

1 Version management tools as a basis for integrating Product Deri-

vation and Software Product Families

Jilles van Gurp, Christian Prehofer

Nokia Research Center, Software and Application Technology Lab

{jilles.vangurp|christian.prehofer}@nokia.com

This paper considers tool support for variability management, with a particular
focus on product derivation, as common in industrial software development. We
show that tools for software product lines and product derivation have quite dif-
ferent approaches and data models. We argue that combining both can be very
valuable for integration and consistency of data. In our approach, we illustrate
how product derivation and variability management can be based on existing
version management tools.

1.11.11.11.1 IntroductionIntroductionIntroductionIntroduction

The last ten years have seen an increasing interest in software product lines [1].

This has started from different approaches such as generative programming [2],

feature-oriented design [4], and programming [6]. By now, there is a large

amount of research on software product lines and variability management,

which has led to several tools and various industrial experience, e.g. for mobile

phones [3].

This paper considers tool support for variability management, with a particular

focus on product derivation, as common in industrial software development.

The purpose of product derivation in a product family is to construct a software

product from a base platform consisting of architecture, design and reusable

code. The product derivation process consists of selecting, pruning, extending

and sometimes even modifying the product family assets. Additionally, in many

companies which practice product family development, this is not a one time

activity but a process that has an iterative nature:

– Usually, both product family and derived products evolve independently.

They each have their own roadmaps and deadlines. However, it may be de-

sirable to propagate changes from the product family to already derived

products (e.g. bug fixes or new features) at certain points in time.

– As outlined in [9], repeated iterations are often required as understanding of

the product requirements progresses.

We discuss in the following tool support for software product lines and product

variation. For instance, common tools for product derivation are version man-

agement systems, such as Subversion [11][12]. We show that both areas have

quite different approaches and data models. We argue that combining both can

be very valuable for integration and consistency of data. In our approach, we

sketch how product derivation and variability management can be based on ex-

isting version management tools.

1.1.11.1.11.1.11.1.1 Tool support and product derivationTool support and product derivationTool support and product derivationTool support and product derivation

To support product derivation, various research papers have proposed using

variability models and tools. Some of these approaches have been applied suc-

cessfully in practice as well. The problem of describing and representing vari-

ability in these models is well covered in the research field. Essentially the tool

support for this can be broken down into two categories (though some tools ar-

guably fit in both categories):

– Build oriented tools. Build oriented tools. Build oriented tools. Build oriented tools. Tools that integrate into the build process. Examples of

such tools include KOALA [10] and PROTEUS [7]. These tools enable the selec-

tion and configuration of components and generating glue code.

– Documentation oriented tools.Documentation oriented tools.Documentation oriented tools.Documentation oriented tools. Tools that focus on documenting the pro-

vided variability and that provide traceability of requirements and variation

points to code. A good example of this is e.g. COVAMOF [9] and VARMOD [8].

These tools are primarily used to guide the (manual) process of product deri-

vation.

Both categories of tools are very useful in their own right. Most of the above re-

search has mostly been centered on the requirements and variability aspects.

However, the process of product derivation (i.e. exploiting the provided variabil-

ity in the software product family to create product variants) is only partially

supported by tools.

Product derivation is about more than this. It includes:

– Selecting components. Reusing components provided by the software prod-

uct family.

– Overriding components. Replacing provided components with alternative

implementations (provided by the software product family or product spe-

cific).

– Modifying provided components. Sometimes product requirements conflict

with product family requirements. Adapting such code in the derived product

is a solution that despite its disadvantages is preferred in many companies.

– Providing new variants for existing variation points (e.g. implementing com-

ponent interfaces)

– Adding product specific components and architecture.

– Configuring reused, modified and product specific components.

We observe that none of the variability management tools fully supports all of

these activities. Secondly, we observe that the product derivation process, like

the rest of the development process, is iterative. In other words, it is not a one

time activity but a recurring activity during the evolution of a product.

1.21.21.21.2 Supporting product derivation with version managementSupporting product derivation with version managementSupporting product derivation with version managementSupporting product derivation with version management

The solution we propose involves exploiting functionality provided in common

version management tools. The advantages of doing this are:

– Version management tools are used anyway in development organizations

so it is a relatively easy transition for development teams to start using these

tools for product derivation as well.

– Version management tools are the place to keep track of relations between

artifacts (typically components) both in space (branches) as in time (revi-

sions). Derived components can be seen as product specific branches of

product family component.

Notice that version management works on any development artifacts (directory,

a file, or an entire subsystem). We identify files or directories with components

for simplicity.

In version management terms, product derivation is equivalent to creating a

branch (or branches) of the main product platform and then committing prod-

uct specific changes on these branches. However, this is not how version man-

agement tools are currently used in many product family using organizations.

Instead products are usually created by copying (or generating configurations)

artifacts from the product family and then adding product specific artifacts. This

is especially problematic when product specific changes need to be made to the

copied artifacts.

This is very similar to the notion of having multiple branches of the same code

base in a version repository. A version management system supports this type of

functionality by:

– Keeping track of the changes

– Allowing for changes to be merged from one branch to another

1.2.11.2.11.2.11.2.1 SuSuSuSubversionbversionbversionbversion

There are roughly three generations of version management systems:

– Individual file based systems like RCS. Manage individual files. These systems

are rarely used these days.

– Systems that can version groups of files (CVS and many commercial version

management systems). While still popular, these systems lack many of the

features that would enable using them for product derivation.

– Change-set oriented version management systems. These include systems

like Subversion and GIT. The key difference is that rather than versioning in-

dividual files (like CVS) changes to the complete system are versioned with all

its aspects including file system manipulation, symbolic link creation, meta-

information modification and file changes etc. The delta between two revi-

sions of the system in the version management system is called a change set.

Subversion [11][12] is a good example of a third-generation version manage-

ment system. For the remainder of this paper we will assume Subversion or

similarly capable, change set oriented version management system when we re-

fer to version management. Our approach requires many of the features com-

mon in this new generation of version management tools. A few essential fea-

tures are:

– File system based rather than file based.File system based rather than file based.File system based rather than file based.File system based rather than file based. It can version all file system activi-

ties, including deletion, moving, linking and copying. For example, the history

of a renamed file includes all commits before it was renamed; the rename;

and all commits after it was renamed.

– Copy by reference.Copy by reference.Copy by reference.Copy by reference. Copies are always by reference. The consequence of this is

that a copy preserves version history and that making copies in the version

repository is both fast and cheap in using server-side storage (unlike CVS

where version history is not preserved and copying actually results in a full

copy by value on the server).

– Flexible repository layout. Flexible repository layout. Flexible repository layout. Flexible repository layout. Branching and tags are implemented as copies (by

reference). Unlike many second generation versioning systems, branching

and tagging are not special operations. For example, creating a new branch

from trunk amounts to making a copy of a specific revision of the trunk direc-

tory to the branches directory. Subversion repositories (by convention, not by

rule) contain directories with the names trunk, branches and tags. However,

whether these directories are located directly under the root or deeper in the

directory structure is up to the repository maintainer. In fact, using the sub-

version move operation it is trivial to change the directory layout if needed.

– Properties.Properties.Properties.Properties. Subversion supports annotations by associating properties (name

value pairs) with any artifacts under version management. Of course changes

to properties are also properly versioned (so they property manipulation is

part of the version history).

1.2.21.2.21.2.21.2.2 Information modelsInformation modelsInformation modelsInformation models

The information model used by most variability tools is very different from that

used by version management tools such as subversion. In the context of product

derivation, both models are relevant. Therefore, we provide a brief outline of

both in this section.

As outlined in the introduction the purpose of most variability tooling is to sup-

port product derivation either by documenting the variability in the software

and/or by automating parts of the derivation process (e.g. component configu-

rations; build configurations). Most approaches are centered on requirements,

features and development artifacts. The information used by such tools consists

of:

– Feature models. A common way to model variability is to construct feature

diagrams with variant features. These models may be textual or graphical.

– Mapping of features to requirements.

– Mapping of variant features to design and implementation level artifacts. Es-

pecially the build oriented tools require this information in order to support

the derivation process.

The information model of version management systems on the other hand is

concerned with managing the changes of files and directories. The information

it manages consists of

– A tree of directories, files and associated meta data properties. Usually the

tree structure is derived from the logical architecture. For example, each di-

rectory represents a particular subsystem or module.

– In subversion, the meta data properties mentioned under 1 are used to rep-

resent various properties related to versioning (revision number; commit

message; data and time) the file content (character used for new lines in text

files; the mime-type of the file content; etc). Additionally files and directories

may be annotated using custom properties. Subversion does not do anything

with these properties (except for tracking changes to this data) but they may

be used in scripts or custom applications that integrate the subversion pro-

gramming API (bindings for C, python and Java exist).

– Storing change sets between revisions of the versioned tree. In subversion,

each commit to the version repository is stored internally as a delta to the

previous revision of the repository (and unlike CVS, the revision always refers

to the entire contents of the repository instead of artifacts in the repository).

1.2.31.2.31.2.31.2.3 Integrating both information modelsIntegrating both information modelsIntegrating both information modelsIntegrating both information models

As can be seen from the description above, both information models have dif-

ferent purposes. Although there may be little overlap in both, consistency can be

an issue. Furthermore, product derivation support that goes beyond the regular

branching and merging functionality, requires integration of these information

models.

There are two strategies for doing this:

– Integrate version management information in existing variability tooling (e.g.

by storing subversion URLs and revision numbers of relevant artifacts in the

repository).

– Store variability model information and mappings into the version manage-

ment repository.

The latter strategy may be supported using subversions annotation feature.

Since version management systems store development artifacts this concerns

mostly storing the mapping of features and variability models to development

artifacts. Using, for example, a "mandatory" property component directories cor-

responding to non optional features in the feature model could be marked as

such. Similarly, a "depends-on" property might be used to indicate feature de-

pendencies on other components in the repository. In this way, the information

is directly stored with the corresponding code, which can help in avoiding po-

tential inconsistencies when working with different data bases.

spf

X - Mandatory, implements F1

Y - Optional, excludes Z, implements F2

Z - Optional, excludes Y, implements F2

product1

X copy of /spf/X,

Z copy of /spf/Z

product2

X copy of /spf/X

Y copy of /spf/Y

revision 1

create two products by copying components

from spf. Note: the constraints are copied

along but not listed in the copies here.

spf

X - Mandatory, implements F1

Y - Optional, excludes Z, implements F2

Z - Optional, excludes Y, implements F2

product1

X copy of /spf/X,

Z copy of /spf/Z

product2

X copy of /spf/X

Y copy of /spf/Y

revision 1

spf

X - Mandatory, implements F1

Y - Optional, excludes Z, implements F2

Z - Optional, excludes Y, implements F2

product1

X copy of /spf/X,

Z copy of /spf/Z

product2

X copy of /spf/X

Y copy of /spf/Y

revision 1

create two products by copying components

from spf. Note: the constraints are copied

along but not listed in the copies here.

spf

X' - Mandatory , implements F1

Y - Optional, excludes Z , implements F2

Z' - Optional, excludes Y , implements F2

product1

X

Z@ (change @)

product2

X@ (change @)

Y

revision 2

modify X and Z in the spf and create product

specific change for Z in product1 and X in

product2

spf

X' - Mandatory , implements F1

Y - Optional, excludes Z , implements F2

Z' - Optional, excludes Y , implements F2

product1

X

Z@ (change @)

product2

X@ (change @)

Y

revision 2

modify X and Z in the spf and create product

specific change for Z in product1 and X in

product2

spf

X' - Mandatory , implements F1

Y - Optional, excludes Z , implements F2

Z' - Optional, excludes Y , implements F2

product1

X' (apply changes /spf/X, 1-2)

Z@' (apply changes /spf/Z, 1-2)

product2

X@

Y

revision 3

update product1 with the changes

in the spf between revision 1 and 3

spf

X' - Mandatory , implements F1

Y - Optional, excludes Z , implements F2

Z' - Optional, excludes Y , implements F2

product1

X' (apply changes /spf/X, 1-2)

Z@' (apply changes /spf/Z, 1-2)

product2

X@

Y

revision 3

update product1 with the changes

in the spf between revision 1 and 3

spf

U - Optional, implements F3

X' - Mandatory, implements F1

Y' - Optional, excludes Z, implements F2,

depends U

Z' - Optional, excludes Y, implements F1

product1

X'

Z@'

product2

X@

Y

revision 4

the spf is refactored slightly so that Y now

depends on a new component U

spf

U - Optional, implements F3

X' - Mandatory, implements F1

Y' - Optional, excludes Z, implements F2,

depends U

Z' - Optional, excludes Y, implements F1

product1

X'

Z@'

product2

X@

Y

revision 4

the spf is refactored slightly so that Y now

depends on a new component U

spf

U - Optional, implements F3

X' - Mandatory, implements F1

Y' - Optional, excludes Z, implements F2,

depends U

Z' - Optional, excludes Y, implements F1

product1

X'

Z@'

product2

X@

Y

revision 5

The changes to X and Y are now applied to

product2. Tool support detects that product2

now violates constraints

spf

U - Optional, implements F3

X' - Mandatory, implements F1

Y' - Optional, excludes Z, implements F2,

depends U

Z' - Optional, excludes Y, implements F1

product1

X'

Z@'

product2

X@

Y

revision 5

The changes to X and Y are now applied to

product2. Tool support detects that product2

now violates constraints

spf

U - Optional, implements F3

X' - Mandatory, implements F1

Y' - Optional, excludes Z, implements F2,

depends U

Z' - Optional, excludes Y, implements F1

product1

X'

Z@'

product2

X'@

Y'

U (copy from /spf/U, 5)

revision 6

The constraint violation is solved by copying U

from revision 5

spf

U - Optional, implements F3

X' - Mandatory, implements F1

Y' - Optional, excludes Z, implements F2,

depends U

Z' - Optional, excludes Y, implements F1

product1

X'

Z@'

product2

X'@

Y'

U (copy from /spf/U, 5)

revision 6

The constraint violation is solved by copying U

from revision 5

1.2.41.2.41.2.41.2.4 Using the information modelUsing the information modelUsing the information modelUsing the information model

Figure 1. Example version management for product derivation and families

To illustrate how product derivation would work with such an integrated infor-

mation model, we run through a small example scenario based on an imaginary

SPF that we follow through a few revisions, as shown in Figure 1 below.

In revision 1, an SPF (software product family) directory is created and a few

components are (X, Y and Z) are added. Using subversion properties it is speci-

fied that X is a mandatory component and implements feature F1. Similarly, Y

and Z are optional and are variants of the same feature F2. Since a product can

use only one of the implementations of F2, both implementations Y and Z ex-

clude each other.

Furthermore, revision 1 includes two product derivations in the form of two di-

rectories in the repository (product1 and product2). Copies from SPF have been

made of X and Y for product1 and X and Z for product2. Although we do not

show this explicitly, the properties on the SPF components are copied as well.

This allows us to use a tool to validate the constraints (in this case there are no

violations).

In revision 2, we do some maintenance on the SPF. This results in changes to

/SPF/X and /SPF/Z. We indicate these changes using a ‘. Additionally product en-

gineers make a product specific change to /product1/Z and /product2/X. These

changes are indicated with a @.

In revision 3, product1 is updated with the changes made to the SPF in revision

2. /product1/Z now has both the product specific changes and the SPF changes.

It might be possible that these changes are conflicting in which case the conflict

would have to be resolved. It is worthwhile to point out that this conflict could

have been identified (using a so-called dry-run for the merge of the changes on

all the derived product components) already in revision 2 when the change was

made to SPF/Z. In a real product family, the ability to analyze the impact of im-

portant changes on derived products is of course a very important feature any

potential conflicts might result in these changes to be reconsidered or in some

kind of upgrade strategy for the affected products.

In revision 4, some more refactoring is done on the SPF. A component U is

added and some changes to Y result in a dependency between Y and U.

In revision 5, product2, which is still based on the revision1 of the SPF, is up-

dated with the changes to X and Y. This results in a situation where constraints

are violated.

Revision 6 resolves the constraint violation by copying U to product2.

The scenario above can be enhanced with tool support based on the informa-

tion in the version repository. For example, constraints validation could be

automated and run before each commit; as part of a nightly build or even inte-

grated into the IDE. Similarly, impact analysis of changes on the SPF could be

supported by trying to merge the changes to each of the derived products.

These are just two simple but extremely useful ways to provide tool support us-

ing subversion.

1.31.31.31.3 Conclusions and future workConclusions and future workConclusions and future workConclusions and future work

In this article we have outlined first ideas for complementing existing tools for

product derivation based on software variability modeling with version man-

agement functionality in order to better support the derivation of software

products. Our approach is especially appropriate in situations where it may be

expected that:

– Derived products may include modifications to the components that they are

derived from.

– Changes made to the product family after the initial derivation takes place

need to be propagated to derived products.

The main purpose of this position paper is to shape our ideas with respect to fu-

ture work:

– Provide a more formal definition of the information models.

– Explore additional opportunities for automating product derivation steps.

– Build layer of tools on top of subversion and existing variability tools and

validate concepts using a case study.

– Explore advantages of using distributed version management systems where

change sets are pulled rather than pushed, a notion that shifts control from

product family developers to product developers.

1.41.41.41.4 ReferencesReferencesReferencesReferences

[1] J Bosch, Design and use of software architectures: adopting and

evolving a product-line approach, - 2000 - ACM Press/Addison-

Wesley Publishing Co., New York, NY K.

[2] Czarnecki and U. Eisenecker. Generative Programming: Methods,

Tools, and Applications. Addison-Wesley, 2000.

[3] Savolainen, J. Oliver, I. Mannion, M. Hailang Zuo, Transitioning

from product line requirements to product line architecture, Com-

puter Software and Applications Conference, COMPSAC 2005.

[4] Kang, C. K., Lee, J., Donohoe, P., Feature-Oriented Software product

line Engineering, 2002, IEEE Software, 19, 4, 58-65.

[5] P. Sochos, I. Philippow, and M. Riebisch. Feature-Oriented Develop-

ment of Software Product Lines: Mapping Feature Models to the Ar-

chitecture. In Object-Oriented and Internet-Based Technologies.

2004.

[6] C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects.

In ECOOP’97, 1997.

[7] E. Tryggeseth, B. Gulla, R. Conradi, Modelling Systems with Variability

using the PROTEUS Configuration Language, Lecture Notes In Com-

puter Science Vol. 1005, Springer-Verlag, pp 216 - 240, 1995.

[8] Pohl, K.; Böckle, G.; van der Linden, F.: Software Product Line Engi-

neering – Foundations, Principles, and Techniques. Springer, Heidel-

berg 2005.

[9] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, Jan Bosch: Modeling

Dependencies in Product Families with COVAMOF. ECBS 2006: 299-

307.

[10] R. van Ommering, Building product populations with software com-

ponents, proceedings of the 24rd International Conference on Soft-

ware Engineering, pp. 255-265, 2002.

[11] C. Michael Pilato, Ben Collins-Sussman, Brian W. Fitzpatrick, Version

Control with Subversion, O'Reilly Media, 2004, available at

svnbook.red-bean.com

[12] The Subversion Project Home, http://subversion.tigris.org

