL meta-model constraint as a Model
meta-class invariant, where the presenceClass(C) is an
auxiliary operation indicating if a specific class called C
is present in the namespace (see appendix):

cont ext Model _Managenent : : Model
--The presence in the nodel of the class called
‘ENGA NE1' requires the presence in the same
nodel of the class called * NETDRIVER2’
inv:
self.presenceClass (‘ENG NE1') inplies
self.presenceClass (‘NETDRIVER2')

The mutual exclusion constraint. This constraint
expresses in a specific PL model that two optional classes
cannot be present in the same product. As shown
previously, GUI1 does not support LANGUGE CAT2,
so the mutual exclusion constraint between their
associated UML classes is added as an invariant to the
Model meta-class:

cont ext Model _Managenent : : Model

-- Aclass called GU 1 and a class called
LANGUGE_CAT2 cannot be present in the same nodel
i nv:

(self.presenceClass (‘GUI 1) inplies not
self.presenceClass ('\LANGUGE_CAT2')) and
(self.presenceClass(‘ LANGUGE_CAT2') inplies not
self.presenceClass (‘GU 1"))

98

In the UML class diagram (see figure 3.), we use
graphical shorthands to show the above constraints.

5. From the Product Line to Products

Once we have analyzed the Product Line and produced
the corresponding UML Model, enriched with
constraints, we still need to handle the various derivations
of products. The PL derivation consists in generating
from the PL model the UML class diagram of each
product. As shown previously, the PL model is defined by
a set of variation points and to derive a specific product
model, some decisions (or choices) associated to these
variation points are needed. For example, each Mercure
product model should choice among the presence or non-
presence of all optional classes. So another challenge in
the context of PL engineering is to specify a “decision
model”.

A decision model represents the set of relevant decisions
and their impacts that are needed to identify one single
product of the product line [5]. In this section, we propose
to use the design pattern abstract factory as a model
decision and we propose an algorithm for the product
model derivation.

To illustrate the derivation process, we have defined three
products of the Mercure PL:

FullMercure: it is the product that includes all optional
elements. Thus, all combinations can be dynamically
bound.

CustomMercure: it is a restricted product that supports
only two different network drivers (NETDRIVERI and
NETDRIVER2), two languages (LANGUAGE 1-1,
which is mandatory and LANGUAGE 2-1) and two GUIs
(GUI1, GUI2).

MiniMercure: is a lightest product that supports only
ENGINEI1, GUI1, LANGUAGE 1-1, MANAGERI, and
NETDRIVERI.

5.1. The decision model in a Product Line

In [12], the creational design pattern abstract factory [8]
is used to refine the several variation points. This process
is easily customizable by defining an interface for
creating variants of Mercure’s five variation points
(Engines, Net Drivers, Managers, GUIs and Languages).
Obtaining an actual variant of the Mercure PL then
consists in implementing the relevant concrete factory.
The idea is originally used to simplify the Software
Configuration Management by reifying the variant of an
object-oriented software system into language-level
objects. Our aim in this section is to use this idea as a
design of the PL decision model.

The decision model of the Mercure PL is illustrated in the
figure 6. Each concrete factory is related to one product in

the Mercure PL, and each creational operation in the
different concrete factories corresponds to a variation
point. We use stereotypes to restrict the returned type of
creational operations to the possible one. For example,
the product model corresponding to the concrete factory
CustomMercure includes only GUI1, and GUI2 classes as
GUI variants. So we add two stereotypes <<GUI1>> and
<<GUI2>> to the operation new_gui().

Mercure_Factory

+make()

+new_gui():GUI
+new_language():Language
+new_network_manager():Manager|
+new_netdriver():Net Driver
+new_engine():Engine

FulleM ercure MinMercure

make() make()

+new_gui():GUI +<<GUII>>new_gui():GUI
+new_language():Language +<<Language 1-1>>new_laguage():Language
+new_manager():Manager
+new_netdriver():Net Driver]|
+new_engine():Engine

+<<NetDriver]>>new_netdriver():Net Driver
+<<Engine1>>new_engine():Engine

+<<Manager]1>>new_network_manager():Manager|

CustomMercure

make()

+<<GUI1>><<GUI2>>new_gui():GUI

+<<Language 2-1>>new_language():Language
+<<Managerl>>new_network_manager():Manager
+<<NetDriver]>><<NetDriver2>>new_netdriver():Net Driver
+<<Enginel>>new_engine():Engine

Figure 6. The Abstract Factory as a model
decision for the Mercure PL

5.2. Product model derivation

At this stage, we have precisely defined the Product Line,
now we have to tackle with the automation of the
derivation process exploiting the abstraction variability
pattern and the decision model. The description of the
transformation algorithm used to derive product models is
illustrated in the figure 7. The transformation algorithm is
decomposed in three steps: variants selection, model
specialization, and the model optimization.

1. The variants selection: Variation points are defined
by return types of concrete factory operations. The
selected variants are defined by their significant
stereotypes (as names of variants). When the
operation does not define stereotypes (such as in the
FullMercure concrete factory operations), all sub
classes of its return type is selected,

2. the model specialization: it removes all optional
classes from the model, which have not been selected
in 1. However, optional ancestors of selected
variants are not removed,

99

3. the model optimization: it deletes unused factories
and optimize the model (i.e when there is only one
concrete class inheriting from an abstract one).

Mercure

The product line model should satisfy generic constraints
before the derivation and the product model derived
should satisfy specific constraints. The generic constraints
represent the pre-conditions of the transformation
operation and the specific constraints represent the post -
conditions:

Observp!-* bufffers

!

Manager1 | ___________ /
- i

- i

Der i veProduct Li ne(aConcr et eFact ory: d ass, L = !

PL_nodel : Model) - - I
pre : -- check Generic Constraints on PL_nodel |
post :-- check Specific Constraints on the A

product nodel obtained

'
'
'
i
!
!

N
AN
Optimize
inheritance
7
/
/
/
;
/
/
/

The figure 8 illustrates the CustomMercure product
model that we have obtained after derivation of the
Mercure PL.

)
2
s
&
&
S

Deri veProductLi ne

Language 2-1 -

I nput: PL_nodel : Mbdel
aConcreteFactory: C ass
Qut put : Product _nodel : Mdel

“-Variants selection Figure 8. The CustomMercure Product UML

Initiate selectedVariantsList to enpty; model
for each factory operation in
aConcr et eFactory do
initiate definedvariantsList to :
significant stereotypes of the operation; 6. Conclusion

if definiedVariantsList is enpty
then sel ectedvariantsList. add(all sub = We have proposed an approach based on the UML to
classes of the returned type of the operation); X X .
else _ _ _ _ model and to derive Product Line models. This approach
seleﬁgit?dVan antsLi st. add(definedvariantsList) ; especially focuses on static models represented by the
done UML class diagrams. To achieve this, we propose the use

of the UMLAUT framework [22] combined to the Model

-- Model ializati .
e spectalization transformation Language (MTL).

for each optional class Cin PL_nodel do UMLAUT is a framework for building tools dedicated to
if (the class name of C not in h ivulati £ dels d ibed usi h

sel ectedVariantsList) and (names of all sub the manipulation of models described using the UML. A
classes of Cnot in selectedVariantslList) specific use is to apply a model transformation to an
then UML : PR

del ete the class C fromthe PL_nodel : model, automating the derivation process then

endi f consists in writing the relevant model transformation.
done This transformation retrieves the useful model elements
-- Mbdel optinization thanks to the selected concrete factory and then builds a
delete all other factories: specialized UML model corresponding to the .sele.cted
optimze inheritance; Product. The challenge of such model manipulation is to
Product _nodel : = PL_model ; be able to transform the model accessing its meta-level

and ensuring the integrity of the derived model
. . . accordingly to the introduced specific constraints. A new
Figure 7. Deriving a product line UML model version of the UMLAUT framework is currently under
construction in the Triskell’ team based on the MTL
language, which is an extension of OCL with the
MOF(Meta-Object Facility) architecture and side effect
features, so it permits us to describe the process at the
meta-level and to check OCL constraints (the generic

2 http://www.irisa.fi/triskell/

100

constrains at first sight and specific constraints once the
product model is derived). We present in appendix a
detailed description of the derivation process as example
of the MTL procedure.

As future work, we want to implement a UML profile for
Product Line (including behavior aspects as proposed in
[21]). This UML profile defines a set of stereotypes and a
set of generic constraints to ensure any PL correctness.
The user PL specification includes a set of models
enriched by specific constraints, which may guide the
derivation process. The derivation consists in applying a
transformation algorithm written in MTL.

The abstract factory derivation approach was described
here for a specific PL, which is the Mercure project. We
think that it’s possible to generalize this solution for
others product lines that use the same abstraction
variability pattern.

7. References

1. Bass, L., Clements, P., and Kazman, R. Sofiware
Architecture in practices, Addison-Wesley, 1998.

2. B. Keepence, M. Mannion, “Using Patterns to Model
Variability in Product Families”, IEEE Software,
16(4): pages 102-108, 1999.

3. C. Atkinson, J. Bayer, and D. Muthig, “Component-
based product line lopment. the KobrA approach”, In
Proc. of the 1st Software Product Lines Conference
(SPLC1), pages 289-309,2000.

4. Czamnecki K., Eisenecker
Programming: Methods,
Addison-wesley, 2000.

U.W., Generative
Tools, and Applications,

5. ESAPS project deliverables. http://www.esi.es/esaps/

6. G. Kiczales, et al, “Aspect-Oriented Programming”,
In ECOOP’97 —Object Oriented Programming 11™
European Conference, 1997.

7. G. Sunyé, A. Le~Guennec, and J.M. Jézéquel,
“Precise modeling of design patterns”, In LNCS,
editor, Proceedings of UML 2000, volume 1939 of
LNCS, pages 482--496, 2000.

8. Gamma, E., Helm, R., Johnson, R., and Vlissides, J..
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1995

9. J. Bayer, “Toward engineering product line using
concerns”, GCSE 2000, Young Workshop, 2000.

10. Jézéquel, J.-M.. Object Oriented Software
Engineering with Eiffe,. Addison-Wesley. ISBN 1-
201-63381-7, 1996

11. J-M. Jézéquel, “Object-orented design of real-time
telecom systems”, In IEEE International Symposium
on Object-oriented Real-time distributed Computing,
ISORC’98, Kyoto, Japan (April 1998).

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

101

J-M. Jézéquel, “Reifying Variants in Configuration
Management”, ACM Transaction on Software
Engineering and Methodology, pages 526-538, 1998.
Kangk. et al Feature-Oriented Domain Analysis
Feasibility Study, SEI Technical Report CMU/SEI-
90-TR-21, November 1990.

M. Anastapoulos, C. Gacek,, “Implementing Product
Line Variability”, Technical report IESE report N°:
089.00/E, Franhofer IESE publication, 2000.

M. ClauBl, “Modeling variability with UML”, In
GCSE 2001 Young researchers Workshop. 2001

M. Svahnberg, J. Bosch, “Issues Concerning
Variability in Software Product lines”, in F. van der
Linden, editor, Software Architecture for Product
Families International Workshop IW-SAPF-3, LNCS
1951, pp. 146-157, Springer 2000.

M.L. Griss, “Implementing Product-line Features by
Composing Component Aspects”, in Proceedings of
the First Software Product Line Conference, P.
Donohoe, pp. 271-288, 2000.

Northrop.L., A Framework for Software Product Line
Practice—Version 3.0,

http://www.sei.cmu.edu/pLdP/framework.html#frame
work_toc, Software Engineering Institute (SEI), 2002.

OMG. UML specification. Version 1.4, 2001.

Pierre America and Steffen Thiel and Stefan and
Martin Mergel, Introduction to Domain Analysis,
ESAPS project, 2001 web = http://www.esi.es/esaps/.

T. Ziadi, L. Hélouét, J-M. Jézéquel, “Modeling
Behaviors in Product Lines”, International Workshop
in Engineering Requirement for Product Line
(REPL'02), Essen, 2002.

W.-M. Ho, J-M. Jézéquel, A. Le Guennec, and F.
Pennaneac’h, “UMLAUT: an extensible UML
transformation framework”, In Proc. Automated
Software Engineering, ASE’99, Florida, October
1999.

Warmer, J., and Kleppe, A.. The Object Constraint
Language — Precise Modeling with UML, Object
Technology Series. Addison-Wesley, 1998

Appendix

A.1: OCL Auxiliary operations

cont ext
Model El ement : ;i sStreotyped(S : String): Bool ean
post :result =
sel f.stereotype —exists(s |
s.name = §)

cont ext
Nanespace: : presenceC ass(C : String): Bool ean
post :result =
(sel f.oclIsKindO (d ass) and sel f.name = C))
or
(sel f.presenceCd ass(Q))

context Cass::All SubCd asses()
post: result =
sel f.specialization.child —» iterate(c:d ass;
acc: Set(Class) = Set{} | acc —»
i ncl udi ng(c)—union(c. All SubC asses()))

Set (d ass)

cont ext Nanespace:: Al | C asses()
post : result =
sel f. ownedEl ement — sel ect (me: Model El enent |
me. ocl | skKi ndOf (Cl ass)) — union
(sel f.ownedEl enent. All d asses())

Set (C ass)

A.2: A detailed description of the derivation algorithm

--Based on OCL extended with side effect
features

Product Li neDeri vati on(aConcret eFactory: C ass,
pl : Mbdel)
BEG N

--Variant selection

Set (String) definedvariants

Set (String) selectedVariants

for opin

aConcreteFactory. feature—select(f: Feature
| f.ocllsKindO(Operation)

and f.nane.startsWth(‘new))

do

Cl ass opsReturnType : =

(op. paraneter —»sel ect(p:Parameter | p.kind =

#return)).type
definedVari ants: = op. stereotype. nane —
intersection(

opsRet ur nType. Al | SubCl asses() . nane)

i f definedVariants —isEmpty()
then sel ectedVariants :=sel ectedVari ant —
uni on(opsRet urnType. Al | Subd asses() . nane)
el se selectedVariants :=sel ectedVari ant —
uni on(op. st er eot ype. nane)
endi f
done

--Model specialization

for Cdass in pl.Aldasses()
do
if (CisStereotyped(‘optional’)) and
(sel ectedVari ant —»exl udes(C. nane)) and
sel ectedVari ant »
exl udesAl | (C. Al | Subd asses(). nane)
t hen
del et eEl enent (C, pl)
endi f
done

-- Model optimnzation

aConcret eFactory. general i zation. parent. specializ
ation.child-

excl udi ng(aConcr et eFact ory) —»col l ect (cf : O ass|
del et eEl enent (cf, pl))

optim zel nheritance(pl)
END

A.3: The Dependency and the generalization meta-classes in
the UML meta-model

154PP lier supplierDepengene
ModelHement |, % Dependency
client clientDependency ;
Permission Usage
Abstraction
generalization child
* 1
Generalization |, | [GeneralizableElement
specialization parent i|§
Classifier

102

Short Papers

103

Software Variability Management Using a Platform Based Autonomous Agents

Amar RAMDANE-CHERIF, Samir BENARIF and Nicole LEVY
PRISM, Université de Versailles St.-Quentin, 45, Avenue des Etats-Unis,
78035 Versailles Cedex, France

{rea}@prism.uvsq.fr

Abstract

System architectures embody the same kinds of
structuring and decomposition decisions that drive
software architectures. Moreover, they include
hardware/software tradeoffs as well as the selection of
computing and communication equipments, all of
which are completely beyond the realm of software
architecture. The foundation of any software system is
its architecture, that is, the way the software is
constructed from separately components and the ways
in which those components interact and relate to each
other. If the requirements include goal for variability
management, then the architecture is the design
artifact that first expresses how the system will be
built to achieves this goal. Some architectures go on to
become generic and adopted by the development
community at large: three-tier client server, layered,
and pipe-and-filter architectures are well known
beyond the scope of any single system. In this paper,
we use a platform based on multi-agents system in
order to test, evaluate component, detect fault and
error recovery by dynamical reconfigurations of the
architecture. This platform is implemented on pipe-
and-filter architecture which is applied for controlling
a mobile robot to follow a trajectory towards the
desired objective in the presence of obstacles. The
hardware/software of this architecture system is
completely monitored by the platform in order to
evolve quality attribute variability. Some scenarios
addressing the wvariability at architectural level is
outlined by both with and without using our platform-
based-agents. In this paper, we discuss how our
approach supports the variability management of
complex software / hardware systems.

1. Introduction

A critical aspect of any complex software system is its
architecture. The architecture deals with the structure of
the components of a system, their interrelationships and
guidelines governing their design and evolution over
time [1][2]. The architectural model of a system provides
a high level description that enables compositional
design and analysis of components-based systems. The
architecture then becomes the basis of systematic
development and evolution of software systems. It is
clear that a new architecture that permits the dynamism
reconfiguration, adaptation and evolution while ensuring
the variability management of an application is needed.
The variability is defined as the ability of a software
system or artifact to be changed, customized or
configured for use in a particular context [3][4][5]. The
architectural level reasoning about the variability quality
attribute is only just emerging as an important theme in
software engineering. This is due to the fact that the
variability concerns are usually left until too late in the
process of development. In addition, the complexity of

emerging applications and trend of building trustworthy
systems from existing, untrustworthy components are
urging variability concerns be considered at the
architectural level. In [6] the researches focus on the
realization of an idealized fault-tolerance architecture
component. In this approach the internal structure of an
idealized component has two distinct parts: one that
implements it’s normal behavior, when no exceptions
occur, and another that implements it’s abnormal
behavior, which deals with the exceptional conditions.
Software architectural choices have profound influence
on the quality attributes supported by system. Therefore,
architecture analysis can be used to evaluate the
influence of the design decisions on important quality
attributes such as variability management [7]. Another
axe of research is the study of fault descriptions [8] and
the role of event description in architecting dependable
system [9]. Software monitoring is a well-know
technique for observing and understanding the dynamic
behavior of programs when executed, and can provide
for many different purposes [10][11]. Besides variability,
other purposes for applying monitoring are: testing,
debugging, correctness checking, performance evaluation
and enhancement, security, control, program
understanding and visualization, ubiquitous user
interaction and dynamic documentation. Another strategy
is used, like a redundant array of independent component
(RAIC) which is a technology that uses groups of similar
or identical distributed components to provide
dependable services [12]. The RAIC allows components
in redundant array to be added or removed dynamically
during run-time, effectively making software
components “hot-swappable” and thus achieves greater
overall variability. The RAIC controllers use the just-in-
time component testing technique to detect component
failures and the component state recovery technique to
bring replacement components up-to-date. The approach
in [13] advocates the enforcement of variability
requirements at the architectural design level of a
software system. It provides a guideline of how to design
an architectural prescription from a goal oriented
requirements specification of a system. To achieve high
variability management of software/hardware, the
architectures must have the capacity to react to the events
(fault) and to carry out architectural changes in an
autonomous way. That makes it possible to improve the
properties of quality of the software application [14]. The
idea is to use the architectural concept of agent to carry
out the functionality of reconfiguration, to evaluate and
to maintain the quality attributes like variability
management of the architecture [15]. Intelligent agents
are new paradigm for developing software/hardware
applications. More than this, agent-based computing has
been hailed as “the next significant break-through in
software development” [16], and “the new revolution
software” [17]. Currently, agents are the focus intense
int%est on the part of many sub-fields of computers

science and artificial intelligence. An agent is a computer
system situated in some environment, and that is capable
of autonomous action in this environment in order to
meet its design objectives. Autonomy is a difficult
concept to pin down precisely, but we mean it simply in
the sense that the system should be able to act without
the direct intervention of humans (or other agents), and
should have control over its own actions and internal
state. It may be helpful to draw an analogy between the
notion of autonomy with respect to agents and
encapsulation with respect to object-oriented systems. In
this paper, we propose a new approach which provide a
platform based agents. This platform will monitor the
global architecture of a system and improve variability
quality attribute. It will achieve its functional and non
functional requirements and evaluate and manage
changes in such architecture dynamically at the execution
time.

This paper is organized as follows. In the next section,
we will introduce the platform based multi-agents.
Then a strategy to achieve fault tolerance by our
platform will be presented. In section four, we
describe an example showing the application of our
platform on Pipe-and-Filter architecture and its
benefits are outlined through some scenarios about the
variability management. Finally, the paper concludes
with a discussion of future directions for this work.

2. The platform multi-agents

In recent years, agents and Multi-Agent Systems
(MAS) have become a highly active area of Artificial
Intelligence (AI) research. Agents have been
developed and applied successfully in many domains.
MAS can offer several advantages in solving complex
problems compared to conventional computation
techniques. The purpose of traditional Artificial
Intelligence is to perform complex tasks, thanks to
human expertise. This often assumes assimilation of
many competencies to be subject of centralized
programming. Moreover, in such monolithic system,
the consensus between various expertises is difficult to
model; indeed, the structure of communication
between the experts is fixed whereas it should depend
on the considered problem. Thus, a formalization close
to reality where several people work together on a
same problem is needed. Such formalism should
describe the participants and interactions between
them. This approach is the paradigm of the Distributed
Artificial Intelligence (DAI). The DAI leads to the
realization of systems known as "multi-agent" systems
allowing modeling the behavior of all the entities
according to some laws of social type. These entities
or agents have certain autonomy and are immersed in
an environment in which and with which they interact.
Their structure is based on three main functions:
perceiving, deciding and acting.

The term "agent" is subject to many interpretations.
The most used one is: "an agent is an autonomous
entity which pursues an individual goal, which is
ready to act on the environment of the system to which
it belongs and/or to interact with the other agents,
which has only one evolutionary representation of this
environment and which can perceive the other agents
thanks to the communication or the observation".

The modeling of a multi-agents system can be based
on four dimensions (figure-4-) which are: Agent (A),

Environment (E), Interaction (I), and Organization
(O). Facet A indicates the whole of the functionalities
of internal reasoning of the agent. The facet E gathers
the functionalities related to the capacities of
perception and actions of the agent on the
environment. Facet 1 gathers the functionalities of
interaction of the agent with the other agents
(interpretation of the primitives of the communication
language, management of the interaction and the
conversation protocols). The facet O east can be most
difficult to obtain, it relates to the functions and the
representations related to the capacities of structuring
and management of the relations of the agents between

them.

T TTTmmmmmEEmTTTTEEIIITITEmm T 3

1 1

' Facet A Facet E <':>
1 1

1 1

! ' Agent
| |

1 1

1 1

1 1

1 1

' Facet O Facet I '

' Agent '
!.____________________________] E______'

Environment

Figure 1: AEIO Facets within an agent

While following a logical reasoning, we thus manage
to perceive two layers in our platform, but it is noticed
well that we need a link between the two various
layers, since the reactive layer answers only to
stimulus, and the higher layer is dedicated to
management and reasoning. Thus, we need a layer
which interacts with the two layers, it must act on the
reactive layer by stimulating and coordinating the
actions of these agents, but also interact with the
higher layer by informing it of the state of the
architecture and the agents. This layer acts as links
between the decisional and the reactive parts of the
platform. This offers to us a division of the tasks and a
specialization of the layers. Thus we obtain the speed,
flexibility and a weaker cost of communication as well
as a greater stability of the all platform, resulting from
the cooperation and the coordination of the layers.

The other aspect of our problem is the dynamic nature
of our architecture, indeed architecture does not cease
to evolve, to reconfigure and to extend. It is
inconceivable to create a rigid and static platform
which can follow the evolution of this architecture!.
We must thus already think of such a dynamic and
evolutionary platform so that it can constantly reach
and follow the evolution of this architecture. We will
consider that our software architecture is a such board
cut out in small pieces. We consider that we can
extend this board as parts are added. We have also the
freedom to modify the parts and to make them move
on the board. While considering this example, we will
establish specific rules to the platform based multi-
agents which we will build. We will consider that the
available software architecture is divided into
localities, grouped, it forms one or several zones. This
strategy will enable us to better control the
characteristics of modifiability and extensibility of the
available architecture. The architecture of our platform
consists of three distinct layers. A layer known as

higher equipped with evolved agents able to
communicate with the external environment or other
agents in order to establish the plans and the adequate
strategies to achieve the desired goals. A second layer
comes in continuation, which is the intermediary layer,
located between two layers, communicates with the
higher layer and the lower layer known as a reactive
layer. The agents in the intermediary layer are less
evolved than the agents of the higher layer (equipped
with a less advanced social nature). The last layer is
the reactive layer having purely reactive agents to a
stimulus, their roles are limited exclusively to the
perception/action (figure-2-,-3- and -4-).

Agent of the higher layer

Agent of
Intermediary layer

SR

; - : - ' - 78
Zone b I"\ : =
T: ' 4 X “. “.
i N : ' <
/7 L\
7] i 0 Y i 1
/ J | | d
T 7)
" N

Figure 2: Hierarchy of the platform and representation of a zone

Agent of the higher
layer

1

Agents of
Intermediary
layer

JTTTHI

N

Agents of
the reactive

Figure 3: Hierarchy of the platform and diagram of a locality

2.1. The higher layer

The higher layer is the highest layer of the platform, it
is thus, more evolved than the others. This layer has
the capacity to analyze information coming from
architecture, thanks to the facet E of its agents. Thus, it
can evaluate qualities of architecture constantly and
intervene in a targeted way, since the agents have a
facet A, implying the reasoning. The facet O and I, of
the agents enter in action when the agents of the
intermediary layer do not manage to find only a
solution to a problem. The agents of the higher layer

have the capacity to organize a group of agents in the
intermediary layer (implies a cooperation) or to utilize
another agent of the higher layer (implies a
negotiation) in order to achieve the goal to seek. For
example, an agent of the intermediary layer controlling
a desired locality can add a component being in
another locality. The solution which is offered to him,
is to refer to the agent which supervises it, namely the
agent of the higher layer, which will put him in direct
contact with the agent which controls the locality
concerned if this one belonged to its own zone. In the
contrary case, the agent starts a negotiation with the
agent which supervises the locality concerned. The
agents of this layer can constantly exchange
information relating to the zone which it controls so
that they always have a global and complete
architecture vision. Each agent of this layer controls a
zone of architecture, it is responsible for a group of
agents of the intermediary layer. The planning by
analysis of environment is specific to the higher layer.
The capacities of perception of the environment and of
organization of the agents offer a greater coordination
in the platform. Thus, we facilitate the division of the
work by directing the agents toward common goals.
The agents of the higher layer act according to the
received messages from their environments and other
agents. By coordinating this information, they
establish a work plan, which targets the objective to be
reached and which defines the coordinating agents for
achieving the goal. In other words, by dividing work
according to the agents aptitudes. The agent of the
higher layer can perceive signals coming from
architecture (system) or from the agents (agent of the
higher layer or intermediary layer). The perceived
information (by using facets I,E) is sorted, classified
and decoded according to the protocol used for each
type of message. Thereafter, the agent define the
objective to be reached by identifying the place and
the type of the desired reconfiguration. Thus, it adopts
one of the strategies implemented in its knowledge
base, it is the facet reasoning of the agent. Then, the
agent establishes a plan according to the information
collected by its sensors and the available information
on the architecture in its knowledge base. By adopting
a specific plan, the agent can act in three manners: A)
Negotiation: It can start a negotiation with an agent of
the higher layer so that it can complete work, if the
desired reconfiguration is apart from its own zone. B)
Cooperation: the agent established a plan of
cooperation between the agents of the intermediary
layer, if the reconfiguration is in its own zone. C)
Action: the agent can act of itself, for example the
creation of a new agent in the intermediary layer,
carrying out a simple test or making a reconfiguration
on architecture (this action is very limited). The strong
points of this layer are: 1 - Knowledge bases
distributed and exchanged constantly between the
agents of the higher layer, which avoids the losses of
information in the event of breakdown. 2 - A very high
social character, thanks to facet O, of the agent: thus
being able to organize agents or to negotiate with
agents an application of a task. 3 - A low number of
agents: imply a better coordination of the actions and a
weak cost of communication.

106

Multi-Agents Platform

Communication by :
: passage of message :
i Centralized SIS IS) @ D
Action / Perception $ $ $ $ $

| | : | | H
________ -___I__I__+-!_I__I__ H

I I [I :

: : ! ! S A

: : .
[ox o o cx G
: < Locality A >‘ Locality B Locality C
"< Zone 1
Reactive Agent

Component A
Component B
Component C

% Message

— Orders and information Intermediate Agent

----)p Informations

Superior Agent
% User message
I Connector % Normal User Super User
s Create component or connector CB New component i New connection

Figure 4: Configuration of the platform

Service request Normal Responses

Interface Exceptions

External

Invalid

. External
service request

exceptions

Inleid
service reques

External
exception

Figure 5: Error on component

2.2. Intermediary layer

As its name indicates it is a layer which is placed
between the higher layer and the reactive layer. Each
agent of this layer takes care of several agents of the
reactive layer, it is responsible for a quite precise
locality. The agent itself is connected to only one
agent of the higher layer. A set of agents of the
intermediary layer forms what is called a zone. The
principal role of this layer is to take care of the good
progress of the reconfigurations imposed by the higher
layer. It is a question of controlling and coordinating
the agents of the reactive layer in order to carry out
and to achieve a goal. Another role of this layer is the
collection of information coming from the reactive
layer in order to forward them to the agent of the
higher layer. The agents of the intermediary layer can
be confronted with two kinds of problems: queries of
reconfiguration in their locality, but also outside. From
where the name of planning according to task. The
agent establishes two kinds of plans so that it can
answer to the requests which they are: a planning
centralized with the agents of the reactive layer or a
planning distributed in certain case, toward the
supervisory agent of the higher layer: A) Distributed
planning: In the intermediary layer, the agents use a

Figure 6: Propagation of the fault

distributed planning. In the case where they are in the
incapacity to solve only the posed problem. They refer
to the agents of the higher layer. The agents of this
layer break up the problem into sub-problems and
elaborate the sub-plans so that they can be carried out
by the agents of the intermediary layer. B) Centralized
planning: In certain case, the agents are unable to
solve only the posed problem. For example, if we ask
an agent to reconfigure a locality which it does not
control, in this precise case, the plans are generated by
the higher layer. This layer has a total sight of
architecture and platform. Thus the higher layer put in
cooperation mode agents of intermediary layer in
order to carry out work requested, by dividing and
managing the work of each one. Contrary to the agents
of the higher layer, the agents of the intermediary layer
do not have advanced social character. The
communications between the agents of this layer are
simple and indirect, i.e. that they are conveyed by the
agents of the higher layer. The agents are thus limited
to an interaction with the agents of the higher layer
described above, and a communication by passage of
asynchronous message with the reactive agents by
directing acts primarily.

107

2.3. Reactive layer

This layer is the body of perception and of action of
the platform. It is equipped with purely reactive agents
which act with simple stimulus coming from the
intermediary layer. The reactive agents belong to a
locality depending on only one agent of the
intermediary layer whose they receive the plans. These
agents answer to a centralized planning and work in
cooperation. The exchange between the reactive
agents and the agent of intermediary layer is simple.
The perception induces sending simple information
toward the central agent, the action is the consequence
of a stimulus or a simple command.

3. The platform and fault tolerance

3.1. Fault at architectural level

The basic strategy to achieve fault tolerance in a
system can be divided into two steps. The first step
called error processing is concerned with the system
internal state, aiming to detect errors that are caused
by activation of faults, the diagnostic of the erroneous
states, and recovery to error free states. The second
step, called fault treatment, is concerned with the
sources of faults that may affect the system and
includes: fault Planning and fault removal.

The communication between components is only
through request/response messages. Upon receiving a
request for a service, the components will react with a
normal response if request is successfully processed or
an external exception, otherwise. This external
exception may be due to the invalid service request, in
which case it is called an interface exception, or due to
a failure in processing a valid request, in which it is
called a failure exception (Figure 5). The error can
propagate through connector of software architecture
by using the different interactions between the
components (Figure 6). Internal exceptions are
associated with errors detected within a component
that may be corrected, allowing the operation to be
completed successfully; otherwise, they are
propagated as external exceptions.

3.2. Monitoring system

Software monitoring is a well-know technique for
observing and understanding the dynamic behavior of
programs when executed and can provide for many
different purposes. Besides variability, other purposes
for applying monitoring are testing debugging,
correctness checking, performance evaluation and

enhancement, security, control, program
understanding and visualization, ubiquitous user
interaction and dynamic documentation. System

monitoring consists in collecting information from the
system execution, detecting particular events or states
using the collected data, analyzing and presenting
relevant information to the user, and possibly taking
some (preventive or corrective) actions. As the
information is collected from the execution of the
program implementation, there 1is inherent gap
between the levels of abstraction of the collected
events, states of the software architecture. For event
monitoring, there are basically two types of
monitoring systems based on the information
collection: sampling (time-driven) and tracing (event-
driven). By sampling, information about the execution
state is synchronously (in a specific time rate), or

asynchronously (through direct request of the
monitoring system). By tracing, on the other hand,
information is collected when an event of interest
occurs in the system. Tracing allows a better
understanding and reasoning of the system behavior
than sampling. However, tracing monitoring generates
a much larger volume of data than sampling. In order
to reduce this data volume problem, some researchers
have been working on encoding techniques. A more,
common and straightforward way to reduce data
volume is to collect interesting events only, and not all
events that happen during a program execution. The
second approach may limit the analysis of events and
conditions unforeseen previously to the program
execution. Both state and event information are
important to understand and reason about the program
execution. Since tracing monitoring collects
information when events occur, state information can
be maintained by collecting events associated to state
change. With a hybrid approach, the sampling
monitoring can represent the action of collecting state
information into an event for the tracing monitoring.
Not all events with state information should be
collected, but only the events of interest. Integrating
sampling and tracing monitoring and collecting the
state information through events reduce the
complexity of the monitoring task. The monitoring
system needs to know what are the events of interest,
what events should be collected.

3.3. Detection of faults with the platform based
agents

We will use a monitoring system based on the agents,
by implementing our platform, described above, on the
top of the architecture. Each component will be
supervised by a reactive agent, by sampling or tracing.
The reactive agents will use sampling on architecture
and collect information on the state of the components
with each interval of time predefined or limited by the
user. Another type of detection in reactive agent is the
tracing, in this case, the component generates an
external exception in the form of an event, this event
will be collected and will be transmitted towards the
intermediate agent, this event will be thereafter
analyzed, identified and then sent by this agent
towards the agent of the superior layer in order to
establish plans to correct the errors. In other words, the
signals are collected by the agents of the reactive
layer, which transmit them immediately to the
intermediate agent of its locality. This agent analyzes
this information using its knowledge base containing
the description of the errors. Thus, it will sort
information coming from the reactive agents and send
only the error messages towards the agent of the
superior layer of its zone. According to the detected
errors the superior agent establishes the plans in order
to solve the errors coming from architectural level
(Figure-7-).

108

Multi-Agents Platform

Planning for errors recovery

Intermediate Layer Analyze information

I

! : :

: Transmission of information

I : and stimulus : :

I I-{-----t-.----]: ------------ PR L L L L L E E

eactive Layer Perception : :

AN — S D] :

| :|“Event/ State : ? f

P s = f A5 RS Vi) H |
: Lo . = i
H H | H
H AL Disabled
: : H A Component ||
< Locality A > Locality B y Locality C >
< Zone 1 >

Reactive Agent

—9 Message
——P Orders and information
% User message

I Connector

.............. P Sampling

||]::> Event

--—-)p State

Component A
Component B
Component C
El Disabled component

Intermediate Agent

Superior Agent

I Flow information

Figure 7: Multi-agents platform for monitoring

3.3. The treatment process

After the phase of detection, the platform identifies the
type of error and establishes the plans in order to
achieve at architectural level the necessary
reconfigurations to correct the faults. This treatment
process uses tow types of plans, the first plans consist
to reconfigure architecture connections for finding
temporary solution of fault (disabled component or
connector), the second plans recover errors by addition
or changing disabled component or connector.

3.3.1) Reconfiguration of connections :In the
detection phase, the information travel up through the
layers of the platform in order to arrive to the superior
agent, in this decisional layer the treatment process
begins by establishing plans. The superior agent
chooses the best solution to support evolution and
changing requirements of the architecture. The
platform can reconfigure connections of architecture to
isolate the disabled components (if the platform can’t
create new components), the superior agent distributes
the plans to the intermediate agent on the locality of
fault. When the intermediate agent receives the plans,
it distributes directives to the reactive agents. The
reactive agents delete the connection of disabled
component and create new connection to isolate it.
3.3.2) Creation of new component :1If the platform has
the possibility to create new component in order to
recover errors at architectural level, the superior agent
distributes plans to the intermediate agent. This agent
distributes directives to reactive agents, and the
reactive agents work together in order to delete the

disabled component and it’s connection and create
new component and it’s new connection (Figure 8).

4. Implementation of the multi-agents
platform on Pipe-and-Filter architecture

4.1. The navigation of the mobile robot in an
environment without obstacle

We dispose of a mobile robot in a flat environment, it
must go from a point initially to parameterize towards
a finale point in a plan (environment represented here
by a plan), the robot can move in a horizontal way or
vertical way, when it is immobile, it can do rotation on
itself. The mobile robot moves on a plan (Figure 9)
which we divide into six parts by taking the finale
position of robot the origin point of Cartesian
coordinates (0,0). Thus, we distinguish six possibility
approaches, if the robot is on parts 1, 2, 3 or 4, then it
manages to reach the finale desired point by deploying
a very simple navigation plan which is: an approach
on the X axis, then a final approach on the Y axis. In
both remaining cases (part 5 and 6), if the robot is on
part 6, then it uses an approach on the X axis, or if it is
on the part 5, then it starts an approach on the Y axis.

4.2. Pipe-and-Filter Architecture for the
navigation of the mobile robot in an
environment without obstacle

In an environment without obstacles, we will choose a
Pipe-and-Filter architecture which corresponds as well
as possible to our navigation strategy.

109

Multi-Agents Platform

Distribution of plans

transmission of plans

Distribution of tasks

| : Transmission of tasks by
1 : stimulus

R
-3

¥ ’T

Locality A
<

H vl Failing |}
component CB cc CA Comnonent §
N

Locality B Locality C

—» Message Component A C
> Component B ‘
----p Informations
Component C Superior Agent
% User message

Zone 1

Reactive Agent

Intermediate Agent

BB Connector ‘ Create component or connector l Flow information

.............. p Sampling ‘ Delete component or connector ----J» State

Figure 8: Multi-agents platform treatment process

Part 4 V* Part 1
|
|
| X Approach
— — —— —) Initiale
Mitialg e o —— — position
position |
e ___Finale A X_Approach_ _p
Part 6 positio
I X
Initiale) — — —
position —I X Approach
|_ —_ O nitiale
(B position
Part 3 Part$§ Part 2

Figure 9: Strategy of navigation of the mobile robot

The first component (Figure 10), “Parameter ” is used
to enter the Cartesian coordinates (X,Y) of the initial
and finale position of the mobile robot. The
component “Planning” defines the position of the
robot in the plan in order to establish the ideal
planning to reach the finale point. The component “X
approach” increments X position of the mobile robot
and the component “Y approach” increments position
Y. The component ‘“Simulation” is charged for
displaying the robot displacement on the screen.

Example : In our example, the mobile robot is
positioned on part 1 of the plan. When the user enter

the parameters of the mobile robot (finale and initiale
positions), the component ‘“Planning” definites the
first plan that the robot follows to reach the finale
point. Therefore, a first approach on the X axis is
activeted by the component “X Aproach”. The
component “Simulation” is also actuated at each
increment on the X axis in order to display step by
step the movement of the robot. When the component
“X Approach” finishes its approach, the positions of

110

Parameter

-

—P> 9 Objectif

Planning

Planning ’_’ X Approach
——{ Simulation

Y Approach
4——‘ |: Simulation

Figure 10: Pipe-and-Filter architecture for the navigation of obil robot

the robot are sent towards the component “Planning”
which will define the new plan to be followed by the
robot according to its positions. The approach on the
Y axis is activated by the component “Y approach” as
well as the display of each step of the robot by the
component “Simulation”. At the end of the
incremantation on the Y axis the robot reaches its
objective.

4.3. The navigation of the mobile robot in an
environment with obstacle

The mobile robot moves in a flat environment (the
plan) with obstacles which are positioned randomly
(Figure 11). We will install a sensor on the robot
which will help the mobile robot to detect the
obstacles, when it tries to reach the final position. In
order to avoid the obstacle we will use the same basic
displacement of the robot, i.e. rotation on itself of 90°
and the vertical or horizontal way. If the obstacle is
out of the mobile robot trajectory then its origin
navigation planning will not be affected. In other case
the obstacle is on the trajectory of the mobile robot
during its X or Y approach. When the obstacle is
detected (the distance from detection of the mobile
robot depends on the range of the used sensor). The
mobile robot decreases its speed, then stops in order to
make a rotation of 90° on itself and starts to avoid the
obstacle. When this one is out of the trajectory, the
robot carries out a new planning with new X or Y
approaches to reach its finale position.

4.4. Pipe-and-Filter architecture for the
navigation of the mobile robot in an
environment with obstacle

The mobile robot moves in an environment with
obstacle, the software architecture proposed previously
is retained, but a new hardware component installed
on the robot is taking into account, it represents, in our
architecture, by a software component called the
"Scan" (Figure 12). The mobile robot will use the new
architecture which takes into account the possibility of
founding obstacles on its trajectory with each
incrementing on the Y or X axis.

4.5. The role of the platform to manage the
variability in the mobile robot navigation

The multi-agents platform will be placed on the top of
our Pipe-and-Filter architecture, and exerts on it a
permanent monitoring in order to avoid all processing
possible errors. Generally, the multi-agents platform
reacts to the events emitted by the architecture using
two distinct strategies: the reconfiguration of the
component’s connections or the creation of the new
components able to solve the arise problem.

The sensor is installed on the robot and it sweeps
sequentially its environment, in the case the sensor
detects an obstacle on its trajectory, it sends a signal
towards the component “Scan” of the software
architecture, which emits an event towards the
platform. On the level of the architecture, the error is
collected by the reactive agent which supervises the
component “Scan”. The error is then transmitted

towards its intermediate agent, this error is then
identified and sent towards the superior agent. The
superior agent establishes the plans in order to correct
the errors, in this case, the multi-agents platform will
create new components so that the robot avoids the
detected obstacle.

When the obstacle is finally out of the trajectory of the
mobile robot, the component ‘“Planning” establishes
new plans. If these plans require a reconfiguration of
the connections, the component “Planning” emits an
event towards the platform, which is collected by the
reactive agent of the platform related to the component
“Planning”. The event is transmitted towards the
intermediate agent which identifies the event thanks to
its knowledge base describing the event which is
emitted by the software architecture. The agent of the
intermediate layer sends information towards the
superior agent, which establishes the plans so that the
error is corrected on the level of the architecture, and
distributes them to the agent of the intermediate layer.
The agent of the intermediate layer orders the reactive
agents to create the new connectors necessary to the
new navigation plan of the mobile robot.

5. Scenario of navigation of the mobile

robot on an environment with obstacle

In this scenario the mobile robot is in part 1 of the plan
(Figure 11), the final position is entered by the user.
The obstacle will be placed on the first trajectory of
the X axis. The mobile robot starts with an approach
according to the X axis. After the detection of the
obstacle by the sensor, the robot slows down for
stopping, it makes a rotation of 90° on itself. Then the
obstacle is avoided by choosing a vertical trajectory as
soon as the obstacle is not located on the X axis
trajectory, the mobile robot begins a new approach on
the X axis, then finishes by an approach on the Y axis
to achieve its finale goal.

This scenario is produced on the level of the
architecture by applying the following steps:
5.1 The mobile robot will use the
configuration of the architecture,
approach X.

5.2 The detection of obstacle and creation of
components: when the sensor detects the obstacle on
its trajectory it emits one signal towards the “Scan”
component, which will send an event towards multi-
agents platform (Figure 13-a). The event will be
detected by its reactive agent which transmits it
towards its intermediate agent. The agent of the
intermediate layer identifies the event and transmits
the information to its superior agent. The superior
agent establishes a plan which will be sent towards the
intermediate agent. The intermediate agent orders to
its reactive agents to create and activate new
components and their connections (Figure 13-b). The
information on the reconfiguration goes up towards

starting
and starts its

111

Part 4

Part5

N 2o

X Approach
I Y Approach

I position

Figure 11: The navigation of the mobile robot in an environment with obstacle

Parameter

—

Planification

<

X Approach

C

Simulation

l@¢-| Scan |

Ly

Planification

- »

P Objective

Y Approach

E

€| Scan [

Simulation

Figure 12 : Architecture of the navigation of the mobile robot in an environment with obstacle

the agent of the superior layer so that it will have a
precise sight of the architecture state.

5.3. The destruction of the useless components for new
planning of the navigation: the component “Analysis”
collects information relating to the position of the
robot as well as information coming from the “Scan”
component. Then, this “Analysis” component activates
both the “Escape” component which starts its plan to
avoid the obstacle and the “Simulation” component for
displaying the movement. If the obstacle is out of the
trajectory of the mobile robot, the component
“Escape” sends an event towards the platform to
restore the original configuration of the architecture
(Figure 13-c). This event is detected by the agent of
the reactive layer and transmitted to its agent of the
intermediate layer so that it can be identified. After the
identification, the intermediate agent sends
information towards its superior agent. The superior
agent will establish again so that the component
“Escape” and “Simulation” and all their connections
are destroyed. This plan will be sent to the
intermediate agent which orders to its reactive agents
related to these components and connections to begin
the destruction. These agents will be themselves
destroyed thereafter (Figure 13-d). The components
“Scan” and “planning” will be connected by the
reactive agent (Figure 13-e). All of these modifications
are transmitted to the superior agent.

5.4. The creation of new connectors for new planning
of navigation: the “Planning” component defines new
plan to reach the finale point. The component
“Planning” emits an event towards the platform
(Figure 13-f) so that new connector will be created to
connect component “X Approach” to component
“Planning” (Figure 13-g) with the aim to reactivate the
approach on X axis. The event is collected by the
reactive agent and is sent towards its intermediate
agent which will identify the new event, and send it

towards the superior agent. This agent will establish a
new plan. In this way the mobile robot will start its
movement according to the X approach, then it will
reach the finale point by an Y approach.

6. A real application

After we have established a Pipe-and-Filter
architecture for the navigation of a mobile robot in an
environment with obstacle, we have programmed an
application (Figure 14) which shows well how the
mobile robot move on the our simulator. The user has
a user-friendly and intuitive interface for various
simulations. Thus, it can parameter the initial and final
position of the robot as well as the position of the
obstacle on the screen of our simulator and also the
range of the sensor.

During simulation, the user can choose different
architectures (with or without multi-agents platform).
The importance of our platform in the maintenance of
the dependability and performance in any
circumstance, is well illustrated in the Figure 15.
Without the intervention of our platform the robot
crash on the obstacle. In Figure 16, we can see that the
initial Pipe-and-Filter architecture is modified by our
platform. During the simulation the robot detects the
obstacle, and the architecture is dynamically
reconfigured, so that the mobile robot avoids the
obstacle and reaches the finale point. The user can
parameter in the “Scan” component the range of the
sensor via the platform. If the user raises the range of
the sensor then during the simulation the robot detects
earlier the obstacle on its trajectory.

112

Parameter Planning X Approach Scan Planning Y Approach Scan

Simulation Simulation
Figure 13-a

Parameter Planning
Simulation Simulation
Y Approach Scan Planning

Figure 13-b Simulation

Parameter Planning X Approach Scan Analy Planning

Simulation Simulation

Y Approach Scan Planning

Figure 13-¢ Simulation

Delete components

Parameter Plannino

Simulation

Planningo

Figure 13-d

Parameter Planning g Planninge

Simulation

Y Annroach Scan Planning

Figure 13-e

Simulation

113

Plannino Plannino

Simulation

Y Annraach Plannino

Figure 13-f

Simnlation

Parameter

Plannino Plannino

Simulation

Figurel3-g

Simnlation

Figure 13 : Scenario of navigation of the mobile robot on an environment with obstacle

Initialisation of application

Removal of view

Configuration of the rang of the captor

Final position of robot

Position of robot at real time

State of architecture at real time

Plan

>

Figure 14 : The presentation of the simulator

almizg
Er ey

IS AT

Fume g Carfsn Seda
Posen et VT

[2lo/a) sale)
Vi pasecn, O i

Pt % [¥
Ihrarapor B e sfben, o S |
L e] S |

[SR e

Figure 15: The crash of the robot on the obstacle without using

our platform using our platform

114

ST
e e
o psnce. S e o

Opamiapes o ontugas s o asrdectas.
2 Hiettor of ol e piem]

Figure 16 : The mobile robot avoids dynamically the obstacle by

7. Conclusion

The right architecture is the first step to success. The
wrong architecture will lead to calamity. We can
identify causal connections between design decisions
made in the architecture and the qualities and
properties that result downstream in the system or
systems that follow from it. This means that it is
possible to evaluate an architecture, to analyze
architectural decisions, in the context of the goals and
requirements like variability management that is levied
on systems that will be built from it. The architecture
then becomes the basis of systematic development and
evolution of software/hardware systems. It is clear that
a new architecture that permits the dynamism
reconfiguration while ensuring the use of software in
multiple contexts and the ability of software to support
evolution and changing requirements in various
contexts are needed. This paper presents a new
platform based multi-agents which monitors the global
architecture of a system and manages the provided
variability. It will achieve its functional and non
functional requirements and evaluate and manage
changes in such architecture dynamically at the
execution time. In this paper we have developed our
generic platform and we have applied and
implemented it on the Pipe-and-Filter architecture.
This software/hardware architecture is used for
controlling a mobile robot to follow a trajectory
towards the desired position in the presence of
obstacles. We have showed by some scenarios the
dynamic reconfigurations related to the improvement
of the variability management through the structuring
investigation of fault-tolerant component-based
systems at architectural level of Pipe-and-Filter style.
Our approach can be extended to deal with other
architectural “non-functional” quality attributes in the
context of developing complex and reliable systems.
References

1. M. Shaw, D. Garlan, Software
Perspectives on Emerging Discipline,

2. Prentice-Hall, Inc. , Upper Saddle River, New Jersey,
1996.

3. D. E. Perry, A. L. Wolf, Foundations for the Study of
Software Architecture, Software Engineering Notes,
17(4):40, Oct. 1992.

Architecture,

4. B. Randell and J. Xu, The evolution of the recovery
block concept, In software fault tolerance, chapter 1.
John Wiley sons Itd. 1995

5. M. Sloman and J.Kramer, Distributed systems and
computer networks. Prentice hall. 1987

6. D. Sotirovski. Towards fault tolerance software
architectures. In R. Kazman, P. Kruchten, C. Verhoef,
and H. Van Vliet, editors. Working IEEE/IFIP
Conference on software architecture workshop, pages
7-13, Los Alamitos, CA, 2001.

7. P. Asterio de C. Guerra et al. An Idealized Fault-
Tolerant Architectural Component, In proceeding of
WADS: Workshop on Architecting Dependable
Systems. Orlando, USA 25 May 2002.

8. S. S. Gokhale and al. Integration of Architecture
Specification, Testing and Dependability Analysis, In
proceeding of WADS: Workshop on Architecting
Dependable Systems. Orlando, USA 25 May 2002.

9. R. De Lemos and al. Tolerating Architecture
Mismatches, In proceeding of WADS: Workshop on
Architecting Dependable Systems. Orlando, USA 25
May 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

M. S. Dias and D. J. Richardson, The role of Event
Description in Description in Architecting Dependable
Systems. In proceeding of WADS: Workshop on
Architecting Dependable Systems. Orlando, USA 25
May 2002.

B. Shroeder, On-line monitoring, IEEE Computer, vol.
28, n. 6, June 1995. pp. 72-77.

R. Snodgrass, “A Relation approach to monitoring
complex systems”, ACM Trans. Computer Systems,
vol. 6, n. 2, May 1988, pp. 156-196.

C. Liu and D. J. Richardson, Architecting dependable
systems through redundancy and just-in-time testing. In
proceeding of WADS: Workshop on Architecting
Dependable Systems. Orlando, USA 25 May 2002.

M. Brandozzi and D. E. Perry, Architecture prescription
for dependable systems, In proceeding of WADS:
Workshop on Architecting Dependable Systems.
Orlando, USA 25 May 2002.

L. Bass, P. Clements and R. Kazman, “Software
architecture in practice” SEI Series, Addison-Wesley.
January 1998.

A. Ramdane-Cherif, N. Levy and Francisca Losavio.
Dynamic Reconfigurable Software Architecture:
Analysis and Evaluation.. In WICSA’02: The Third
Working IEEE/IFIP Conference on Software
Architecture. Montreal, Canada, August 25-31, 2002.

P. Sargent. Back to school for a brand new ABC. In: the
guardian, 12 March 1992, p28.

Ovum Report. Intelligent agents : the new revolution
software, 1994.

115

Software Testing Requires Variability

Henrik Baerbak Christensen
Department of Computer Science
University of Aarhus
DK-8200 Aarhus N
Denmark
hbc@daimi.au.dk

1 Motivation product code base i.e. developers add code that is demanded
to make the tests possible rather than demanded by prod-
Software variability is the ability of a software system or uct requirements. As an example, testing algorithms that
artefact to be changed, customized or configured for use independ on random number generation are tedious unless it
a particular context.Variability in software systems is im- is possible for the test cases to dictate the exact sequence
portant from a number of perspectives. Some perspectivef “random” numbers. The problem with this instrumenta-
rightly receive much attention due to their direct economic tion is that product code easily becomes polluted with in-
impact in software production. As is also apparent from the strumentation code and even testing code. This enlarges
call for papers these perspectives focus on qualities such aghe code base, may introduce faults on its own, and low-
reuse adaptability, andmaintainability. ers maintainability. We therefore find it important to ensure
However, the wish for introducing variability points into that product code and testing code is completely decoupled
software systems can also come from sources that are les§0 that no testing code or instrumentation code can be found
directly coupled with economic and end-user aspects butin the product code.
more coupled to the development process itself. One source Both examples demonstrate small but recurring prob-
it the wish for high quality software through test-driven lems. They therefore introduce expenses associated with
software development as advocated by eXtreme Program+est-driven approaches that accumulate if not taken care of.
ming [1]. We will explore this perspective in this position In our view, these problems are best faced by perceiving
paper. them not as testing problems but as a question of introduc-
In test-driven software development, the development of ing variability into the code base. This viewpoint has several
functionality and tests are intertwined in an iterative, short- benefits both for the testing aspect as well as for the result-
cycled, development process. The developed test cases arf@g product code base. And, it adds yet another perspective
maintained throughout the lifetime of the product and are to the concept of variability.
run very often to ensure that functionality introduced does
not invalidate the functionality of the existing code base. 2 Variability Points for Testing
Systems developed this way “grow functionality”, as func-
tionality is added in an incremental fashion where each ad- You can perceive the problems of maintaining test cases
dition ideally leads to a “micro release” that is limited but and instrumentation product code as variability problems.
operational and is able to be evaluated by the customer. In the first case, the aim is to reduce the number of
The requirement to keep the test cases running at allchanges in the product code base that require changes in
times puts high demands on the existing code base. Addinghe testing code. As we implicitly assumes a testing ap-
functionality often introduce small changes to the code baseproach biased towards black box testing this means that the
that invalidates the test cases—often in trivial but still costly contracts of the product code should remain as stable as pos-
ways. As a trivial example, it may be necessary to add asible as the code base evolves. Good object-oriented mod-
parameter to a method signature of some class in the existeling and design techniques are of course essential here, but
ing code base. While the cost of this may in itself be low, introducing variability points using well known design pat-
a higher cost is usually associated with rewriting the test terns into the product code base is a key to further main-
cases—a major reason why tests have a tendency to becomgin stability. The characteristics of these variability points
invalid and hence useless. are that they allow the testing code to configure the prod-
Another problem with testing is instrumentation of the uct code appropriately for a certain test situation using the

116

same variability points as is introduced to augment (“grow”) code can instantiate a null object strategy for the ad-
the product code base with new functionality. Thereby the vanced functionality and thus eliminate the unwanted
product code base contracts/APIs are stable. A small exam- side effects for the basic testing.
ple is given below.

In the instrumentation case, the aim is to avoid introduc- 3.1 Example
ing test specific code into the product code thereby pollut-

ing it. Here variability points can be non-intrusively intro- To quantify some of the above abstract points of view, a
duced into the product code base that serves as hooks fogmall example may help to illustrate. The case is an imple-
the testing code. Thus the testing code can create hook inmentation of the board game Backgammon that has served
stances that when inserted into the prOdUCt code’s Variabilityas Compu|30ry exercise in a university-|eve| programming
points can monitor internal state (to aid e.g. white-box test- cqurse.
ing) and/or force certain conditions by manipulating state A gomain model of Backgammon is complex but can
information to test special cases that is otherwise difficult to o grown naturally through a test-driven process. First ba-
setup. In the product these variability points will contain sjc apstractions are made operational: players, dice, points,
no-operation hooks, unless they can be used to checkers, bars, and basic movement. Second comes the
complex subject of validating moves. Third, one needs logic
3 Central Design Patterns to control the logical flow of the game. And finally, if a
graphical user interface is required an appropriate coupling
We have some experience with the sketched approachmust be defined and implemented.
primarily from teaching at the university level. While the At the basic level, you want to test basic movement of
scale of implementation effort tackled in a teaching context cpeckers on the points—essentially viewing the board as a
is necessarily much smaller than those faced in an industrialstryctured collection of checkers. As we have not yet intro-
context, we still do not find that this invalidate the premises gyced validation according to the backgammon rules, this
on which we draw our conclusion. The problems we 100k may include tests that accept that both red and black player
into appear at the unit testing level and at the individual vari- have checkers on the same point. Moving to the phase
ability point level. The problem of scale primarily shows \yhere the game is augmented with move validation this test

when the number of variability points grows large. must either be removed, rewritten, or (as we propose) view
Below is a list of design patterns that are very helpful (@ll yalidation as a variability point by designing it as a vali-
from the Gang of Four book [2] except when cited): dation strategy that the move code delegates to. Thus the

] basic level test code can instantiate a null validation strat-
* Abstract factonyallows us to define a number of hook g4y 4 small change, and thereby keep all basic level tests
instances for a set of variability points using one ob- 46t
ject, the factory. This is important becguse it al- Validation of moves depends on the dice thrown. Die
lows the produqt che contracUAEl to stay intact even throws are by nature random and systematic testing in a ran-
though new variability points are mtroduced_. You of dom world is, well, counter-productive. The test code needs
course need to f'idd a new creator method n the fac'to control the outcome of the dice to systematically test the
tory as well as introduce calls to the_ hook '”Sta’_‘ce validation code. Again, treating the die as a variability point
from the prgdyct co_de but these are simple Operations;g o neficial. We introduce a strategy, a die manager that the
that only minimally influence the product code base. game utilizes. The test code can instantiate a subclassed die

« Mediator combined withstrategyor stateallows us manager where it has the ability to dictate the sequence of
to partition and delegate logical tasks in the prod- die values thrown. Thus no changes are introduced in the

uct to *handlers” or “managers’ that only collaborate product code at all while we still retain all the power of

through the mediator. Typically the concrete handlers cOntrolin the testing setup.

are instantiated by an abstract factory, allowing the ~ The small examples also show how tests influence the
testing code to configure handlers. product code design towards modular and compositional de-

sign. The “trick” that allows disabling the validation code
e Null object[3] is important because it allows us to by making it a variability point has laid the way for intro-
“turn off” unwanted functionality/strategies in the ducing alternative sets of rules simply by substituting the
product code from the testing code. For instance validation strategy. While there seems less use for alter-
adding advanced functionality may influence testing native dice it is still an example that the testing perspec-
of basic functionality in unwanted ways. If this influ- tive promotes good programming practice, namely to isolate
ence is constrained to be done through invoking meth- specific and well-defined responsibility into separate com-
ods on appropriate handlers/strategies then the testingponents.

117

4 Discussion

One may argue that introducing variability points in the
product base as a tool to aid testing quickly leads to a un-
maintainable situation as the product code essentially be-
comes polluted with them. This is partly right, and one
of the reasons that variability management is very interest-
ing also from the perspective advocated within this paper.
Participation in the workshop will hopefully provide insight
that makes the perspective more scalable.

One plausible technique that addresses the scalability
problem to some extent is the use of appropriate design
patterns, for instancabstract factoryessentially allows the
definition of a large number of hook instances to be grouped
and the product codes contract to stay intact, as outlined in
the discussion above.

We have found that the testing perspective provides a first
benchmark for evaluating adaptability and flexibility of a
product code base as it essentially is a first instance of reuse
and adaptation.

We have also found that testing via variability promote
code designs that are highly modular, compositional, and
adaptable.

About the Author

Henrik Baerbak Christensen is assistant professor at De-
partment of Computer Science, University of Aarhus, where
he also received his Ph.D. His research interests are soft-
ware architecture, design patterns and frameworks, software
configuration management, object-oriented techniques, and
teaching.

References

[1] K. Beck. Extreme Programming ExplainedAddison-
Wesley, 2000.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissidee:
sign Patterns: Elements of Reuseable Object-Oriented
Software Addison-Wesley, 1994.

[3] B. Woolf. Null Object. In R. Martin, D. Riehle, and
F. Buschmann, editor®attern Languages of Program
Design 3 pages 5-18, 1997.

118

Timeline Variability: The Variability of Binding Time of Variation Points

Eelco Dolstra Gert Florijn
Utrecht University, P.O. Box 80089, SERC, P.O. Box 424,
3508 TB Utrecht, The Netherlands 3500 AK Utrecht, The Netherlands
eelco@cs.uu.nl florijn@serc.nl
Eelco Visser

Utrecht University, P.O. Box 80089,
3508 TB Utrecht, The Netherlands
visser@cs.uu.nl

1. Introduction ing features at runtime proceeds through entirely different
interfaces than changing them at build time. Similarly, the

Timeline variability is the ability of a software system Apachehtipd webserver allows server extensions to be
to have variation points bound at different moments of the included at build time or at load time, but through different
system’s life-cycle. configuration mechanisms. Microsoft Office 2000 allows

Virtually every non-trivial software system exhibitari- components to be _installed either at install time proper or
ability: the property that the set tdatures— characteristics ~ ©n demand, at runtime.
of the system that are relevant to some stakeholder— can The concept of timeline variability—that isariability
be changed at certain points in the system’s life-cycle. TheOf binding time—should not be confused with the binding
parts of the System that imp|ement the ab|||ty to make such time of variation pOintS. In this paper we illustrate timeline
changes are calledhriation points Selecting some variant ~ variability through two case studies, Apache and the Linux
supported by a variation point is calléinding the vari- kernel, and show that the two main technical issues in time-
ant. Every variation point has at least one associated- line variability areinconsistent configuration interfacasd
ing time the moment in the system’s life-cycle at which the ad hoc implementation mechanisrivge also provide some
variation point can be bound. A more detailed exposition of directions for future research.
this terminology can be found in, e.d.| [7, 2].

For example, the decision to build an operating system
kernel with multiprocessor support, or to build a “light” or
“professional” version of a word processor, might be im-
plemented at build time. On the other hand, the decision In this section we show some examples of timeline vari-
to include support for some brand of hard drive in an op- ability in real systems. As we shall see, implementation of
erating system, or to use some particular language for spelisuch variability is problematic. Consider, for example, a bi-
checking in a word processor, might be made at runtime. ~ nary variation point that is bound at runtime, implemented

Generally, one would like variation points to be as flex- in C. This is not hard to implement:
ible as possible with regard to binding time. That is, ide-
ally one wants to have the ability to bind a variation point if (feature) f() else g();
at build time, installation time, runtime, and so on. This
leads to the notion afimeline variability that certain fea- Moving this variation point to build time is not hard either
tures can be bound aeveralstages of the life-cycle. We using conditional compilation:
do not formalise the terrtimelinehere. Intuitively, we use
if to refer to the set of distinguished moments during the #if FEATURE
build and deployment process where a user can potentially ()
select variants. For example, the Linux operating system #else
kernel allows functionality, e.g., device drivers, to be in- a0
cluded either at build time or at runtime. However, chang- #endif

2. Examples

119

But suppose we wish to allow for this feature to be bound calledinit_module() that is linked into the executable
both at build time and runtime. A possible implementation image.

would be: The Linux kernel solves this problem through the tech-
) nigue of emitting certain data in specially designased-
#!f FEATURE_BOUND_AT_BUILD_TIME tions of the executable image. An invocation of the macro
#if FEATURE __initcall(f) arranges for the address ¢fto be
f0 placed in the special sectiomitcall.init ;
#else
[o[] typedef int (*initcall_t)(void);
#endif
#else #define __initcall(f) \
if (feature) f() else g() static initcall_t __initcall_##f \
#endif __attribute__ ((unused,__section__\

o o ("initcall.init"))) \
which is not very elegant. For more complex variation = f

points, the situation becomes even worse.
A module can declare some initializef by invoking

2 1. The Linux kernel the macromodule_init(f). For statically linked
modules, module_init expands to an invocation of
__initcall , and so the address gfis emitted in the
Jdnitcall.init section. We can then iterate through
all initialisers as follows:

The Linux kernel provides the basis for several variants
of the GNU/Linux operating system. The kernel’s job is to
virtualise the hardware (e.g., provide multitasking and vir-
tual memory) and abstract from it (e.g., provide a unifying jnjtcall t *call = & initcall start:
interface to different types of storage devices or file sys- go { T B
tems). (*call)();

The Linux kernel was originally implemented as a tradi- call++:
tional monolithic kernel. In this situation all device drivers } while (call < & _initcall_end);
are statically linked into the kernel image file. Conditional

defines and makefile manipulation are used to selectivelyThe symbols __initcall_start and

include or exclude drivers and other features. __nitcall_end are emitted at the start and end
The disadvantage of this approach is that it closes a largeof the..initcall.init section by the linker script that

number of variation points at build time. Hence, the ker- guides the linker.

nel was retro-fitted with anodulesystem. A set of source For dynamically loaded modules, on the other hand,

files constituting a module can be compiled into an object module_init(f) emits a symboinit_module as an
file and linked statically into the kernel image, or compiled alias forf. The module loader will simply look this symbol
into an object file that is stored separately and may be dy-up and call it.

namically linked into a running kernel. Modules may refer ~ Hence, we achieve timeline variability of module activa-
to symbols exported by other modules. A tool exists to au- tion extending to build time and runtime, through a combi-
tomatically determine the resulting dependencies to ensurghation of preprocessor, compiler, and linker magic.

that modules are loaded in the right order.

The implementation of the variation points realised Cross-cutting features One problem facing the scheme
through the module system is for the most part straight- implementing the module system is that it is closely tied
forward. For example, operations on block or character de-to the structure of source modules; it is therefore difficult
vice files are implemented through dispatch through a func-to modularise features that are not localisable into one or a
tion pointer; this is a feature of standard C. However, thesefew distinct source modules, i.e., cross-cutting features. An
function pointers must at some point kEgjistered(i.e., be example is whether the kernel is built for uniprocessing or
made known to the system), and this cannot be done in stanfor symmetric multiprocessing (SMP). In an SMP configu-
dard C. In particular, every module exports an initialisation ration, many kernel data structures have to be guarded care-
function which must be called during kernel initialisation, fully against concurrent access; this affects a large amount
in the case of statically linked modules, or at module load of code. Quantitatively, we can get an indication of the
time, in the case of dynamically loaded modules. The C degree to which a feature cross-cuts a system by count-
language, however, does not provide a mechanism to iterateng theifdef s conditionalised on the feature variable. In
over a set of functiomamesthat are not statically known. this case, we see théifdef CONFIG_SMP occurs more
For example, we have no way of calling every function that 540 times in 250 source files of version 2.4.10 of the

120

kernel. Because they impact so many source componentsAnalysis Note that neither Apache nor the Linux kernel
cross-cutting features are not very well suited for dynamic take advantage of static linking beyond the fact that it may
loading. Additionally, variation points such as SMP support be a necessity, e.g., dynamic linking may not be available
affect the definition of data structures, which makes it prac- on some platforms on which Apache is configured, pro-
tically impossible to bind them at any time later than build vides simplified runtime characteristics, or, in the case of
time. the Linux kernel, may be perceived as a security feature
(the absence of dynamic loading of kernel modules makes

Ana|ysis A prob|em of the Linux kernel is its monolithic it a little bit more difficult to subvert the kernel). Complle
distribution. If a feature is required that is not part of the dis- time knowledge of the module configuration does not lead
tribution, either the kernel must be patched (e.g., the JFS fileto more efficient code, since this requires cross-module op-
system) or the code must be compiled separately, outside ofimisation; many C compilers are not capable of this.

the kernel source tree (e.g., the ALSA sound system). Note

that the latter solution makes static linking into the kernel 2.3. Issues

impossible, the build mechanism is totally different, and it

creates more work for users. Dynamic source tree cOmpo- So what are the issues in timeline variability? First,
sition [3] can alleviate this problem. though some features can be bound at several moments

Note that the timeline variability of the module system during the life-cycle, the configuration interfaces tend to
does not directly extend to Startup time, i.e., the Ioading of be different for each moment. For examp|e’ in the case
the kernel, since the kernel may not have the ability to load of the Linux kernel, a module may be included at build
kernel modules at boot time. For example, the modules sup-time through the use of an interactive configuration tool that
porting the storage medium and file system on which the shows variants, dependencies between features, and so on.
modules are stored must be Statica”y linked into the kernelOn the other hand, induding a module at runtime happens
to prevent a chicken-and-egg problem. In essence, the timepy running themodprobe command; an entirely different
line variation point has been closed with respect to startupinterface. Likewise, Apache modules can be added at build
time by the problem domain. However, anitial ramdisk time through a Autoconfonfigure script, or at startup
(which is part of the kernel's image) may be used to store time by editing a configuration file.
the required modules, thus extending the timeline variabil- second, the techniques used to implement timeline vari-
ity to startup time. ability aread hocnecessarily because the underlying lan-
guages do not offer the required support. Providing a varia-
tion pointeitherat build timeor at runtime is not hard, but
providing it at both requires quite a bit of “magic”.

The Apachehttpd server is a freely available web
server. In order to support various kinds of dynamic con- 3
tent generation, authentication, etc., the server provides a
module system. Modules can be linked statically, or dynam-
ica”y, at Startup time. Dynamica”y loaded modules can be We have seen that timeline Varlablllty causes difficulties
Comp"ed inside or outside the Apache source tree. at two different |eve|S, nam8|y, in thmplementatiomnd in

Apache faces the same problem as the Linux kernel: howthe configurationof the system.
to register a variable set of modules (i.e., how to make stat-
ically included modules known to the core system)? The |mplementation The main implementation issue is that
solution used by the Apache developers is to have the conariation points are not first-class citizens in conventional
figuration script generate a C source file containing a list of programming languages and development environments,
pointers to the module definition structures: thatis, they are not represented explicitly and cannot be ma-
nipulated directly. Rather, the implementation of a variation
point happens through some mechanism that is specific to
the binding time, e.g., conditional compilation or dynamic
loading of shared libraries. This means that moving a varia-
tion point to a different binding time, or supporting binding
Y at multiple binding times, requires explicit and often non-

' trivial modification to the system.
Note that this solution is again, in a sense, outside of the C A partial solution to this problem is the use sffaged

2.2. Apache

. Future Work

module *ap_preloaded_modules[] = {
&core_module,
&access_module,
&auth_module,

language; we need tgenerateC code (i.e., externally) in
order to deal with these open variation points.

compilation For example, partial evaluation may be used
to move an apparent runtime variation point to build time.

121

The converse—moving from build time to runtime—is gen- is to find a suitable way to speciffj. Note that this is just a

erally harder. For example, it is not obvious how to deal usability issue; the model is as described above.

with conditional data structure definitions. It may be argued that implementation restrictions should
not appear in the feature model (e.g.lih [1], p. 117). How-

Configuration The main problem here is that every stage €Ver, they are required to generate configuration systems. In
in the life-cycle tends to present a different configuration addition, we can identify several types of constraints. First,
interface to the user. This is particularly annoying for vari- there are constraints that are inherent to the problem do-
ation points that have several binding times. In Thans- main; these arise from the domain analysis. Second, some
parent Configuration Environmen(§raCE) project we aim constraints result from implementation restrictions. This
at generalising system configuration interfaces. TraCE con-may well be the largest set in typical systems. Finally, some
sists of a generic configuration interface parameterised withconstraints are not forced by the domain or implementation,
a formalised feature model. but rather are added by some stakeholder. (for example, a
In approaches such as FODA [4] feature models are de-SyStem administrator restricting some end-user configura-
scribed as graph-like structures, where the edges betweeRility). The specification language for the feature model
features denote certain relationships such as alternatives anghould allow these constraints to be specified separately.
exclusion. The model therefore describes a setbfl con- .
figurations that satisfy all constraints on the feature space.4' Conclusion
Apart from being used during analysis and design, such o .))
models can also be used to drive the configuration process Timeline variability makes the configuration of software
directly. For example, the CML2[5] language was designed Systems more flexible by leaving open the decision about
to drive the configuration process of the Linux kernel on the the binding time of a feature. However, the implementa-
basis of a formal feature model of the system. tion of timeline variability is often ad hoc and presented
However, these models providestaticview of the con- through inconsistent configuration interfaces. Better sup-
figuration space: a configuration is either valid or it is not; port for timeline variability requires features models to de-

no timeline aspects are taken into account. In order to modelSCribe the variability of a systemcludingits timeline vari-

timeline aspects, it is necessary to take into account that@Pility, and transparent configuration environmenthich
some feature selections, i.e., bindings of variation points provide an abstract interface to the details of configuration

are valid only on certain points on the configuration time- Me&chanisms required
line. Therefore, the feature model presented in this section
does not place constraints on configurations, but rather on

transitions between configurations. [1] K. Czarneckiand U. W. Eiseneck&enerative Programming
Formally, a feature model for a system with a statically — Methods, Tools, and Applicatianaddison-Wesley, June

fixed set of variation points has the following elements: 2000

[2] L. Geyer and M. Becker. On the influence of variabilities
on the application-engineering process of a product family.
In G. J. Chastek, editoRroceedings of the Second Software

. . . . - . Product Line Conference (SPLG2)olume 2379 ofLecture
¢ A configurationC' is a mapping from variation points Notes in Computer Sciencaugust 2002.

to states, that is, a functiofl — Upc p.Sp. [3] M. de Jonge. Source tree composition. Fmoceedings:
Seventh International Conference on Software Reusdame
2319 ofLecture Notes in Computer Scien&pringer-Verlag,

2002.
[4] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.

Peterson. Feature-oriented domain analysis (FODA) feasi-

References

e A set of named variation point8 and, for each varia-
tion pointp € P, the set of named statés.

e Aninitial configurationcy € C.

e ArelationT C C x C expressing valid configuration
transitions; i.e., it constrains configurations. As noted

above, it is not sufficient merely to describe valid con- bility study. Technical Report CMU/SEI-90-TR-21, Soft-
figurations, since not every Va|_|d con]‘.lgura’tllon can be ware Engineering Institute, Carnegie Mellon University, Pitts-
transformed into any other valid configuration. How- burgh, PA, 1990.

ever, the set of valid configurations follows by com- [5] E. S. Raymond. The CML2 language: Python implemen-
puting the transitive closure of the sgfy} under the tation of a constraint-based interactive configurator. 9tim

T relation. International Python Conferenc#arch 2001.

[6] A. van Deursen and P. Klint. Domain-specific language de-
Note that static feature models such as FODA [4], FDL sign requires feature descriptions. Submitted. _
[6], and CML [5] can be transcoded into this model; they are [/} J.fvan_ i_Ll'_rp’_‘]' cht’SCh’ anddM. ?Vahnbleﬁ:g‘ Ondt.he no;'on
just different ways of expressing the valid-transition relation SVI\éaSrfz'égllxusg% S\;V;ig%][.) roduct fines. - [rroceeedings o
T'. Indeed, the main problem in making this approach useful '

122

Enabling Reconfiguration of Component-Based Systems at Runtime

Jasminka Matevska-Meyer and Wilhelm Hasselbring
Department of Computing Science, Software Engineering Group
University of Oldenburg, Germany
{matevska-meyer, hasselbrir@informatik.uni-oldenburg.de

1 Introduction e Parameterised Contracts [8] as a method for formal
component specification, adding a formal run-time
The development of software systems iterates over analysis, component description technique,
design, implementation, and deployment. Subsequent iter-
ations require refactoring [2] of design and reconfiguration
of deployed systems. At least three software engineering
disciplines are involved when dealing with runtime recon- o extending C2-ADL [11] with a concept of containers
figuration of component-based software systems: to establish modelling of a deployment and runtime
properties of a system,

e using graphs [5] to describe dependencies among com-
ponents and considering run-time concerns,

e software architecture,

e software Conﬁguration management, and This combination shall be the way to prOVide a foun-
dation for achieving our goals. Figure 1 displays our sug-
e software component deployment gested system configuration. A system configuration is de-

These disciplines contribute in various ways. Software Signed as a hierarchy using three GoF design patterns [3]:

architectures play a central role at design, describing a sysCOMPposite, decorator and adapter
tem model and specifying it in a formal way using some
architecture description language [7]. Configuration man-
agement focuses on implementation, defining a configura- e The Decorator pattern allows functional changes to
tion from various component versions and building a system components,
from this configuration [6]. Component deployment ad- _
dresses the deployment phase, managing all dependencies ® 1he Adapter pattern (wrapper) allows changes of their
among the involved components and eventually producing ~ Interfaces
arunning system [1, 12].

Although these three activities may evolve indepen-
dently and provide their own models of the system, they are
all involved when reconfiguration is required (roundtrip en-

gineering). Applying planed changes to a deployed system Our Reconfiguration Manager (a special type of connec-

usually triggers changes in all those system models to Obtair‘tor) is activated on evemgconfiguration requestt consists
a consistent system after reconfiguration. A major prob- of:

lem to be solved here is managing (run-time) dependen-

cies among the components. Therefore, we need a formal e Reconfiguration Analyzer
system model, which covers components, their interconnec-
tion, communication, and run-time behavior, integrating all
the system models of software architecture, configuration o Consistency Manager
management and component deployment [13].

e Composite is required to build a system configuration,

Furthermore the concept of containers allows us to
manage the process of run-time reconfiguratioruastime
re-deploymentf components.

e Dependency Manager

e Reconfigurator

2 An Approach to Enabling Reconfiguration The Reconfiguration Analyzer takesreconfiguration
of Component-Based Systems at Runtime request analyzes and classifies the requested change. Our
Dependency Manager monitors the run-time dependencies
We aim at Reconfiguration of Component-Based Systemsamong components, determines a minimal set of change-
at Runtime. Our proposed approach employs: affected components and sendsheange requesfor each

123

ComponentRunTimeStates

change completed
P > free | — blocked / ready to change
- L change request accepted

execution started
execution finished
active & not busy

Connector no longer used

use requested

use requested no longer used

- execution finished -
passive & busy active & busy
execution started

Figure 2. Component Run Time States

interface
PrimitiveComponent

SystemRunTimeStates

Figure 1. System Configuration

passivate & isolate subsystem

.W ready to reconfigure

reconfiguration successful

reconfiguration failed

involved component to the reconfigurator. The Consistency
Manager controls the system. We divide its activities into:

reconfiguration request accepted

e Pre-Reconfiguration: checking the static consistency
of the intended system configuration and moving a | roiiack completed
consistent system into geady-to-configure-stateor
refusing the reconfiguration request on failure.

e Post-Reconfiguration: checking the (run-time) consis-
tency of a changed system and, on success, confirming
a reconfiguration, or sendingrallback requesto the
reconfigurator.

Figure 3. System Run Time States

The Reconfigurator realizes the reconfiguration as a de-
pendent change transaction [4]. It starts a transaction, trans-
fers all affected components intokdockedstate, isolates
an affected subsystem, applies the changes, and sends
consistency-check-requéstthe consistency manager. On
success it commits the transaction, on failure it initiates
a rollback and transfers the changed or unchanged systend Summary
into a running state.

Figure 2 displays all states a component can take at sys\We present an approach to enabling reconfiguration of
tem runtime. Just after it has been deployed we assume thatomponent-based systems at runtime. This approach com-
it is free We distinguish between the stategsy which bines the disciplines software architecture, configuration
meangs in useandactive which meanss executedThere- management and component deployment.
fore, a component can't directly move into a stative As an implementation platform we are using J2EE-
& busy. Only free components can be transferred into a Technology [10]. We are intending to extend its Specifi-
blockedstate and be changed afterwards. This means, ourcation of the deployment process with a subproces®-of
reconfiguration takes place while the system is running, we configuration[9]. Currently, we are investigating the possi-
are not trying to achieve an ad-hoc component change. bilities to control or manipulate the deployment process at

We assume that a (sub)system can take only four stateglifferent application servers and develop a methodology for
at runtime:running, ready to configure, reconfiguring and determining and formally specifying dependencies among
restoring(Figure 3). For each state a corresponding part of already deployed components.

the reconfiguration manager initiates and controls possible
cahanges from one state into another.

124

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

A. Carzaniga, A. Fuggetta, R. S. Hall, A. van der Hoek,
D. Heimbigner, and A. L. Wolf. A characterization frame-
work for software deployment technologies. Technical Re-
port 857-98, Department of Computer Science, University
of Colorado, Apr. 1998.

M. Fowler. Refactoring: improving the design of existing
code Addison-Wesley Longman Publishing Co., Inc., 1999.
Gamma, Helm, Johnson, and Vlisside®esign Patterns
Elements of Reusable Object-Oriented Softwaf@bject-

Oriented Technology. Addison-Wesley, Massachusetts, (11]

1995.

J. Kramer and J. Magee. The evolving philosophers prob-
lem: Dynamic change managemeHtEE Transactions on
Software Engineeringl6(11):1293-1306, Nov. 1990.

M. Larsson. Applying Configuration Management Tech-
nigues to Component-Based SysterRbD thesis, Uppsala
University, Sweden, Dec. 2001.

M. Larsson and I. Crnkovic. Configuration management for
component-based systems.HAroceedins of the Tenth Inter-
national Workshop on Software Configuration Management
Toronto, Canada, May 2001.

N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering
26(1):70-93, 2000.

[8] R.H.ReussneParametrisierte Vertige zur Protokolladap-

tion bei Software-KomponenteRhD thesis, Universit (T.

H.) Karlsruhe, 2001.

M. J. Rutherford, K. Anderson, A. Carzaniga, D. Heim-
bigner, and A. L. Wolf. Reconfiguration in the Enterprise
JavaBean component model. In J. Bishop, editng-
ceedings of IFIP/ACM Working Conference on Component
Deployment pages 67-81, Berlin, Germany, June 2002.
Springer-Verlag Berlin Heidelberg.

Sun Microsystems. Java 2 Platform, Enterprise Edition
Specification, Version 1,2002.

R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. W. Jr.,
J. E. Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow.
A component- and message-based architectural style for
GUI software.lEEE Transactions on Software Engineering
22(6):390-406, 1996.

A. van der Hoek, R. S. Hall, A. Carzaniga, D. Heimbigner,
and A. L. Wolf. Software deployment: Extending config-
uration management support into the fiel@rossTalk The
Journal of Defense Software Engineeriid (2):9-13, Feb.
1998.

3] A. van der Hoek, D. Heimbigner, and A. L. Wolf. Soft-

ware architecture, configuration management, and config-
urable distributed systems: Aénage a trois. Technical Re-
port 948-98, University of Colorado, Department of Com-
puter Science, Software Engineering Research Laboratory,
Colorado, 1998.

125

Supporting Evolution in Software using
Frame Technology and Aspect Orientation

Neil Loughran, Awais Rashid
Computing Department, Lancaster University, Lancaster LAl 4YR, UK
{loughran | awais} @comp.lancs.ac.uk

Abstract

This paper discusses how the problems involved in
supporting evolution in software can be resolved by
using aspect oriented programming and frame
technology. Throughout the lifetime of a software
system, new requirements may arise that will require the
existing system to be altered or evolved in someway.
Evolution is something which is almost impossible to
predict at the design stage. Although it is common to
anticipate future evolutions and therefore prepare and
design our code to accommodate this, there will
eventually come a time when a certain feature or
scenario appears where this may not be practical.

1. Introduction

Throughout the lifetime of a software system or
architecture, new requirements may arise that will
require the existing system to be altered or evolved in
someway. Therefore an effective mechanism for
evolution is an important factor in the creation of
software systems. It is estimated that up to 80% of
lifetime expenditure on a system will be spent on
maintenance and evolution. However, achieving
effective evolution across the board with current
technologies is difficult because of the complexities
involved.

Evolution is something which is almost impossible to
predict at the design stage. Although it is common to
anticipate future evolutions and therefore prepare and
design our code to accommodate this, there will
eventually come a time when a certain feature is required
or a scenario appears where this may not be practical.

2. Background

2.1 Categories of evolution

Software evolution and maintenance can be divided
into the categories shown in Table 1, which are derived
from [6].

Table 1. Traditional categorisation of evolution

Category Description / Example
Corrective Fixing of bugs
Adaptive Addition of new features
Changing of functionality
Support for new platforms
Perfective Improving system
functionality
Improving performance
Preventative Preventing problems before
they occur

It should be noted here that any evolution made to a
system could fall into one or more of the categories
shown. For instance perfective evolution where, for
example, the performance of a particular component
needs to be improved, may also require other components
of the system to be evolved thus requiring adaptive and
possibly preventative evolution. Evolution of a particular
component or feature may require other assets at different
stages of the software lifecycle to also be evolved such as
testing and documentation. This brings forward cases
where evolution effectively crosscuts system structure and
architecture. From this we can add two sub categories to
the aforementioned, namely crosscutting and non-
crosscutting evolution.

Corrective
Perfective Anticipated Crosscutting
. o . Evolution
Adaptive Unanticipated | Non-Crosscutting
Preventative

Figure 1. Evolution types

Another important notion is that of anticipated and
unanticipated evolution. While anticipated evolutions
can be obviously accommodated, unanticipated
evolutions are of great concern if the system or

126

architecture is to avoid erosion. Figure 1 illustrates the
possible evolutions types.

Aspect orientation is designed to be used with
conventional separation of concerns mechanisms, such as
object-orientation, and should not be seen as a
replacement for these techniques. It should be noted that
the notion of aspect orientation now goes far beyond just
programming level and is now being used at different
levels of the software lifecycle such as the software
design [7] [8] and requirements stages [9][10].

2.2 Crosscutting and separation of concerns

One of the principle requirements in software
composition is to achieve a good level of separation
between the different concerns in the system. By
separation of concerns we mean the encapsulation of
particular functional or non functional properties of the
system which crosscut the system structure. This allows
each concern to be viewed in it own space making system
comprehensibility and manageability easier to understand
thus facilitating reuse and evolution.

2.3 Software erosion

Erosion occurs when software, which has been
continually evolved, eventually becomes difficult to
understand, maintain and therefore evolve and reuse.
When evolving a system we want to lessen the negative
effects of the evolution in order to minimise the
possibility for erosion. Erosion can occur anywhere from
erosion of a particular component to the much larger
problem of erosion in software designs and architectures.
[1] cites cases where projects have had to be started from
scratch as the source had become eroded beyond repair.

3. Approaches

3.1 Frame Based Technologies

Frame technology [2] is a concept that has its roots in
the 1970s and was conceived by Paul G. Bassett as a
means to providing adaptive reuse. By adaptive reuse we
mean the process of creating generalised components that
can be easily adapted or modified to different reuse
contexts. From a simple perspective frame technology is
a language independent textual pre-processor that creates
software modules by using code templates and a
specification from the developer. Variations of the
technology inspired by Bassetts work such as XVCL [3]
and FPL [4] use the XML language in order to
implement the framing syntax. Frame technology works

by organising frames into a hierarchy as shown in Figure
2, which depicts a partial view of a simple web browser.

Web
Browser

Editor R
@ @

Figure 2. Example of frame technology hierarchy

Toolbar

Frames allow points of interest in the code, such as
variation points, code repetition, configuration routines,
optionality etc..., to be explicitly marked in place with
metadata tags or moved to a child frame. By allowing
these points of interest to be marked or modularised the
developer can quickly create highly customisable
systems. The basic granularity for a frame is the
separation of a particular concern, class, method or
related attributes with the hierarchy of frames serving to
isolate content into separate layers, allowing the
localisation of the effects of change and easing evolution.
Usually the lower order frames are the most reusable as
they contain less context sensitive information such as 10
routines, library functions etc...

3.2 Aspect Oriented Programming

Aspect oriented programming (AOP) [5] technologies
are now gaining popularity as a means for supporting the
separation of concerns for features and constructs that
would otherwise cause unmanageable code tangled across
multiple classes in traditional object-oriented systems
(Figure 3).

Classes

Class A Class B
. . Other Other
Class A Class B Members Members
Other Other .)’
Members Members Aspect Executable
4 s >
‘ Synchronisati: ‘ Code
ynchronisation Aspocts
ron —
‘ Debugging ‘ "
= ion| | Debug HI=E®)
S| Class Aspect

(2) (b)
Figure 3. (a) Crosscutting concerns in OO languages (b)
Separation of crosscutting concerns with AOP

Examples of the type of concerns that can cause this
fragmentation of context are logging, profiling and
tracing. Having all of the code for each particular
concern modularised has the benefit of making system

127

code casier to evolve, maintain and be reused hence
increasing productivity, flexibility and reducing costs
thus making them conducive for use within the software
product line context.

There are numerous aspect oriented programming
approaches available for use with the most well known
being AspectJ [11], Hyper/J [12], and composition filters
[13]. There also AOP approaches to run time evolution
of programs such as Java Aspect Components [16] (JAC)
and JMangler [17]. Run time evolution promises the
facility for programs to be modified while they are
executing. This facility will be of great importance to
systems where stopping the system and evolving the code
thus rendering the system from functioning is an
undesirable characteristic from economic and safety
perspectives. Examples of these systems could be 24/7
banking facilities, online commerce and air traffic
control systems.

3.3 Other approaches

There are other approaches which seek to solve the
problems associated with software product line issues
notably Gen Voca [14] and work from the SEI [15].
However for the purpose of this paper we will only
concentrate on frame based and aspect oriented
approaches.

4. Supporting evolution

4.1 Evolution with frames

In section 2 we mentioned the notion of crosscutting
and non crosscutting evolution. Non crosscutting
evolutions are generally easy to solve with frame
technology as their implementations are localised, the
main problem being where the evolution might be spread
out over many child frames spawned from the parent
frame. In this sense the framing process can suffer from
fragmentation of context.

Crosscutting evolution however, is not very effective
with framing alone as there is no separation of concern
mechanism beyond class and frame boundaries. For this
reason aspect oriented technologies can play an
important role in improving the evolution of systems
which impart crosscutting behaviour.

4.2 Evolution with aspect orientation

Aspect orientation has been created with separation of
crosscutting concerns in mind and thus would seem to be
an ideal candidate for supporting the -crosscutting
evolutions that is difficult to achieve by framing.

However, while it is possible to use aspect oriented
technologies alone to perform some form of evolution, it

is constrained by the

lack of

configurability,

generalisation and optionality that framing allows.

4.3 Hybrid approach

We have previously made a case where neither
framing nor aspect orientation can support various
evolutionary scenarios effectively in isolation. With this
in mind it makes sense to combine the two technologies
to improve on current techniques.
comparison of the two techniques with their associated
merits and demerits.

Table 2 shows a

Table 2. Comparing frames and aspect orientation

Capability

Framing

AOP

Configuration Mechanism

Very comprehensive
configuration possible

Not supported natively,
dependent on IDE

Separation of Concern

Only non crosscutting concerns
supported

Addresses problems of
crosscutting concems

Templates

Allows code to be generalised to
aid reuse in different contexts

Not supported

Code Generation

Allows autogeneration of code

Not supported

and refactoring.

Language Independence Supports any textual document

and therefore any language

Constrained to implementation
language although this will
change as AOP gains wider
acceptance

Use on Legacy Systems Not supported Supports evolution of legacy
systems at source and byte
code level

Dynamic Runtime Evolution Not supported Possible in JAC and JMangler.

Future versions of Aspect) will
have support.

By combining the two approaches we gain increased
flexibility which will allow aspects to handle the
crosscutting concerns and framing to impart
configuration, optionality and generalisation of those
aspects where required. Figure 4 demonstrates how a
generalised aspect can be used to perform a crosscutting
evolution on a system or architecture

System/Architecture

Proposed evolution “\ ‘ ‘ H ‘ ‘ ‘ ‘."

Figure 4. Evolution with framed aspects
It should be noted here that the framed aspect could

work on the architecture even if the architecture itself
was framed or not, thus allowing frames in some sense to

128

work on legacy systems. Using these approaches brings
forward exciting possibilities for the following:-

e Generalised reusable which solve
crosscutting problems.

Refactorisation of aspectual code

Configurable dynamic run time aspects

Configurable legacy aspects

Configurable development aspects (tracing, profiling
etc)

These could be used to perform various kinds of tasks
and evolutions that previously would have been difficult
to realise in a particular technology alone.

components

5. Conclusion

We have seen that neither frame technology nor aspect
oriented technologies alone can solve all the problems
that evolution brings. There is clearly a need for
configurable aspects for crosscutting evolution. By
combining aspect orientation with a variant configuration
mechanism such as frame technology we get the best of
what both have to offer in terms of flexibility and
evolvability. Generalisation of aspects allows them to be
used in different situations thus making them ideal
candidates for use within software product lines. By
utilising aspect orientation and allowing crosscutting
concerns to be localised we improve our understanding of
system comprehensibility and thus lessen the risks of
architectural erosion.

6. Acknowledgements

The authors would like to thank Dr Stan Jarzabek and
Dr Zhang Weishan of the National University of
Singapore with regards to queries on framing
technologies.

References

[1] van Gurp J. and Bosch J., “Design Erosion: Problems &
Causes”, Journal of Systems & Software, volume 61, issue 2,
2002.

[2] Bassett, P. 1997. Framing software reuse - lessons from real
world, Yourdon Press, Prentice Hall.

[3] Wong, T.W., Jarzabek, S., Soe, M.S., Shen, R. and Zhang,
H.Y. “XML Implementation of Frame Processor,” Symposium
on Software Reusability, SSR’01, Toronto, Canada, May 2001,
pp. 164-172.

[4] Sauer, F. “Metadata driven multi-artifact code generation
using Frame Oriented Programming”, OOPSLA 2002.

[5] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C. V., Loingtier, J.-M., Irwin, J., “Aspect Oriented
Programming,” Proc. of the European Conference on Object-
Oriented Programming (ECOOP), 1997.

[6] Lientz, B., Swanson, E., and Tompkins, G., "Characteristics
of Application Software Maintenance," CACM 21, No. 6 June
1978

[7] Clarke, S., Walker, R. J., "Composition Patterns: An
Approach to Designing Reusable Aspects" proceedings of the
23rd International Conference on Software Engineering
(ICSE), Toronto, Canada, May 2001.

[8] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, Jr. "N
Degrees of Separation:Multi-Dimensional Separation of
Concerns". Proceedings of the International Conference on
Software Engineering (ICSE'99), May, 1999.

[9] Rashid, A., Sawyer, P. et al., “Early Aspects: A Model for
Aspect-Oriented Requirements Engineering”, IEEE Joint
International Requirements Engineering Conference, 1EEE
Computer Society Press, 2002.

[10] Grundy, J., “Aspect-Oriented Requirements Engineering
for Component-based Software Systems”. 4th IEEE
International Sympsium on RE, IEEE Computer Society Press,
1999.

[11] Xerox
http://aspectj.org/

PARC, USA, Aspect] Home Page,

[12] IBM Research, Hyperspaces,
http://www.research.ibm.com/hyperspace/

[13] Aksit, M., Bergmans, L. & Vural, S., “An Object-Oriented
Language-Database Integration Model: The Composition-
Filters Approach”, ECOOP '92, LNCS 615, pp 372-395,
Springer-Verlag, 1992.

[14] Batory, D., Chen, G., Robertson, E. and Wang, T. “Design
Wizards and Visual Programming Environments for GenVoca
Generators,” IEEE Trans. on Software Engineering, Vol. 26,
No.5, May 2000, pp. 441-452

[15] Carnegie Mellon, Software
homepage http://www.sei.cmu.edu

Engineering Institute,

[16] Pawlak, R., Martelli, L. and Seinturier, L. The JAC project
home page. http://jac.aopsys.com

[17] Kniesel, G., Costanza, P. and Austermann, M. JMangler
home page, http://javalab.cs.uni-bonn.de/research/jmangler/

129

Managing Software Change for Variability

Christopher Thomson
Department of Computer Science
Sheffield University
Regent Court
211 Portobello Street
Sheffield S1 4DP
UNITED KINGDOM
Email: c.thomson@dcs.shef.ac.uk

Abstract— Software change is considered as motivation for
managing software variability.

I. INTRODUCTION

Understanding how software can be changed is essential if
we want a measure of its variability and if we want to adapt
it easily. Software is in part requirements, specificaticoge
and test sets. Whenever we change any part we must ensure
that it remains valid in the context of the other parts, if the
system is to remain valid. Therefore we must define system
validity in terms of a semantical structure. Different cggers
act on this semantic definition, we call these the changestype

It is hoped that there are a finite number of change types
that could be built into a taxonomy of change. These could be
used to describe how hard a type of change is to implement
(impact) and how likely a change is to occur (risk), these
together could translate to a variability factor. The teoory
may also identify where some types of change are invalid (on
areas of the system where a class of change would cause a
semantic schism), and where we may be able to automatically
change another part of the software to reflect a change.

Of course many of the possible change types may be
unmanageable, this suggests that we may want to impose
some design for change restrictions. Whilst these would not
impact on the power of any software they would allow it to
be changed more easily, by imposing a structure which was
capable of change. Such restrictions would be designed to
enhance the variability of the software at all levels of dasi
implementation and testing.

130

Supporting Variability Management at Nokia

Tanya Widen
Software Architecture Group
Nokia Research Center
tanya.widen@nokia.com

Abstract

At Nokia, software product lines are being invested
more and more to keep the business units competitiv
today’s market. This short position paper captuces
current goal of evaluating, using, and changing or
extending where necessary current best practices in
variability management in order to provide integrdf
full life cycle, sufficiently detailed support tardbusiness
units to enable them to successfully manage anttaion
the variability in their domains.

1. Introduction

Nokia is a large, global company in the mobile phon
and network markets, working to stay competitive in
today’s cutthroat business world. Nokia, as martyet
organizations nowadays, is moving more and more
towards institutionalized software product linesr¢alize
the benefits of systematic large scare reuse. tim tmobile
phones and networks, Nokia’'s two main lines of bess,
there are ample opportunities and needs to transiti
development to fully supported software producesin

In addition to the technology aspects of variapilit
management, technology transition issues must
addressed. To facilitate transition, detailed, ficat
guidelines and examples, whenever possible evehein
domains of Nokia, are to be developed in ordemteer
the barriers to transition and acceptance. Additignwe
tailor the methods whenever necessary to our specif
situation to limit the amount of information devpéos
need to learn.

be

2. Variability Management

We are currently looking into many aspects of
variability management as a complete, integratéutiso
is required that is tailored to meet the needs of o
business units, yet still flexible to adapt to terying
situation specifics of each development group.

Much has been published in the field recently, as
software product lines research and practice i®metw
more prevalent. We are looking at these results and
evaluating them for our situation. From these wdl wi
adopt what we can and integrate them with eachr aiie
our existing process, technologies, and tools. Qirse,
changing and extending them as necessary to reach o

Some domains even cross mobile phones and networksgoal of integrated and detailed coverage.

such as DSP. Within these there is also poteng&akfit
for investing in a joint reuse infrastructure tohance
development and maintenance efficiency.

As complete products are developed with embedded
software, as opposed to only software, many differe
aspects of product variabilities affect the sofevéor the
products developed. These include
requirements/features and qualities variabilitieas

the

embedded systems have many, sometimes contraglicting

quality goals that can vary by products. But alsdude
the possible variations in the HW/SW interface, the
various HW platforms the software must run on, ai as
system configurations. All of these aspects neede
modeled and managed in a consistent way througheut
product life cycle.

Variabilities can be introduced in any of the ptzase
steps along the infrastructure development pathyels
as, during product instantiation. Therefore, indded, full
life cycle support is required in order to consitite
variability management.

In particular we are focusing on studying varidaili
mechanisms in order to provide detailed practical
guidance in:

Variability mechanism selection

Setting up support to manage the variabilities
based on the mechanisms used

Guidance on implementation and testing
Proving support for instantiation

Guidance on evolution aspects

For example, in the area of variability selectiae, are
looking at the published lists of variability medimms
and the currently available comparison framewott t
support variability mechanism selection [2,3,4].e%@
tend to focus only on technology issues in selgctin
mechanism, such as binding time or variability ty\dée
would like to extend these frameworks to includbeot
aspects we believe play an important role in vdiigb
mechanism selection. This will include businessidss
such as costs of setting up and maintaining th@aup
systems; organizational issues, such as culture or

131

organizational structure and their impact on seigcand
setting up an appropriate mechanism; as well ad, sk
level or experience of both developers of the reuse
infrastructure and those who are intended to Isyktems
from the infrastructure.

Related to this, we are looking at the growingdfief
work on variability patterns for product lines iroth
functional and quality aspects as these will alsppsrt
developers in learning and applying variability
mechanisms in their domains [1]. One key issue Iere
the additionally complexity of supporting tradeaffalysis
to determine an appropriate product line architegtor
architectures, as instances can have varying wgualit
requirements that would benefit from different
decompositions and connections.

3. References

[1] L. Bass, M. Klein, and F. Bachmann, “Qualitytrthute
Design Primitives and the Attribute Design Method”,
Proceedings of PFE- 4, LNCS 2298pringer-Verlag, Berlin,
2002, pp. 169-186.

[2] C. Gacek, and M. Anastasopoules, “Implementirgduct
Line Variabilities”, Proceedings of the 2001 Symposium on
Software ReusabilityACM Press, NY, NY, USA, 2001, pp.
109-117.

[3] I. Jacobson, M. Griss, and P. Jonss8oftware Reuse:
Architecture, Process, and Organisation for
Business Succesdddison-Wesley-Longman, May 1997.

[4] M. Svahnberg, J. van Gurp, and J. Bosch, “Adreomy of
Variability Realization Techniques” submitted 2002.

132

L eaving the Variability Management to the End-User;
A Comparison Between Different Tailoring Approaches

Jeanette Eriksson, Olle Lindeberg, Yvonne Dittrich
Blekinge Institute of Technology
Department of Software Engineering and Computezre
P.O. Box 520, S-37225 Ronneby, Sweden
Phone: +46 457 385000 Fax: +46 457 27125
jeanette.eriksson@bth.se, olle.lindeberg@bth.smny@.dittrich@bth.se

Extended Abstract

A tailorable system is considered designable dfier

other than compilers and programming languagehén t
article “Towards a New Model of Abstraction in the
Engineering of Software” [2] it is argued that the

system has come in use. This means that some desigfetaobject protocol concept can be used as a denera
decisions are postponed until the System is up andprlnC|p|e for abstraction in Computer science. Tdhea is

running. It is the end-user that will adjust thegnam to
fit altered requirements. In other words tailoriegtails
that the variability management of the systemfisttethe
end-user.

In the article “There’s No Place Like Home:
Continuing Design in Use” the authors [1] identifyree
ways of doing tailoring. The three possible wayes ar

0 To choose between different expected behaviors.

0 To construct new behaviors out of existing
components.

o To alter the artifact.

We compare our own approach [4] with two other
approaches within the area of tailoring and end-use
development. Those are Andersofdh’'s work with
application units [5][6] and the work done withimpeoject
concerning tailorability in CSCW-systems [7][8]. |Al
three approaches are of the latter kind of taitprifhe
artifact is changed when tailoring the system.

A general problem is that when you add tailoring
capabilities to a system this often makes the syst®re

that any system that is constructed as a servibe tased
of client application (as for example an operatsystem
or a database server) should have two interfaceés;se-
level interface and a meta-level interface [2]. These-
level interface gives access to the functionalifytioe
underlying system and through the meta-level iatfit
is possible to alter special aspects of the unoherly
implementation of the system so that it suits teeds of
the client application. The meta-level interfacecédled
the metaobject protocol (MOP).

We have adopted a different approach towards the
metaobject protocol. The idea of the metaobjectoma
approach has inspired us to transfer the concephtb
user tailorable software. In most systems the esed-bas
no access to the implementation of the programun
approach the end-user is given the opportunitylter ar
tailor the software should the need arise. Our @irto
give the user the opportunity to add componentthéo
program in a controlled way which does not reqaing
programming. To do this we use a dual-interface: a

complicated: not only do you have to construct the traditional base-level program and a meta-levehgmm

tailoring interface but the basic program may disoome
more complicated. To explore how to avoid this we
constructed a prototype using
metaobject protocol (MOP) approach [2]. The metacj
protocol approach originates from the CLOS
programming language in which it is possible tonge
program behavior by interacting with the runtimetsyn

that provides tailoring for the base-level progra.
The distinction between a computational base lendl

ideas based on thed tailoring meta level is a useful one in a taibessystem.

In the same way as in a metaobject protocol, thee-ba
level implements what the system normally doesthét
meta level you can change what the base level ddes.
two levels are also often separated in the userfade

through a metaobject protocol [3]. The metaobject With a separate tailoring interface. The same sejoar

protocol is based on the idea that one can and opest
up programming languages so that the developdésta
adjust the language implementation to fit his arreeds.
This idea has subsequently been generalized tersgst

may exist in the internal design. Perhaps the alsvisay
to do this is to let the base-level program be railed by
meta-data which stores the choices the user hag mad
when tailoring. If the tailoring possibilities affea large

133

part of the program, the base-level program mayinec
littered with tests for the value of the meta-ddfathe
tailoring is complicated the result may be that base-
level program looks more like an interpreter of theta-
data than a straightforward program. The alterpatiay
to implement a tailorable system is closely linkedthe
metaobject protocol approach. With this approach th
base-level program is a normal program which perfor
the normal computation only. When the system istadl
by the meta-level this is implemented by changihg t
base-level program. In the meta-data approach #ta-m
level can inspect the meta-data to see how thergnogs
configured; it is the meta-data that will be chahgering
tailoring. In the alternative approach the baselleloes
not need any meta-data. The radical solution isake
away the meta-data from the meta-level too. Thiamae
that it is the base-level program itself that ig timeta
description of the current configuration. This iket
method we have chosen in the prototype.

Anders March at the Oslo University works with issues
concerning tailoring using components called ajgpion
units. An application unit is software components
associated with GUI widgets but the applicationt usi
extended with event handlers that take care obriag
events. The structure of everyday artifacts acts awdel
for application units. The units include three aspeuser
interface, rational, and program code. Every aspeast
three characteristics. They all have available tpoiruse,

the German government in Bonn and Berlin. The opisi
of the functionality of the search tool were diveemong
the users, which resulted in a tailorable systéin. [

The search tool is implemented using the JavaBeans
component model. The search tool employs four wiffe
types of atomic components: search engine, remilt |
result switch and control button. The search endare
example is a complex component that embraces
components for the search specification and foaluegte
connections. The components have a graphical
representation that the user can combine in diffarays.
The graphical representation visualizes availalbetsp
Gray ports visualize input and white ports outplihe
shape of the ports indicates the type of input uipuat.
The graphical representations are used in a comnouei
techniqgue that allows the user to customize the
components and link the different ports together.
Simplified, the search tool has the following fuonglity:

The control button triggers the search engine drel t
search results are transported to a switch, whih i
parameterized to channel all documents that coorefsp

to certain criterion, for example found on the gsewn
desktop, to one specific result list. Other docutsiehat
correspond to another criterion, for example found
elsewhere, are displayed in another result ligt. [7

Conclusively we can say that while BasicDraw sugpli
tailoring by adding code to the application unitee
component itself, the search tool in the POLITegstesn

ability to connect to other aspects by well-defined implement tailoring in a different way, by compasit of
interfaces and they can be looked at as separatingustomized components. Our prototype is implemgntin

concerns. [6]

tailoring by making use of a combination of the two

The application units have been used in a tool for implementing manners.

creating and editing geometric shapes, called Baaio.
BasicDraw has different tailoring tools embeddethe T
extension editor makes it possible to tailor thpliaption

by changing program code at runtime. The software

components are encapsulated as a glass box. Isexpo
program code but the code cannot be modified. & T
new code is built on top of the existing code bsealy
safety reasons none of the old code in Basic Dray bpe

In the article we provide a comparison between the
three approaches concerning variability, technigaed
usability in the context of variability management.

References

[1] Henderson, Austin & KyngMorten. 1991: “There’s No
Place Like Home: Continuing Design in Usén Design at

removed. The new code is compiled and linked to the Work GreenBaum, J & Kyng, M., eds., Lawrence Erlbaum,

existing before the application can be re-execuldwe
application units are to a large extent independadtcan

be tailored separated from other aspects but som

application unit aspects are also dependent ofr®the
therefore changing one aspect may require an upfate
other aspects or interfaces. [6]

A research team at Bonn University takes anotimer li
of action. The group is working with tailoring inSCW-
systems. They have constructed a search tool thiesrit
possible for different users to tailor the prestoteof
search results, the handling of search results thed
search space. The search tool is a part of the P&2inh-
system, which provides electronic support for tteknof

Hillsdale, NJ.Kiczales, et.al. 1991: “The Art oEtMetaObject
Protoco! , MIT Press England.

e[2] Kiczales, Gregor 1992: “Towards a New Model of

Abstraction in the Engineering of Softwarén Proceedings of
International Workshop on New Models for Software
Architecture (IMSA): Reflection and Meta-Level Atebture
Tama City, Tokyo, November 1992.

[3] Kiczales, et.al. 1991: “The Art of the MetaObjé>rotocal ,
MIT Press England.

[4] Lindeberg, Olle & Eriksson Jeanette & Dittrictiyonne
2002: “Using Metaobject Protocol to Implement Teitg;

134

Possibilities and Problerhsin The 6th World Conference on
Integrated Design & Process Technology (IDPP), Pasadena,
USA, 2002.

[5] March, Anders I. 2003: " Tailoring as Collaboratidrie
Mediating Role of Multiple Representations and Aggtion
Units”, in N. Patel: Adaptive Evolutionary Information Systems
Idea group Inc. 2003.

[6] March, Anders I. & Mehandjiev, Nikolay D. 2000:
"Tailoring as Collaboration: The Mediating RoleMtiltiple

Representations and Application Units” Gomputer Supported
Work 975-100, Kluwer Academic Publishers.

[7] Stiemerling, Oliver & Cremers, Armin B. 1998Tdilorable
component architectures for CSCW-systemsPamallel and
Distributed Processing, 1998. PDP '@roceedings of the
Sixth Euromicro Workshop pp: 302-308, IEEE Comj8dc.

[8] Stiemerling, et.al, 1999: "The EVOLVE Tailorirglatform:
Supporting the Evolution of Component-Based Groupiyan
EDOC'99 (Enterprise Distributed Object Computing
Mannheim, Germany, Sept.27-30, IEEE Press.

135

A Knowledge-based Product Derivation Process and
some Ideas how to Integrate Product Development

(Position paper)

Lothar Hotz and Andreas Glinter
HITeC c/o Fachbereich Informatik
Universitdt Hamburg
Hamburg, Germany 22527
Email: hotz@informatik.uni-hamburg.de

Abstract— In this position paper, a product derivation process
is described, which is based on specifications of known customer
requirements, features, artifacts in a knowledge base. In such
a knowledge base a model about all kinds of variability of a
combined software/hardware systems are represented by using a
logical-based representation language. Having such a language,
a machinery which interprets the model is defined and actively
supports the product derivation process e.g. by handling depen-
dencies between features, customer requirements, and artifacts.
Because the adaptation and new development of artifacts is a
basic task during the derivation process where a product for a
specific customer is developed, the evolution task is integrated in
the proposed knowledge-based derivation process.

I. INTRODUCTION

The product line approach makes the distinction between
a domain engineering part, where a common platform for an
arbitrary number of products is designed and realized, and
an application specific engineering part, where a customer
product is derived (product derivation process) [1], [3]. In this
position paper, a product derivation process which includes
both the selection and assembling of artifacts out of a platform
and their adaptation, modification, and new development for
customer specific requirements is presented.t

The main underlying assumption is based on the existence
of a descriptive model for representing already developed
artifacts and their relations to features and customer re-
quirements as well as the underlying architectural structure
with its variations. All kinds of variability are represented
(described) in such a model. Thus, variability is made explicit
while the realization of the variability in the source code
is still separate. This model is called configuration model.
It is specified in a knowledge base. Thus, we speak of a
knowledge-based product derivation process (kb-pd-process).
Furthermore, it is assumed, that such a model is necessary to
manage the increasing amount of variability in software-based
products. Such a configuration model can be used for auto-
matically configuring technical systems, where “configuring”
means selecting, parameterizing, constraining, decomposing,

1We only consider engineering aspects of the process, we exclude econom-
ical aspects. As roles we simply see a team of software developers, which
have to do both: developing a commonly used platform for all products and
customer specific products.

Thorsten Krebs
Fachbereich Informatik
Universitdt Hamburg
Hamburg, Germany 22527
Email: krebs@informatik.uni-hamburg.de

specializing, and integrating components of diverse types (e.g.
features, hardware, software, documents, etc.).

A configuration model describes all kinds of variability in
a software system. Thus, it describes all potentially derivable
products. But this is done on a descriptive level: when using
a configuration model with an inference engine, only a de-
scription of a product is derived, not the product itself. But it
is intended to use the description for collecting the necessary
source code modules and realizing (implementing, loading,
compiling etc.) the product in a straight forward manner.
Furthermore, a configuration model is not a model to be used
for implementing a software module, e.g. it does not describe
classes for an object-oriented implementation.

In the following, we first describe some distinct levels
of abstraction which we have to deal with when describing
system entities (Section I1). In Section Ill, we present the
language entities as well as their interplay in the product
derivation process. Evolution aspects are included in Section
IV. A short discussion of some related work is given in Section
V.

Il. LEVELS OF ABSTRACTION

We can identify three kinds of work to be done on distinct
levels of abstraction for exploring a knowledge-based product
derivation process:

1) Language for specifying the knowledge base — What
is used for modeling?
This level describes what can be used for modeling the
general aspects of the process and the domain specific
part. This is done by specifying a language, that can
be used to describe the necessary knowledge. Further-
more, a machinery (inference engine) for interpreting
this description is specified and realized in a tool.
Basic ingredients of the language are concepts, relations
between concepts, procedural knowledge and a specific
task description (see [7], [9] for an example of such a
language and a suitable tool). Entities of this language
are further described in Section IlI.

2) Aspects of the process — What are the general
ingredients of a product derivation process?

136

3)

On this level, general aspects that have to be modeled
for engineering and developing products are specified.
This level determines, which entities for the kb-pd-
process have to be described. This is intended to be a
description for a number of kb-pd-processes in distinct
business units or companies, ideally for development
of combined hardware/software systems in general. The
description of a specific domain is done on the next level.
Specification is done on a textual basis as well as on a
model basis by using the language.

Following aspects of the kb-pd-process are currently
taken into account:

« Customer requirements: A description of known
and anticipated requirements expressed in terms
which can be understood by the customer.

o Features: A description of the facilities of the
system and its artifacts.

« Artifacts: A description of the hardware, software
components and textual documentations to be used
in products.

« Phases of the process: A description of general
phases of the process, e.g. "determine customer
requirements”, “select appropriate features”, "select
and adapt necessary artifacts”.

« Reference configurations: A description of typical
combinations of artifacts (cases), which can be
enhanced or modified for a specific product.

For each aspect an upper model with e.g. decompositions
(e.g. sub-features) and relations of aspects is expressed.
The upper model describes common parts of domain
specific models. Upper models are used to facilitate
the domain specific modeling. An example of an upper
model is given in Figure 1. Two different views on
features (i.e. customer-view (cv- f eat ur e) and technical-
view (t v- f eat ur e)) are shown. Both specialize to a con-
cept which has sub-features and one which doesn’t (cv-
no-subs, cv-with-subs). The dotted arrows indicate
places where the domain specific models come in. Lines
indicate specialization relations and arrows decomposi-
tion relations. This example shows how conceptual work
done in [5], [10], [11], [16] can be used for specifying
an upper model, which in turn can be used for automatic
product derivation.

Each aspect of the process is modeled by using the
language. Thus, it is described how e.g. customer re-
quirements and their relations can be represented by
using concepts and concept relations. In this paper, we
do not further elaborate on this topic.

Domain specific level — What is modeled for a specific
domain?

On this level a domain specific model is specified by
using the language and the upper model. By interpreting
the model with a machinery (given by a tool), this
model is used for performing the process. For developing
software modules (i.e. on a file, source code, developer

Cv-feature

| tv-feature I“\

R —

Fig. 1. Example of an upper model

model level) development tools and software manage-
ment tools are integrated. In this paper, we do not further
elaborate on this topic.

I1l. ENTITIES OF THE KNOWLEDGE BASED MODEL

Basic entities of the model and the process are listed as
follows:

1) A concept model for describing concepts by using
names, parameters and relations between parameters and
concepts. Main relations are decomposition relations,
specialization relations, and n-ary relations between pa-
rameters of arbitrary concepts expressed by constraints.
Such concept models can be used to describe properties
and entities of products like features, customer require-
ments, hardware components, and software modules.

2) Procedural knowledge mainly consists of a description
of strategies. A strategy focuses on a specific part of
the concept model. E.g. a strategy focuses on features,
another one on customer requirements and a next one
on software components, or on the system as a whole.
Furthermore conflict resolution knowledge which is used
for resolving a conflict (e.g. by introducing explicit
backtracking points) is described.

3) A task specification which describes a priori known
facts, a specific product has to fulfill.

Strategies are performed in phases. In each phase one
strategy is used, which focuses on a specific part of the model.
After selecting this part, in a phase all necessary decisions (i.e.
configuration steps) are determined by looking at the model.
Each configuration step represents one decision, e.g. the setting
of a parameter value, or processing a decomposition relation.
Possible configuration steps are collected in an agenda, which
can be sorted in a specific order, e.g. first decomposing the
architecture in parts, then selecting appropriate components,
and then parameterizing them. Decisions can be made by
using distinct kinds of methods including automatic or manual
ones. Each decision is computed by a value determination
method, which yields to a specific value representing the
decision. Examples for value determination methods are: “ask
the user”, “take a value of the concept model” or “invoke a
given function”. Thus, in a configuration step the decisions to
be made are described and after applying some kind of value

137

determination method the resulting value is stored in the cur-
rent partial configuration. A partial configuration represents
all decisions made so far and their implications, which are
drawn by the mechanisms described in the following.

In a cyclic practice, after each configuration step more
global (i.e. systemwide) mechanisms are (optionally) executed.
Examples are:

« Constraint propagation: For computing inferences fol-
lowed by a decision and for validating the made deci-
sions, constraints defined in the knowledge model (i.e.
constraints represent relations between parameters of con-
cepts) are propagated, based on some kind of constraint
propagation mechanism.

o External mechanisms: For performing an external
method, which does not use the concept model but only
the currently configured partial configuration external
techniques can be applied. Examples are:

— simulation techniques: a simulation model is derived
from the partial configuration and a separated module
(like matlab) is called for this task. Some specific
kind of simulation in the area of software product
derivation is “"compiling the source files”.

— optimization techniques: the current partial configu-
ration is used to compute optimal values for some
parameters of the configuration.

o Further logical inferences: Methods, which perform
logical inferences that are not performed using the de-
cision process but use the concept model, can be invoked
(e.g. taxonomic inferencing, description logic etc.).

The objective of global mechanisms is to compute values
for not yet fixed decisions or to validate the already made
decisions. Those mechanisms (if more than one is present) are
processed in an arbitrary order but repeated until no new values
are computed by those mechanisms, i.e. until a fixed point is
reached. If this validation is not successful or the computed
value for a parameter is the empty set, a conflict is detected.
An example would be, if the compilation of the source files
fails. A conflict means that the task description, the subsequent
decisions made by the user, and their logical impacts are not
consistent with the model. For resolving a conflict, diverse
kinds of conflict resolution methods (e.g. backtracking) can
be applied to make other user-based decisions (see [9]). On
the other side, one could also try to change the model, because
if a conflict is detected, with the given model it is not possible
to fulfill the given task descriptions and user needs. This gives
raise to evolution, i.e. to modify or newly develope artifacts
and include them in the model, so that the needs can be

fulfilled (see Section 1V).
Summarizing the kb-pd-process performs the following
(slightly simplified) cycle:

Until no more strategy is found:

1) Select a strategy

2) Compute the agenda according to the focus

3) Until the agenda is empty or a termination criteria of the strategy is
satisfied:

« Select an agenda entry

o Perform a value determination method
« (Optionally) execute the global mechanisms
« If a conflict occurs, evaluate conflict resolution knowledge.

IV. INCLUDING EVOLUTION ASPECTS IN THE PROCESS

Above a well-known configuration process is described (see
[4], [6]). The changing of artifacts and further development
of new components (i.e. evolution) can be included in this
process as described in the following subsections. The aspect
of evolution can be seen as a kind of innovative configuration.
We see innovative configuration not as an absolute term but as
a relative one — relative to a model. A model describes a set of
configurations which can be configured by using it. Innovation
related to this model is given, if the configuration process
computes a configuration which does not belong to this set.
For supplying a product derivation process where evolution of
artifacts are a basic task, we expect to apply methods known
in innovative configuration to be used. A survey on innovative
configuration is given in [9], [12].

A. Points of evolution

Following situations which come up in the process described

in Section 11 indicate the necessity for evolution:

1) Pro-active, foreseen evolution, more general models:
Instead of narrowing the model, broader value ranges for
parameters and relations can be modeled a priori. For
example, the sub-models describing customer require-
ments or features can represent more facilities than the
underlying artifacts can realize. If during the derivation
process such a feature is selected by the task description
or inferred by the machinery, it gives raise to evolution
of an artifact.

2) Conflicts which cannot be resolved by backtracking,
i.e. by using the current model, indicate places where
evolution can take place. For example, if two artifacts
are chosen which are incompatible, a resolution of such
a conflict would be to develop a new compatible artifact
and include it into the model.

3) Points set by the user: Instead of selecting a value at a
given point, the evolution of the model can be started by
the developer for integrating a new or modified artifact
in the partial configuration. Another example is given
when the user does not accept the automatically made
decisions. Thus, an evolution process is explicitly started
by the user to change the model for making another
decision than the model indicates. Thus, evolution as a
kind of value determination method is introduced.

4) A further point is given when evolution is seen as a
further global mechanism. Thus, it is included after a
decision is made. Some conditions are tested on the par-
tial configuration when evolution should be started. One
trivial condition is given when the user does not accept
the automatically made inferences. Thus, transparency
must be given to make such a decision. If the evolution
changes existing descriptions, the partial configuration
must be adapted and the other global mechanisms must
be invoked to find a new fixed point.

138

B. Evolve the model

All dependencies of the new concept (features, artifacts,
customer requirements) to existing ones must be specified.
Having a model, the context where a new concept will be
included, can be computed on the base of the model. For
instance, the related constraints of an depending aggregate
or a part-of decomposition hierarchy can be presented to the
developer for considering during the evolution of the model.

C. Supporting the evolution of features, customer require-
ments and artifacts by a knowledge-base approach

By analyzing the knowledge base, following information
used for development, can be presented to the developer. The
underlying idea is to present those parts of the model, which
can be used in special development situations, to the developer.

« Present the already defined concepts with their parameters
and relations.

« Present the specialization relation of all, of some selected
or of some depending concepts. In the last case sub-
graphs, which describe a specialization context of a given
concept are computed, e.g. the path to the root concept
with direct successors of each node.

« Present the decomposition relation of a given relation of
all, of some selected or of some depending concepts. In
the last case subgraphs which describe the decomposition
context of a given concept are computed, e.g. all aggre-
gates, which the concept are part-of and all transitive parts
which the concept has.

« Given a concept, present all concepts which are in relation
to it by analyzing the constraints, i.e. also a subgraph
is computed. Because constraints relate parameters of
concepts the subgraph presents not only concepts but also
relations between parameters.

« Given a concept, present all strategies where a parameter
or relation of the concept is configured.

« Given a new concept description (with parameters and
relations), compute a place in the specialization hierarchy
for putting the concept into.

Knowledge modeling can be seen as a specific kind of
evolution. If no given model exists, knowledge modeling is
an evolution of the always given upper model. The mentioned
services can be used for bringing up the first model of the
existing artifacts, features and customer requirements. Thus,
by supporting the evolution task, the task of knowledge
modeling is also be supported.

D. Conflict resolution with an evolved model

When the model is changed, e.g. because new artifacts are
included, the changes must be consistent with the ordinary
model and the already infered impacts stored in the partial
configuration. What kind of resolution techniques are useful
have still to be developed. One trivial approach is to start the
total process again with the new model and the old taks, and
make all decisions of the user automatically. Thus, test the
new model with the user needs, if they are consistent. This
can be done automatically, because all user inputs are stored

as such in the partial configuration, only the impacts have to be
computed again, based on the new model. Another approach is
to start some kind of reconfigration or repair technique, which
changes the partial configuration according to the new model.

E. Evolve the real components

Last but not least the new components have to be build. The
new source code can be implemented by using existing tools
for developing and changing software systems.

F. The kb-pd-process with the evolution task included

Summarizing the kb-pd-process where evolution is included
looks like:

Until no more strategy is found:
1) Select a strategy
2) Compute the agenda according to the focus
3) Until the agenda is empty or a termination criteria of the strategy is
satisfied:

« Select an agenda entry

o Perform a value determination method or start evolution

« (Optionally) execute the global mechanisms, included the evolu-
tion task

« If a conflict occurs, evaluate conflict resolution knowledge.

V. RELATED WORK

There are some approaches which try to automate software
processes [14], [15]. The main distinction to the approach
proposed in this paper is the different kind of knowledge
representation. Instead of using rule-based systems, which
have deficiencies when used for big systems [6], [8], [17], a
basic concern of the language we propose is to separate distinct
types of knowledge (like conceptual knowledge for describing
components and their variability and procedural knowledge for
describing the process of derivation). A requirement which is
e.g. not followed in [2], where information about components
is mixed with information about binding times in UML
diagrams. One has to distinguish the knowledge representation
and the presentation of the knowledge to the user. For present-
ing it might be useful to mix some knowledge types at certain
situations (as described in 1V-C). But for maintainability and
adequacy reasons it is of specific importance to separate them.

In [13] a support for human developers, which is not
based on automated software processes, is proposed. E.g.
representations are mainly designed for human readability
instead of machine interpretation. As a promising approach,
structured plain text based on XML notations are considered.
Thus, the combination of formal structured knowledge and
unstructured knowledge should be achieved. On the one hand
XML is only a mark-up language, where the main problem
is to create a document type definition, which describes the
documents to be used for representing software. One could
see the language described in Section 111 as a specification for
such a DTD. Thus, in our opinion for formally describing
configuration knowledge in a structured way the necessary
type definitions are already known. On the other hand, if un-
structured knowledge should be incorporated one should also
define tools which can handle them in a more than syntactic
way (e.g. similarity-based methods or data-mining techniques),
to get a real benefit of those kinds of representations.

139

V1. CONCLUSION

Making knowledge about features, customer requirements,
and artifacts explicit in a model and a tool-based usage of such
a model yields to an automatic product derivation process.? It
was shown, how such a product derivation process can be
defined. Furthermore, the evolution of artifacts is introduced
in the process and can be supported by using the knowledge
which is explicit in the model.

[1]
[2]

[3]

[4]

[5]

[6]
[7]
8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

J. Bosch, Design & Use of Software Architectures: adopting and
evolving a product line approach, Addison-Wesley, 2000.

M. Clauss, ‘Generic modeling using uml extensions for variability’, in
DSVL 2001. Jyvaskylae University Printing House, Jyvaskylae, Finland,
(2001).

P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, Addison-Wesley, 2002.

R. Cunis, A. Giinter, I. Syska, H. Peters, and H. Bode, ‘Plakon - an
approach to domain-independent construction’, in Proc. of Second Int.
Conf. on Industrial and Engineering Applications of Al and Expert
Systems IEA/AIE-89, (1989).

A. Ferber, J. Haag, and J. Savolainen, ‘Feature interaction and depen-
dencies: Modeling features for re-engineering a legascy product line’,
in Proc. of 2nd Software Product Line Conference (SPLC-2), Lecture
Notes in Computer Science, pp. 235-256, San Diego, CA, USA, (August
19-23 2002). Springer Verlag.

A. Giinter and R. Cunis, ‘Flexible control in expert systems for con-
struction tasks’, Journal Applied Intelligence, 2(4), 369-385, (1992).
A. Giinter and L. Hotz, ‘Konwerk - a domain independent configuration
tool’, Configuration Papers from the AAAI Workshop, (1999).

A. Giinter and C. Kiihn, ‘Knowledge-based configuration - survey and
future directions’, in XPS-99: Knowledge Based Systems, Proceedings
5th Biannual German Conference on Knowledge Based Systems, ed.,
F. Puppe, Springer Lecture Notes in Avrtificial Intelligence 1570, (1999).
A. Gunter (Hrsg.), Wissensbasiertes Konfigurieren, Infix, St. Augustin,
1995. in german.

A. Hein, J. MacGregor, and S. Thiel, ‘Configuring software product line
features’, in Proc. of ECOOP 2001 - Workshop on Feature Interaction
in Composed systems, Budapest, Hungary, (June, 18 2001).

A. Hein, M. Schlick, and R. Vinga-Martins, ‘Applying feature models in
industrial settings’, in Proc. of First Software Product Line Conference
- Workshop on Generative Techniques in Product Lines, Denver, USA,
(August, 29th 2000).

L. Hotz and T. Vietze, ‘Innovatives Konfigurieren in technischen
Doménen’, in S. Biundo (Hrsg.), 9. Workshop Planen und Konfigurieren,
Kaiserslautern, Germany, (1995). DFKI Saarbriicken. in german.

R. Kneuper, ‘Supporting software processes using knowledge manage-
ment’, in Handbook of Software Engineering and Knowledge Engineer-
ing, volume 2, Singapore, (2002). World Scientific.

L. Osterweil, ‘Software processes are software too’, in Proceedings
of the 9th International Conference on Software Engineering (ICSE9),
(1987).

H. D. Rombach and M. Verlage, ‘Directions in software process re-
search’, in Advances in Computers, volume 41, (1995).

M. Schlick and A. Hein, ‘Knowledge engineering in software product
lines’, in Proc. of ECAI 2000 - Workshop on Knowledge-Based Systems
for Model-Based Engineering, Berlin, Germany, (August, 22nd 2000).
E. Soloway and al., ‘Assessing the maintainabiliy of xcon-in-rime:
Coping with the problem of very large rule-bases’, in Proc. of AAAI-87,
pp. 824-829, (1987).

2 Automatic” does of cause not mean totally automatic, task descriptions
and user interactions are still possible, but logical impacts can be drawn by
the inference engine.

140

	proceedings.pdf
	fullpapers.pdf
	10 koskimies.pdf
	CAN XML DOCUMENTS BE TREATED AS COMPONENTS?
	ABSTRACT
	INTRODUCTION
	VARIABILITY ISSUES IN XML
	OUTLINE OF A SOLUTION
	REFINING THE SOLUTION
	RELATED SOLUTIONS
	DISCUSSION
	ACKNOWLEDGEMENTS
	REFERENCES

	03 demeyer.pdf
	Extensibility via a Meta-level Architecture

	page 01: 1
	page 11: 2
	page 21: 3
	page 31: 4
	page 41: 5
	page 51: 6
	page 61: 7
	page 71: 8
	page 81: 9
	page 91: 10
	page 101: 11
	page 111: 12
	page 121: 13
	page 131: 14
	page 141: 15
	page 151: 16
	page 161: 17
	page 171: 18
	page 181: 19
	page 191: 20
	page 201: 21
	page 211: 22
	page 221: 23
	page 231: 24
	page 241: 25
	page 251: 26
	page 261: 27
	page 271: 28
	page 281: 29
	page 291: 30
	page 301: 31
	page 311: 32
	page 321: 33
	page 331: 34
	page 341: 35
	page 351: 36
	page 361: 37
	page 371: 38
	page 381: 39
	page 391: 40
	page 401: 41
	page 411: 42
	page 421: 43
	page 431: 44
	page 441: 45
	page 451: 46
	page 461: 47
	page 471: 48
	page 481: 49
	page 491: 50
	page 501: 51
	page 511: 52
	page 521: 53
	page 531: 54
	page 541: 55
	page 551: 56
	page 561: 57
	page 571: 58
	page 581: 59
	page 591: 60
	page 601: 61
	page 611: 62
	page 621: 63
	page 631: 64
	page 641: 65
	page 651: 66
	page 661: 67
	page 671: 68
	page 681: 69
	page 691: 70
	page 701: 71
	page 711: 72
	page 721: 73
	page 731: 74
	page 741: 75
	page 751: 76
	page 761: 77
	page 771: 78
	page 781: 79
	page 791: 80
	page 801: 81
	page 811: 82
	page 821: 83
	page 831: 84
	page 841: 85
	page 851: 86
	page 861: 87
	page 871: 88
	page 881: 89
	page 891: 90
	page 901: 91
	page 911: 92
	page 921: 93
	page 931: 94
	page 941: 95
	page 951: 96
	page 961: 97
	page 971: 98
	page 981: 99
	page 991: 100
	page 1001: 101
	page 1011: 102
	page 1021: 103
	page 1031: 104
	page 1041: 105
	page 1051: 106
	page 1061: 107
	page 1071: 108
	page 1081: 109
	page 1091: 110
	page 1101: 111
	page 1111: 112
	page 1121: 113
	page 1131: 114
	page 1141: 115
	page 1151: 116
	page 1161: 117
	page 1171: 118
	page 1181: 119
	page 1191: 120
	page 1201: 121
	page 1211: 122
	page 1221: 123
	page 1231: 124
	page 1241: 125
	page 1251: 126
	page 1261: 127
	page 1271: 128
	page 1281: 129
	page 1291: 130
	page 1301: 131
	page 1311: 132
	page 1321: 133
	page 1331: 134
	page 1341: 135
	page 1351: 136
	page 1361: 137
	page 1371: 138
	page 1381: 139
	page 1391: 140

